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Abstract— For autonomous vehicles to be able to operate
successfully they need to be aware of other vehicles with
sufficient time to make safe, stable plans. Given the possible
closing speeds between two vehicles, this necessitates the ability
to accurately detect distant vehicles. Many current image-based
object detectors using convolutional neural networks exhibit
excellent performance on existing datasets such as KITTI.
However, the performance of these networks falls when detect-
ing small (distant) objects. We demonstrate that incorporating
radar data can boost performance in these difficult situations.
We also introduce an efficient automated method for training
data generation using cameras of different focal lengths.

I. INTRODUCTION

In an autonomous driving setting, object detection, partic-
ularly the detection of other road users, is of vital impor-
tance for safe operation. However, in some circumstances
the closing speeds between vehicles can be such that it
becomes necessary to detect objects at considerable distances
to be able to make timely decisions. At such distances, the
appearance of a vehicle in an image is only a few pixels high
and wide.

Deep convolutional neural networks (CNNs) represent the
state-of-the-art in object detection and have been shown to
perform well in a range of different scenarios. However, it
has also been shown that they struggle to accurately detect
small objects [1].

Radar as a sensing modality is highly complementary
to vision. It is robust to variable weather conditions, has
measurement accuracy that is independent of range and, in
the case of Doppler radar, provides direct velocity measure-
ments. However, unlike images it is difficult to determine the
size of a radar target [2] and radar signals are vulnerable to
clutter and multi-path effects. We show that the combination
of the two sensors improves performance over vision alone.
In particular, Doppler radar can give a strong indication of
motion for objects in the distance helping to classify small
groups of pixels as, for example, a vehicle rather than as
background.

We design and train a detector that operates using both
monocular images and radar scans to perform robust vehicle
detection in a variety of settings. None of the major datasets
used for autonomous driving research [3][4][5] include radar
data. As the performance of CNNs is closely linked to the
availability of sufficient training data it is important that
there is a low cost source of this data. Consequently, to
demonstrate our approach, we generate our own dataset
that we label automatically by using an existing detector
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Fig. 1. By using radar we are able to detect vehicles even if they are very
small (top) or hard to see (bottom). The inset images show the difficult
parts of the main scenes and are taken from a synchronised long focal
length camera we use as part of our training data generation. Detections are
shown in red, ground truth in blue. This figure is best viewed electronically.

and combining detections from multiple cameras. By using
cameras of different focal lengths we can label distant objects
and exploit the proximity of the cameras to transfer the
distant labels into the canonical image.

II. RELATED WORK

Object detection has been a major topic of computer
vision research and over recent years a number of fully
convolutional object detectors have been proposed. Two-
stage methods, in particular Faster R-CNN [6], provide state-
of-the-art performance but are computationally expensive.
One-stage methods [1][7] are structurally simpler and can
operate in real-time but suffer a performance penalty. To
improve performance on difficult examples and bridge the
performance gap between two-stage and one-stage detectors,
Lin et al. [8] propose a loss function that focuses the loss on
examples about which the classifier is least confident. This
however relies on the labels being highly accurate which may
not be the case if they are automatically generated.

A common approach when training object detectors for a
specific task is to pre-train a feature extractor using ImageNet
[9] and then fine tune the features with the limited training
data available for the task. In [10] Shen et al. show that,
given careful network design, it is possible to obtain state of
the art results without this pre-training process. This implies
that a fusion network, such as the one we are proposing, is
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Fig. 2. The sensor layout used for data collection. Short focal length (wide
angle) cameras are shown in blue, long focal length in yellow and radar in
red.

not at an insurmountable disadvantage if pre-training is not
performed.

A number of papers use automated methods for generat-
ing training labels. In [11], visual odometry from previous
traversals is used to label driveable surfaces for semantic
segmentation. Hoermann [12] employs temporal consistency
to generate labels by processing data both forwards and
backwards in time. Recent work by Adhikari et al. [13] takes
a labelling approach that is related to ours by also leveraging
the power of an existing object detector to generate labelled
data for a new task, although a small amount of manual
labelling is still required.

Multi-modal object detection has been investigated in a
number of works. In [14] camera images are combined with
both frontal and birds eye LIDAR views for 3D object
detection. Data from cameras, LIDAR and radar are all fused
in [15].

III. DATASET CREATION AND AUTOMATIC LABELLING

To create our dataset, data is gathered using two cameras
configured as a stereo pair and a third, with a long focal
length lens, positioned next to the left stereo camera (Fig.
2). All three cameras are synchronised and collect 1280x960
RGB images at 30Hz. In addition we collect radar data
using a Delphi ESR 2.5 pulse Doppler cruise control radar
with a scan frequency of 20Hz. The radar is dual-beam,
simultaneously operating a wide angle medium range beam
(> 90 deg, > 50m) and a long range forward-facing narrow
beam (> 20 deg, > 100m). Labels are generated in an
automated fashion — the way in which we do this is part of
our contribution.

A. Object detector

To generate our labels we use an implementation of the
YOLO object detector [7] trained on the KITTI dataset
[3]. This detector provides a variable number of bounding
box detections per frame with each detection having an
object probability P (O) and conditional class probabilities
P (C|O) in addition to bounding box co-ordinates. However,
the unmodified object detections from a single image are
insufficiently accurate to use as labels, particularly for objects
at distance. To improve the quality of the detections we

combine detections from multiple cameras. In the imple-
mentation we use, two classes are provided: vehicles and
pedestrians/cyclists.

B. Combining labels using multiple focal lengths

To produce more accurate labels of distant vehicles we
make use of two cameras of different focal lengths. The
first camera CA has a wide angle lens (short focal length)
and is the camera in which objects are to be detected
when the system is deployed live on a vehicle. The second
camera CB has a much longer focal length and is mounted
as close as physically possible to the first such that their
optical axes are approximately aligned. Object detections
in CB can be transferred to CA without needing to know
the object’s range (Fig. 3) by exploiting the cameras’ close
mounting. Specifically, given two cameras, CA and CB , with
respective intrinsic matrices KA and KB , if the cameras are
mounted close together, such that the camera centres can be
approximated as being coincident, then image points [u, v]
from one camera can be redrawn in the other camera as
follows:

x =

uwvw
w

 (1)

xA = KARABK
−1
B xB (2)

where xA and xB are the homogeneous image co-ordinates
in the respective cameras, RAB is the rotation matrix be-
tween the two cameras and w is set to 1. RAB is obtained
by minimising the re-projection error of salient points that
are manually identified in synchronised images from both
cameras.

The approximation that both cameras share a camera
centre induces an error ε in the points that are transferred
to the new image:

ε =
fAd

Z
(3)

where d is the distance between the two cameras, fA is
the focal length of the new camera and Z is the distance
of the point from the camera along the optical axis. In our
application with fA = 625px and d = 0.032 a bounding box
for an object at Z = 20m away will be offset by ε = 1px.

Given that the fields of view of the cameras are required
to overlap as much as possible there will be a joint image
region observed by both cameras. It is likely that objects in
this joint region will be detected in both the short and long
focal length images simultaneously. As the long focal length
camera CB has a higher resolution in the joint region we use
the detections from that camera in that region. At the border
we discard any detections from the short focal length camera
CA which have an overlap with the joint region greater than
a threshold τ (we use τ = 0.5). Given a bounding box in CB

with area ΦB and a joint region between the two cameras
with area ΦJ the overlap is calculated as:

Overlap =
ΦB ∩ ΦJ

min(ΦB ,ΦJ)
. (4)
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Fig. 3. Example of bounding box transfer between two cameras of different focal lengths for training data generation. Left shows the original bounding
boxes found from the short focal length camera (vehicles are red, pedestrians blue). Middle shows the original bounding boxes found from the long focal
length camera. Right shows the combined set of bounding boxes. The outline of the overlapping region is shown in green.

Advantageously, in our automotive application, distant
objects are often in the centre of the image which coincides
with the overlapped image region. As a result the number of
distant objects that are missed is relatively small compared
to the ratio of the two image areas.

C. Radar

The radar internally performs target identification from the
radar scans and outputs a set of identified targets (access
to the raw data is not available). Each target comprises
measurements of range, bearing, range rate (radial velocity)
and amplitude. Each radar scan contains a maximum of 64
targets from each of the two beams. To handle the varying
number of targets we project the radar targets into camera
CA giving two extra image channels — range and range-rate,
see Fig 4. We mark each target position in the image as a
small circle rather than a single pixel as this both increases
the influence of each point in the training process and reflects
to some extent the uncertainty of the radar measurements in
both bearing and height.

To simplify the learning process, before performing the
projection we subtract the ego-motion of the platform from
the range rate measurement of each target. To calculate the
ego-motion we use a conventional stereo visual odometry
system [16]. As the radar is not synchronised with the
cameras we take the closest ego-motion estimate to each
radar scan.

The projected image locations are calculated as

xA = PATARXR (5)

where PA is the 3x4 projective camera matrix of CA, TAR is
the extrinsic calibration matrix from the radar to the camera
and XR is the 4x1 homogeneous vector of the radar target.

The range-rate channel is scaled such that a range-rate of
0 corresponds to a pixel value of 127.

As can be seen in Fig. 4 the radar is sparse and can be
inconsistent, there is no guarantee that a moving vehicle will
be detected as a target. It is also noisy — occasional high
range-rate targets will briefly appear without any apparent
relation to the environment. Neverthless, there is sufficient

information in the signal that it can provide a useful guide
to vehicle location.

D. Sub-sampling

As consecutive image frames are highly correlated, there
is a diminishing return in including all frames. We select
only those frames for which radar and image timestamps are
within a small time offset (we choose 10ms) and then sub-
sample by a factor of five giving an overall sub-sampling of
approximately 1:10 from the original radar frequency.

E. Final dataset

The outcome of the labelling process is a dataset of
images and radar scans with bounding boxes for vehicles and
pedestrians in each image. From six daytime drives totalling
3 hours 10 minutes that cover a mixture of urban, sub-urban
and highway driving, we generate 25076 labelled images.
We split the dataset to give 17553, 2508 and 5015 images
for training, validation and testing respectively. The images
are not shuffled prior to splitting to prevent consecutive (and
potentially very similar) images from being split into the
training and testing sets and to ensure that unseen locations
are present in testing. The images are cropped to remove the
vehicle bonnet and then downscaled by a factor of two to
give a final image size of 640x256. Some examples from the
dataset are shown in Fig. 4.

Due to a significant class imbalance, with 53019 vehicles
in the training set and only 5559 pedestrians, and given that
the radar signal on pedestrians is poor, we focus on vehicles
only in the rest of this work.

IV. DETECTION NETWORK

We build upon the SSD object detection framework [1],
chosen as it represents a proven baseline for single-stage
detection networks. We construct our network from ResNet
blocks [17] using the 18-layer variant from [18]. Using
blocks from the larger ResNet variants added model com-
plexity without increasing performance, possibly due to the
limited number of classes and training examples (relative
to ImageNet) meaning that larger models merely added
redundant parameters.
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Fig. 4. Examples of automatically generated training data. Top shows the
image with bounding boxes from the object detections from the combined
cameras. Middle shows the range image generated from the radar scan and
bottom shows the range-rate image. Note the difference in colour of the
signals associated with the oncoming and retreating vehicles in the left-hand
range-rate image. The colouring of the radar images is for visualisation only.

A variety of possible fusion methods are discussed in
recent work [14][19]. We experiment with including the radar
data in two ways. Firstly, by adding an additional branch
for the radar input and concatenating the features after the
second image ResNet block (see Fig. 5). Secondly, by adding
the same additional branch but without the max-pool and
using element-wise addition to fuse the features after the
first image ResNet block. While we experimented with a
combined five-channel input image, the branch configuration
proved best, allowing the development of separate radar
and RGB features. Using a branch structure also offers the
potential flexibility of re-using weights from the RGB branch
with different radar representations.

As in standard SSD, features at different scales are passed
through classification and regression convolutions that pro-
duce dense predictions for a pre-defined set of default boxes.
We use the same loss function as standard SSD which uses a
cross-entropy loss on the classification outputs and a smooth
L1 loss on the bounding box regression. The final outputs
are refined using non-maxima suppression (NMS) with a
threshold of 0.45 and limited to a maximum of the 200 most
confident detections.

A. Small objects

As has been noted in other work [8], the performance
of SSD degrades when trying to detect smaller objects. To
counteract this we adopt an approach similar to that proposed
by [20], duplicating default boxes at sub-divisions of the
feature map cells.

V. EXPERIMENTAL SETUP

A. Network Training

We train all of our models from scratch using the ADAM
optimiser [21] with β1 = 0.9, β2 = 0.999, ε = 10−8 and a
learning rate of λ = 10−4. We use L2 weight decay of 10−3

and train for 50k iterations with a batch size of 16.

Fig. 5. The network configuration for the concatenation fusion version
showing filter sizes, strides, output channels and image size for each
level. For networks using only RGB images the right-hand radar branch
is removed.

We use image augmentation during training to reduce
overfitting. Data is flipped left-right with a probability of 0.5
before being cropped with probability 0.5 to between 0.6-1.0
of full image dimensions. If the data is cropped it is resized to
full image size before being used. We also randomly modify
the hue and saturation of the RGB images.

To keep feature scales consistent between modalities we
scale each modality by its mean and standard deviation
calculated over the training set.

B. Evaluation metrics

We use the average precision metric to measure detection
performance with an intersection-over-union (IOU) threshold
of 0.5 (higher IOU thresholds are very challenging for
instances that are only a few pixels in size). We use the
PASCAL VOC2012 [22] definition for the integration under
the curve which sets the precision at recall r equal to
the maximum precision of any recall r′ ≥ r. In addition,
we adopt a similar system to the KITTI benchmark [3]
and evaluate performance on separate object size categories.
However, unlike KITTI we measure size based on fraction of
image area occupied as this applies more equally to objects
of different aspect ratios. The size categories used are small
(< 0.25% of image area, approximately 410px), medium
(0.25%–2.5%, 410–4096px) and large (> 2.5%). Again in
contrast to KITTI, there is no minimum size applied for
objects as we are interested in detecting very small instances.

VI. EXPERIMENTAL RESULTS

A. Label quality

To assess the quality of the generated labels and the bene-
fits of the multi-camera approach, we compare the generated
labels against 161 hand-labelled ground truth frames from
the testing set. The hand-labelling interface makes use of
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Fig. 6. Examples of hand-labelled ground truth using bounding box transfer
between two focal lengths. Note the proportionally large number of very
small boxes. The green outline in the right-hand images shows the field of
view of the left-hand images.

TABLE I
COMPARISONS OF LABELLING METHODS, AVERAGE PRECISION (AP).

Comparison AP

Wide angle detections of ground truth 0.118
Combined detections of ground truth 0.360
Wide angle detections of combined detections, GT frames only 0.275
Wide angle detections of combined detections, all test frames 0.308

the multi-camera bounding box transfer (Sec. III-B) to allow
the labelling of very small, distant objects (Fig. 6).

We use the probabilities from the original detector (Sec.
III-A) to generate precision-recall curves for four tests. The
first two tests check how well our automated labelling recov-
ers the hand-labelled ground truth when using firstly, only
wide angle detections (Fig. 7a) and secondly, the combined
multi-camera detections (Fig. 7b). The results (Table I) show
that there is a significant improvement in the quality of the
labels when the combined bounding boxes are used with the
improvement particularly marked for small vehicles.

We then test how each camera contributes labels of differ-
ent sizes by comparing the detections from the wide angle
camera with the combined set of detections. The comparison
is initially on only those frames that have hand-labelled
ground truth (Fig. 7c) and then on the entire test set (Fig.
7d). As expected these tests show that the majority of small
objects are provided by the narrow field of view camera.

It is worth noting that the precision of the automatically
labelled dataset is high (Fig. 7b) with the major issue being
low recall. While this means that the automatically generated
labels cannot be classed as ground truth, from a training
perspective [23] shows that missing labels do not have as
great an effect on performance as might be expected.

B. Trained network performance on generated test set

We test the performance of our network trained with
our generated dataset on the test split of the dataset. The

TABLE II
PERFORMANCE ON GENERATED DATA BY OBJECT SIZE, AVERAGE

PRECISION (AP).

Data type Small Medium Large All

RGB only 0.287 0.588 0.816 0.460
RGB + Radar, concatenation 0.346 0.644 0.833 0.506
RGB + Radar, element-wise 0.327 0.599 0.723 0.461

TABLE III
PERFORMANCE ON HAND-LABELLED SUBSET BY OBJECT SIZE,

AVERAGE PRECISION (AP).

Data type Small Medium Large All

RGB only 0.178 0.541 0.526 0.263
RGB + Radar, concatenation 0.170 0.558 0.542 0.265
RGB + Radar, element-wise 0.188 0.577 0.544 0.279

results are shown in Table II. It can be seen that both
radar fusion methods significantly improve the detection
of smaller vehicles. The concatenation approach improves
performance across all size subsets as shown in Fig. 8. We
believe the performance improvement is due to the radar
providing a distinctive signature for moving objects which,
in conjunction with the RGB context (the position of the
road, for example), allows small objects to be identified.
This is in line with the instinctive response when viewing
the examples in Fig. 4 where the range-rate image gives an
excellent indicator of vehicle locations.

A qualitative comparison of detection performance on a
random set of examples is shown in Fig. 11.

C. Trained network performance on hand-labelled test set

We next test on the small subset of hand-labelled data.
Table III shows that both radar fusion methods provide
an increase in performance, with the element-wise version
outperforming the concatenation method. Fig. 9 compares
the RGB and element-wise fusion networks. In general the
results are lower than on the generated data. This may be
partially due to the higher proportion of very small objects
in the ground truth set (Fig. 10).

All three networks significantly outperform the original
detector which had an average precision of only 0.118 (Table
I), showing the benefit of the multi-camera labelling process.

VII. CONCLUSIONS AND FURTHER WORK

We have introduced a process for automatically labelling a
new dataset by combining detections from multiple cameras.
We have also demonstrated how that can be used to train
a network which fuses radar scans with camera images to
improve detection performance. In addition we have shown
that by learning from a combined set of detections we are
able to exceed the performance of the original detector.

In future work there are a number of avenues that we
intend to explore. First, the image-like radar representation
used in this work is very simple and there may be other
representations that might be better suited to the sparsity
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(a) (b) (c) (d)

Fig. 7. Label quality: (a) shows the precision-recall of the YOLO object detections from the wide-angle camera only when tested against hand-labelled
ground truth images; (b) shows the precision-recall of YOLO object detections when the detections from the wide-angle and long-focal length cameras
are combined; (c) shows the wide-angle detections tested against the combined set on the same images as those that have been hand-labelled, highlighting
which camera contributes which detections — the wide angle camera contributes the large and the majority of the medium sized objects; and, (d) expands
the test in Fig. (c) to cover the whole test set showing that the general pattern is very similar.

Fig. 8. Precision-recall curves for RGB and RGB + Radar (concatenation)
networks tested on automatically generated labels. The inclusion of radar
produces a significant improvement in the recall of small and medium sized
vehicles.

Fig. 9. Precision-recall curves for RGB and RGB + Radar (element-wise)
networks tested on hand-labelled data. The lack of smoothness in the curves
is due to the small number of examples in the ground-truth set.

Fig. 10. Comparison of the size of label bounding boxes between the hand-
labelled ground truth (blue) and the generated test set (red). The ground
truth set has proportionally more extremely small objects. The histogram is
truncated so only the small end is shown.

Fig. 11. Comparison of detections using both networks. Left are detections
from the RGB only network. Right are from the network using both RGB
and radar. Detections are in red with confidences, automatically generated
(and hence imperfect) ground truth in blue.

of the radar data. Secondly, there may be benefits to using
consecutive frames both to filter noisy labels and to reduce
the impact of radar noise. Finally, given that our labels are
automatically generated, they will contain some noise. While
[24] showed that, given enough examples, deep learning is
sufficiently robust to learn an accurate model despite large
amounts of label noise, there have been a number of methods
proposed for handling such noise (e.g. [25]) that would be
worth exploring.
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