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Abstract— Real-world missions require robots to detect ob-
jects in complex and changing environments. While deep
learning methods for object detection are able to achieve
a high level of performance, they can be unreliable when
operating in environments that deviate from training conditions.
However, by applying novelty detection techniques, we aim to
build an architecture aware of when it cannot make reliable
classifications, as well as identifying novel features/data. In this
work, we have proposed and evaluated a system that assesses the
competence of trained Convolutional Neural Networks (CNNs).
This is achieved using three complementary introspection meth-
ods: (1) a Convolutional Variational Auto-Encoder (VAE), (2) a
latent space Density-adjusted Distance Measure (DDM), and (3)
a Spearman’s Rank Correlation (SRC) based approach. Finally
these approaches are combined through a weighted sum, with
weightings derived by maximising the correct attribution of
novelty in an adversarial ‘meta-game’. Our experiments were
conducted on real-world data from three datasets spread across
two different domains: a planetary and an industrial setting.
Results show that the proposed introspection methods are able
to detect misclassifications and unknown classes indicative of
novel features/data in both domains with up to 67% precision.
Meanwhile classification results were either maintained or
improved as a result.

I. INTRODUCTION

Object detection is essential for many robotic applications
including autonomous driving, industrial inspection, and
planetary exploration. Over the last decade, deep learning
has revolutionised the field and has set new standards in
classification performance. However, deep learning methods
require an enormous amount of training data and while they
are generally applicable, they struggle with dataset shifts, i.e.,
when the distribution of inputs and outputs differs between
training and deployment. This problem raises the question to
what extent autonomous robot systems should rely on trained
neural networks when deployed in open-ended environments
where dataset shifts are bound to occur and how these
systems might cope with such dataset shifts.

This work primarily relates to the space robotics project
ADE1 [1], which concerns Mars exploration and nuclear
decommissioning tasks. However, we additionally verify our
methods on the publicly available Mars novelty detection
Mastcam labeled dataset2 [2]. In ADE, one of the robot’s
task is to detect objects of known (or typical) classes in
their environment and at the same time, evaluate if an object
is novel. To this end, we calculate the likelihood that a
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Fig. 1: Competency-aware object detection for robot missions in open-
ended environments. The images show detected objects and their classifica-
tions made by Convolutional Neural Networks (CNNs) which were trained
on typical objects in a desert environment. During deployment/testing, our
approach also evaluates the novelty of object candidates based on the
training distribution, thereby detecting cases where reliable classification
may not be possible. Left: Low novelty score for an in-distribution object.
Right: High novelty score for an out-of-distribution object.

reliable classification can be made for a given candidate. This
information allows us to assess the competency of trained
models as well as detecting novel objects/features that are
unrepresented by any classifiers.

In order to accomplish the tasks set out by ADE, we
propose an original architecture that aims to augment a set of
baseline classifiers with additional introspective components
that consider the competency of the model in the current
situation. The baseline is composed of a stack of Convo-
lutional Neural Network (CNN) classifiers, each of which
provides a single confidence value for a given object/feature
class. The presented approach aims to boost the performance
given by this baseline with three complementary methods:
A convolutional Variational Auto-Encoder (VAE), a latent
space Density-adjusted Distance Measure (DDM) and a
Spearman’s Rank Correlation (SRC) based approach. By
combining these methods with the baseline CNN stack we
aim to identify novel features which the CNN stack may
struggle to classify reliably. In this paper, novel features
concern both the features of unknown classes and features
of known classes that are not sufficiently represented in their
corresponding CNN classifiers (e.g. a new shape/colour of
rock outcrop is a novel feature, even if the class is known and
represented). This novel image data could additionally prove
interesting to a human observer in scientific exploration or
inspection tasks.

In the following, a literature review is provided (Sec. II),
followed by a discussion of the proposed architecture
(Sec. III), an explanation of the novelty detection approach
(Sec. IV), and an experimental evaluation (Sec. V), before
we finally conclude (Sec. VI).

II. RELATED WORK

Object and feature detection is a well-studied research area
with roots in pattern recognition and scene congruence [3].



Given the field’s extensive history and rapid recent devel-
opments through the widespread adoption of deep neural
networks this work will not discuss the full scope of this
field. A comprehensive review is given in [4].

Our approaches are rooted in CNN-based object/feature
classification as in [5], [6]. Furthermore, we utilise Selective
Search [7] as a region proposal method which has several
benefits for our application including low processing times,
full-image coverage, and no requirements for training data.
However, Edge Boxes [8] and Region Proposal Networks
(RPN) [9] provide alternative approaches which could have
been also considered in this context.

The performance of object detection during robot deploy-
ments was recently addressed by [10]. While they use a
threshold-based approach by monitoring the per-frame mean
average precision, our work uses a combination of three
complementary introspection methods for such analysis.

The first form of novelty analysis in our proposed
competency-aware approach is based upon VAEs [11] for
detecting novel and anomalous data [12], [13], [14]. Given
the emphasis on planetary exploration, the presented ap-
proach is derived from our previous work [15] on applying
VAEs for novelty anaylsis of multispectral images from
the Mars Curiosity rover [2], [16]. This paper builds upon
these contributions in two regards. Firstly, the architecture
proposed describes a full system which can be deployed
in real-world conditions [1] and therefore experiments are
carried out on datasets of rover trial locations. Secondly,
this work proposes not only the combined application of
traditional novelty analysis and classification techniques,
but additionally several means of augmenting the overall
performance either by combining this data or by factoring
in new metrics of novelty.

A further novelty analysis technique we consider is
based upon density-based clustering. Density-based cluster-
ing methods [17], [18], [19] are popular and robust methods
for analysing data, without making assumptions about the
densities of the individual clusters yet also accounting for
possibility of cluster hierarchies. These methods have also
garnered attention for novelty and outlier detection [20], [21].
Being inspired by the OPTICS algorithm [17], we suggest
a modification which is suitable to our novelty detection
analysis by making a connection with metric space theory.

The third novelty analysis technique adopted in this paper
is based upon the Spearman’s Rank Correlation Coefficient.
The combination of CNN confidence values at prediction
time is compared with the correlation of various classes
from training time in order to provide a metric of how
novel/typical a given set of confidence values is.

The simplest way to combine the outputs of these three
methods into a single scalar output would be to take their
mean output. However this assumes the models are all
equally effective, which may not reflect reality. Instead we
use the evaluation methods in [22] where a game-theoretic
mode of evaluation is proposed: a two player zero-sum game
where one player aims to select the best model for a task,
and the other player aims to fool the models with the most

Fig. 2: A high level diagram of the system architecture. The input image is
first processed to propose regions of interest. These regions of the image are
then packed into tensors and fed through a novelty analysis networks as well
as a CNN classifier for each class. A novelty value as well as raw confidence
values for each class are then extracted from the resulting tensors. The raw
class confidences are then normalised before competency aware correction
is carried out through the VAE, DDM and SRC methods detailed in this
work. Finally post processing is carried out to filter the labelled regions
before they are output from the system.

difficult tasks. [22] propose that the maximum entropy Nash
equilibrium of this game is a robust measure of the efficacy of
each model (and correspondingly, the difficulty of each task).
They show that this type of equilibrium has nice theoretical
properties which are directly relevant to our problem.

III. OBJECT DETECTION SYSTEM ARCHITECTURE

A. System Overview

We first give an overview of the object detection system
before we describe its components in subsequent sections.

Given an input image, the system first generates a set of
region proposals (bounding boxes) (Sec. III-B). Each region
proposal is then processed by a set of CNNs (each trained for
a specific class of interest) (Sec. III-C). Additionally, each
proposal is evaluated by three complementary methods: a
novelty assessment (Sec. IV-A), a density-adjusted distance
measurement (Sec. IV-B), and a statistical analysis (Sec. IV-
C). Finally, the probabilistic outcomes of these three methods
are combined using learnt weights (Sec. IV-D). For each
region proposal, the distribution of object classes is reported
(including a probabilistic measure of their novelty).

B. Region Proposal Generation

The region proposal generation is based on Selective
Search [7]. The approach first applies graph-based segmen-
tation [23] before performing hierarchical clustering based
upon a variety of distance metrics, any combination of which
form a strategy. Due to the lack of necessity for high preci-
sion bounding boxes and a requirement for fast processing
speed we employed the Single Strategy [7]. Finally, regions
are filtered based upon their area. Regions that are either
too small to contain sufficient data or so big as to make a
spatially localised classification meaningless are removed.

C. CNN-based Classification

To classify the individual region proposals each of them
is passed through a stack of trained Convolutional Neural
Networks (CNNs). While one could also train a single CNN
to classify regions, we have opted for a set of models as in
[24]. Thereby our approach is parallelisable, requires little



hyperparameter tuning, is easily scalable to novel classes,
and allows us to swap out models at runtime (e.g. to save
energy). Work by [24] has also shown that an ensemble of
models provides high quality predictive uncertainty estimates
and is more robust against dataset shifts. However, overall,
the taken approach is not critically important (and can be
replaced) as our main focus is on the introspection methods
which are described in the next section.

Each CNN was trained for a single class, while all other
classes are treated as negative labels. An image region
is passed through successive convolutional layers of shape
(32 × 5 × 5) and (64 × 5 × 5). Each convolutional layer is
followed by a (2× 2) max pool layer, a batch normalisation
layer, a leaky ReLU layer and a 25% drop out layer. After
the convolutional layers the output is flattened and passed
through two dense layers of size 500 and 1 respectively. The
networks are trained in a supervised fashion using a weighted
cross-entropy function:

LCNN = −
1

N

N∑
i=0

wyi ln(σ(xi)) + (1− yi) ln(1− σ(xi)) (1)

where N is the batch size, y and x are the set of corre-
sponding labels and produced logits, and w is the weighting
with emphasis on recall proportional and precision inversely
proportional to this value respectively. The confidence values
from each expert are intended to reflect a likelihood of the
region corresponding to a given class. To consolidate the
outputs from the different experts, we normalise their re-
spective confidence values by dividing them by their overall
sum. When introducing the novel class confidence value for
a region, the value can be introduced simultaneously with
the normalisation step, or afterwards before renormalising.
We experimented with both approaches but for brevity will
only evaluate results from the simultaneous introduction, due
to it typically performing better in our experience.

While we classify all region proposals using this CNN-
based approach, we explain in the next section how these
results can be assessed, analysed, and improved.

IV. COMPETENCY-AWARE OBJECT DETECTION

In this section we first present three complementary in-
trospection methods to assess and analyse the performance
of CNN-based classifiers. Finally, in Sec. IV-D, we explain
how these methods can be optimally combined.

A. VAE-based Novelty Detection (VAE)

Our aim is to detect a dataset shift, i.e. novel objects that
were not part of the training distribution. In this work, we
have adopted the approach by [15] for novelty detection
based on Variational Autoencoders (VAE). To this end,
the VAE model was only trained on typical data from the
target environment. The underlying idea being that the VAE
‘knows’ how to process typical data, but not novel data. At
test time, the VAE model aims to reconstruct any given region
proposal. Each proposal X is first encoded into the VAE’s la-
tent space representation z. Then, the VAE’s decoder creates
a reconstructed image X̂ from the latent space representation.

The encoder consists of convolutional layers with shapes
(32 × 7 × 7), (128 × 5 × 5), (64 × 3 × 3), (6 × 3 × 3)
and identical layers inbetween each convolutional layer as
the CNN classifiers. This is again followed by flattening
and passing through two dense layers except this time both
have size double the number of latent dimensions in order
to produce the mean and variance for each dimension. Once
the mean and variance is calculated for a given image region,
a latent vector representation is sampled from a multivariate
Gaussian distribution, this is then passed into the decoder,
which is defined symmetrical to the encoder. We employ
a latent representation consisting of 768 dimensions, based
upon the findings of [15]. In order to train the VAE and to
assess the novelty of a region proposal, we use a negative
ELBO loss that combines reconstruction errors in the image
space as well as losses obtained from the VAE’s latent space:

LV AE = −ELBO = −Eq(z|X)(ln p(X|z)) +KL(q(z|X)||p(z)) (2)

p(X|z) ∼
∑

xi,j,k∈X
N (xi,j,k, 0.04) (3)

p(z) ∼ N (0, 1) (4)

The loss provides a confidence value how novel an object
is. For further discussion of the VAE approach please refer
to [15]. At prediction time, once we have derived a loss
value for a region, we compare it against a histogram of loss
values from training time and use the placement relative to
these values to determine the novelty, i.e. a value of 1.0 for
loss greater than any training time case, a value of 0.0 for
loss less than any training time case.

B. Density-Adjusted Distance Measure (DDM)

While the VAE does take into account an image region’s
relationship with its latent space, the means by which it does
so is rudimentary. The approach described here is Density-
Adjusted Distance Measure (DDM) for the VAE’s latent
space.

Before describing our method, let us briefly state some
preliminaries. A metric space is a set X together with a
distance function d : X ×X −→ R such that ∀x, y, z ∈ X ,
d(x, y) ≥ 0, d(x, y) = d(y, x), d(x, y) = 0 if and only if
x = y, and finally d(x, z) ≤ d(x, y) + d(y, z). The OPTICS
algorithm [17], [18] is a density-based clustering algorithm
which takes a collection of points from a metric space as
input, and produces an ordering on the dataset from which
a cluster assignment is recoverable.

An observation is made in [18] that OPTICS is closely
related to Prim’s algorithm for finding minimum spanning
trees. OPTICS takes a point cloud from a metric space as
input; then if we interpret this as a fully-connected weighted
graph where the weights are pairwise distances, then OPTICS
starts by redefining the weights on the edges by taking
local density into account via its use of core distances.
Then a greedy algorithm, reminiscent of Prim’s algorithm,
is executed on this re-weighted graph.

More specifically, given a collection of points x1, ..., xn ∈
X where (X, d) is a metric space, define the core distance



of a point x ∈ X to be:
c(x) := inf {ε > 0 : |Bε(x)| ≥ N} (5)

Bε(x) := {xi : d(x, xi) < ε} (6)

where N ∈ N, 1 < N < n is a hyperparameter. Following
this, OPTICS defines the re-weighting or reachability dis-
tance to be:

do(xi, xj) := max {d(xi, xj), c(xi)} (7)

However the reader may observe that the two above defini-
tions are not distance functions in general, hence (X, do) is
not a metric space. As [18] notes: do is not symmetric, so
is not a metric. This closes off many avenues of analysis, as
metric spaces have been heavily studied. So instead, we pick
an alternative re-weighting:

dm(xi, xj) := max {d(xi, xj), λ |c(xi)− c(xj)|} (8)

for a hyperparameter λ > 0.

Lemma 1. dm is a distance function.

Proof: Clearly dm is symmetric in its arguments. Furthermore,
d ≥ 0 means dm ≥ d ≥ 0. Positivity follows from the fact that
dm(xi, xi) = max {d(xi, xi), λ |c(xi)− c(xi)|} = max {0, 0} = 0.
The triangle inequality follows from:

dm(xi, xj) ≤ max{d(xi, xk) + d(xk, xj),

λ |c(xi)− c(xk)|+ λ |c(xk)− c(xj)|}
≤ max {d(xi, xk), λ |c(xi)− c(xk)|}+
max {d(xk, xj), λ |c(xk)− c(xj)|}

= dm(xi, xk) + dm(xk, xj)

In addition to being a metric, dm is an attractive choice for
outlier analysis for qualitative reasons. In addition to being
a metric, the density dependent nature of dm means that
clusters of uniform density are not changed much, whereas
the boundaries of clusters are affected due to an abrupt
change in density. For sufficiently small λ, the majority of
the pairwise distances will be exactly equal to their distance
with respect to d.

We now end the analogy with OPTICS and use this
density-adjusted distance measure dm to test for outliers. We
define a point to be an outlier if its distance from its nearest
neighbour distance is significantly higher than the rest of the
dataset’s nearest neighbour distances3. If we calculate this
with respect to dm rather than d, differences in density are
captured naturally, as opposed to when directly applied to d.

For each point xi, define the nearest-neighbour distance
mj := min

k∈{1..n},k 6=j
dm(xj , xk) (9)

and the average nearest-neighbour distance differences

Ti :=
1

n− 1

n∑
j=1,j 6=i

mj −mi (10)

Then to query if xi is an outlier, define

pi =
|{j 6= i : Tj > Ti}|

n− 1
(11)

Then pi is the novelty value for the point xi, so 1 − pi is

3While this is a rather rudimentary definition, its power comes not from the
definition of an outlier, but from the measure of distance we choose.

how confident we are in the point not being an outlier 4.

C. Spearman’s Rank Correlation (SRC)

Each class represented in the CNN stack will bear some
likeness or unlikeness to the other classes in the CNN
stack. This approach attempts to leverage this by deriving a
novelty value based upon the deviation from class confidence
correlations seen at training time.

To analyse the correlation we calculate the Spearman’s
rank correlation matrix M for the ensemble of CNN classi-
fiers across the entire training dataset of regions. Then for
a runtime prediction vector v ∈ [0, 1]n of the classifiers, we
calculate the value vTMv. Since M is positive semidefinite,
the mapping v 7→

√
vTMv is a seminorm, therefore giving

us a notion of length. We then translate this notion of length
to give us an indication of novelty, according to the formula

v 7→ exp
(
−λvTMv

)
(12)

for some hyperparameter λ > 0.

D. Combining Introspection Methods

Rather than taking a single approach to detecting novelty,
we propose that utilising an ensemble of approaches could
lead to more robust indicator of novelty. One could simply
take the average of novelty scores, however a weighted sum
might be more appropriate to avoid the assumption that the
methods are equally proficient.

In line with the evaluation methods in [22], we set up
a ‘meta-game’ between two players: one player chooses a
novelty detection method, another chooses an image region.
As each region is labelled novel or typical, this allows us
to use the model’s confidence value against the ground truth
label as a measure of correctness. Hence the payoff matrix of
this game is defined as the log-odds5 that a given model will
correctly classify a given image region. Then we compute
the maximum entropy Nash equilibrium of this game, and
used this distribution as the weighting of the models.

An attractive feature of the redundancy invariance means
that if the given novelty models have comparable perfor-
mances their weight will be spread evenly. This invariance
is desirable for the image regions too: the drastic class
imbalances often found in novelty detection problems cause
no skew in the output, i.e. the variety of classes have equal
consideration.

V. EXPERIMENTS

A. Datasets

We conducted experiments on three datasets taken from
two different domains: planetary and nuclear. The planetary
domain relates to geological exploration tasks on remote
planets (e.g. Mars), while the nuclear domain covers auto-
mated surveying of nuclear decommissioning projects. The
ADE project contributes a dataset for each of these domains,

4The calculations in the above method are similar to that of the permutation test;
however that test assumes independence of samples, and the quantities we are averaging
over in the definition of Ti are not independent.

5To prevent infinities appearing in the payoff matrix, we smoothed the model output
probabilities before applying the log-odds function, by a factor of 0.01.



Fig. 3: Rovers used within ADE. Both rovers are equipped with a high-
resolution camera as used for data collection in this work. Left: SherpaTT
rover in a desert environment (Photo: Thomas Frank, DFKI GmbH). Right:
Foxizirc rover in a test campaign at GMV facilities (Photo: GMV).

TABLE I: Dataset Class Distributions

Train+Validation Test

Class Count Class Count

ADE Planetary (Image Regions / Images)

Background 6667 Feature Dense 30
Lighting 311 Feature Sparse 20
Vegetation 1967 Novel 10
Float Rock 6781
Rock Outcrop 1737

ADE Nuclear (Image Regions / Images)

Background 305813 Water Leaks 20
Water Leaks 226 Dry 10

Novel 10

Mastcam (Image Regions / Images Regions)

Background 9358 Background 1756
Broken Rock 60 Broken Rock 16
Drill Hole 50 Drill Hole 12
Dirt 89 Dirt 22
Dump Pile 75 Dump Pile 18
Bedrock (Novel) 5 Bedrock (Novel) 6
Float Rock (Novel) 6 Float Rock (Novel) 12
Meteorite (Novel) 11 Meteorite (Novel) 23
Veins (Novel) 10 Veins (Novel) 20

meanwhile we use the previously mentioned publicly avail-
able Mars novelty detection Mastcam labeled dataset. Fig. 3
shows pictures of the rovers used with the ADE project
within these domains.

For all datasets, training sets were constructed from re-
gions cropped out of images collected in their respective
domains. For the ADE datasets the cropped regions were
the result of labelling carried out by 10 individuals, several
of which were experts in geology who offered their insight
while constructing the planetary dataset. Dataset augmenta-
tion was also carried out by flipping the cropped image re-
gions horizontally to effectively double the training sets. The
mastcam dataset consists entirely of image regions cropped
by experts as part of an earlier work [2], [16]. Test sets
were also constructed, although the contents of these varied
between datasets, namely in the case of the ADE datasets
these consisted of whole images upon which region proposal
would take place, meanwhile for the mastcam dataset, the
images were already cropped and therefore the images were
evaluated directly without a region proposal step. For a de-
tailed breakdown of the distribution of image/image regions
across classes and train/test sets, see Tab. I. In the case of
the mastcam dataset because it consists purely of labelled
cropped images, we opted to select the classes with the
fewest available images to act as part of the novel class,
these classes are indicated in the table.

B. Experiment Parameters & Platform

All neural networks were trained with the Adam optimiser
with learning rates of 10−3 and 10−5 for the CNN and
VAE respectively. The CNN and VAE were trained for 60
and 10 epochs respectively. The cross-entropy weight was
configured to correspond to the difference in exponent for
the positive and negative training counts.

The experiments were carried out on a desktop PC with a
Ryzen 9 3950x CPU and 32GB of 3600MHz DDR4 RAM.
OpenCV was configured to operate with a maximum of 8
threads, as was the TensorFlow library (2 inter op threads
& 8 intra op threads). The KNN-CPP library was set to
auto-detect the number of threads to use through the use of
OpenMP. A time limit of 15 s was allocated to each image,
however most images were processed in approximately 5 s.

C. Quantitative Evaluation

After our architecture has been run on the test sets of
images/image regions we end up with a collection of image
regions labelled by the architecture to either be one of
the known classes or the novel class. In the case of the
mastcam dataset we already have a ground truth label for
each image region, however for the ADE datasets because a
comprehensive labelling of all images would be infeasible in
many cases (e.g. an image with thousands of rocks of varying
scales in it) we instead label the proposed regions. Due to
the fact the uninteresting labels (e.g. background, lighting,
etc.) can often number in the hundreds per image, we cap
the number of uninteresting regions to 50, as determined by
the class label awarded to the region by the architecture.

Once the architecture assigned and ground truth labelling
is established for each image region, the results can be
quantitatively evaluated. Each image region is considered to
be a True Positive (TP), False Positive (FP), True Negative
(TN) or False Negative (FN) for each class based upon the
relationship between the labels for a given image region. The
assignment of these four categories to each class for each
image region follows standard conventions except for the
novel class. If an image region is assigned to the novel class
that would have been improperly classified without novelty
analysis then this is considered a TP for the novel class,
although it will still be registered as a FN for the ground
truth class, this is to reflect the novelty analysis successfully
preventing a false class label assignment, even though the
ground truth class label could not be determined. Similarly, if
an image region is improperly classified with novelty analysis
in place, it would be registered as a FN for the novel class.

We evaluate a baseline CNN stack, the CNN stack com-
bined which each introspection approach individually, and
the CNN stack combined with the introspection approach
ensemble. The results for each of these approaches are shown
in Tab. II. The trend shown throughout the results is that our
approach leads to an increase in precision at the expense of
recall, this results in a marginal overall gain in performance,
as measured by WACC. As our work surrounding the ADE
project is concerned with opportunistic exploration, precision
is desirable over recall, since pursuing misclassified features



TABLE II: Weighted accuracy (WACC) / Precision / Recall per model & class for each dataset

Class CNN CNN+VAE CNN+DDM CNN+SRC CNN+VAE+
DDM+SRC

ADE Planetary

Mean (ex. Novel) 0.53 0.32 0.33 0.54 0.37 0.22 0.54 0.37 0.23 0.54 0.36 0.27 0.54 0.37 0.23
Background 0.76 0.78 0.64 0.77 0.84 0.51 0.77 0.83 0.55 0.76 0.81 0.57 0.77 0.83 0.53
Vegetation 0.61 0.25 0.28 0.66 0.35 0.24 0.66 0.35 0.24 0.65 0.33 0.24 0.66 0.35 0.24
Lighting 0.53 0.06 0.05 0.54 0.09 0.03 0.55 0.11 0.03 0.54 0.09 0.03 0.54 0.09 0.03
Float Rock 0.7 0.55 0.69 0.71 0.65 0.38 0.7 0.64 0.37 0.71 0.62 0.52 0.71 0.63 0.42
Rock Outcrop 0.56 0.28 0.31 0.57 0.3 0.17 0.57 0.3 0.18 0.58 0.31 0.23 0.57 0.3 0.18
Novel − 0.62 0.57 0.55 0.62 0.59 0.52 0.63 0.62 0.38 0.62 0.58 0.5

ADE Nuclear

Mean (ex. Novel) 0.53 0.52 0.59 0.53 0.52 0.55 0.53 0.52 0.56 0.53 0.52 0.56 0.53 0.52 0.56
Background 0.52 0.94 0.22 0.52 0.94 0.2 0.52 0.94 0.2 0.52 0.94 0.21 0.52 0.94 0.2
Water Leaks 0.54 0.09 0.95 0.53 0.09 0.91 0.53 0.09 0.91 0.53 0.09 0.91 0.53 0.09 0.91
Novel − 0.47 0.67 0.06 0.47 0.66 0.05 0.46 0.65 0.04 0.47 0.66 0.05

Mastcam

Mean (ex. Novel) 0.55 0.26 0.59 0.55 0.27 0.4 0.55 0.28 0.47 0.56 0.29 0.5 0.56 0.28 0.51
Background 0.59 0.99 0.7 0.57 1.0 0.58 0.57 1.0 0.55 0.57 1.0 0.58 0.58 1.0 0.62
Broken Rock 0.54 0.09 0.81 0.5 0.0 0.0 0.55 0.11 0.38 0.54 0.09 0.5 0.55 0.1 0.5
Drill Hole 0.56 0.13 0.25 0.61 0.23 0.25 0.59 0.19 0.25 0.62 0.25 0.25 0.6 0.21 0.25
Dirt 0.54 0.08 0.91 0.54 0.08 0.91 0.54 0.08 0.91 0.54 0.09 0.91 0.54 0.08 0.91
Dump Pile 0.51 0.02 0.28 0.51 0.03 0.28 0.51 0.03 0.28 0.51 0.03 0.28 0.51 0.03 0.28
Novel − 0.58 0.45 0.31 0.53 0.37 0.26 0.55 0.4 0.25 0.59 0.47 0.22

Fig. 4: Qualitative Novelty Detection Results

(a) TP Case (b) FP Case (c) TN Case (d) FN Case (e) TP Case (Unk.) (f) FN Case (Unk.)

might be a waste of time/energy. However, the novelty
detection results of the architecture are the most significant
findings. If we consider the CNN+VAE+DDM+SRC model,
the lowest precision seen is 0.47 for the Mastcam dataset,
while the planetary and nuclear ADE datasets have precision
0.58 and 0.66 respectively. This makes sense given the Mast-
cam dataset was the smallest of the three used to train the
architectures. However, what this means is that typically at
least ∼ 50% of the image regions classified as novel indeed
contain novel content, either as an unknown class or as new
information for an existing class (i.e. a misclassification).
This opens up the opportunity for the introspective methods
described here to facilitate a self improving system. This
could either be achieved by an additional manual labelling
step for the novel cases, or involve running a more precise
classifier with greater processing times in the background.

D. Qualitative Evaluation

In Fig. 4 qualitative results for several novelty detection
cases. Cases (a) through (d) show instances of where novelty
detection succeeded and failed in avoiding a misclassifica-
tion, meanwhile cases (e) and (f) show a success and failure
case for dealing with an unknown class i.e. A pair of cars
and a human respectively.

The most significant factor demonstrated by these images
is the inherent difficulty of determining what should be

considered novel information. Consider cases (b) and (d),
despite the visual resemblance of the labelled image regions
being very similar one is successfully classified by the
CNN stack, while the other is not. Despite this, the novelty
detection only assigns the successfully classified case to the
novel class. The difficulty is in the ability to anticipate the
behaviour of CNNs combined with the preexisting ambiguity
between classes (e.g. Float Rock vs Rock Outcrop). In
order to address this difficulty further work will need to be
conducted that takes into account no only the training dataset,
but also the behaviour of CNNs trained from this data.

VI. CONCLUSIONS

We have presented an approach to competency-aware
object detection for robot missions in open-ended envi-
ronments. Through experiments on real-world data in two
domains, we have demonstrated how introspection methods
can assess the outcome of CNN-based classifiers without a
loss in performance. By exploring introspection for object
detection, our work makes steps towards autonomous robot
systems which operate in changing, real-world environments.
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