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Abstract—Autonomous vehicles require an accurate and ade-
quate representation of their environment for decision making
and planning in real-world driving scenarios. To this end, we
introduce a hierarchical, graph-based representation, called scene
graph, which is reconstructed from a partial, pixel-wise seg-
mentation resulting from trained deep networks. By harvesting
the power of deep learning and generating an interpretable
representation of road scenes which can be linked to domain
knowledge and AI reasoning techniques, we believe that this
approach provides a vital step towards explainable and auditable
models in the context of autonomous driving.

I. INTRODUCTION

Autonomous vehicles need to perceive their surroundings
accurately for safe navigation in complex urban environments.
While deep learning methods have come a long way providing
accurate semantic segmentation of scenes, they are still limited
to pixel-wise outputs and do not naturally support reasoning
and planning methods required for complex road manoeuvres.
In this work, we introduce scene graph, a hierarchical, graph-
based representation, which is reconstructed from a partial,
pixel-wise segmentation of an image, and which can be linked
to domain knowledge and Al reasoning techniques.

In the literature, there exist several approaches that model
(traffic) scenes using graphs. Work by [2] fuses different sensor
modalities and hierarchical graphs containing relational knowl-
edge, [14] connects road markings as a graph and optimises a
CRF with handcrafted spatial features to predict their class,
and [9] models lane separators as latent variables to infer
lane geometries. While [5] presents a theoretical framework
including uncertainties to reason about multiple hypotheses
for lane geometry, other approaches consider real-world data
[19} [177] as we do here.

Recently, deep semantic segmentation networks have
achieved impressive results for pixel-wise scene understanding
of images [1} 20]. However, these methods suffer from inter-
pretation difficulties and often fail to include prior information
or constraints. Several works have addressed this problem by
introducing spatial and semantic reasoning frameworks that
can be trained in an end-to-end way [4} [L1 [15].

In contrast, all important objects influencing the decision
making are detected separately in mediated approaches [7 21}
8l]. Similarly, we consider different aspects of a scene in a
combined way whereby we model the geometry and relations
of high-level concepts based on low-level segmentations.
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Fig. 1. Hierarchical scene graph representation (top) that was reconstructed
from a partially segmented image (bottom). In this work we present a
probabilistic scene parser that reconstructs the layout of road scenes from
partial segmentations of road markings and curbs.

Fig. [T] shows an example scene graph for a segmented road
scene. When interpreting the image, our approach considers
two types of information: object detections and common road
configurations based on learnt prior models. Fig. 2] depicts the
overall pipeline of our approach. We first segment an image by
detecting curbs and road markings using trained deep networks
(Sec. [). These pixel-wise segmented images are clustered
and the resulting entities are considered as input for a parsing
process which generates a hierarchical scene representation
(scene graph) (Sec. @ The parser takes object detections
and prior information of road scenes into account. Each valid
parse tree is scored by a probability which allows us to disam-
biguate between alternative hypotheses. Intuitively, the score
captures three aspects: (1) hierarchy (2) geometric features
of detected entities, and (3) spatial relations between entities
in the hierarchy. As we represent scene graphs using logical
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Fig. 2.

Scene parsing approach based on road marking and curb detections. The approach has two main steps: (1) given an image, road marking and curb

segments are detected by deep networks, and (2) given a set of detected segments, the scene is parsed using an adapted version of the Earley algorithm and
a learnt probabilistic grammar. The resulting scene graph is integrated with domain knowledge and can used for planning and decision making.

representations they can be linked to background knowledge
and used for auditable planning and decision making (Sec. [[V).

II. SCENE PERCEPTION

Road markings and curbs are critical components for (au-
tonomous) driving especially in urban environments. Road
rules are captured by their underlying meaning and they guide
all traffic participants through potentially dangerous situations.
Therefore, real-time detection and interpretation is important
for scene understanding, planning and decision making.

Detecting road markings and curbs, which dictate the traffic
rules, using monocular images is a challenging problem.
Firstly, there are visual challenges such as occlusions, varying
lighting, and changing weather conditions. Secondly, there are
no large datasets available for training with accurate ground-
truth labels for road markings and curbs. The problem can
be seen as a semantic segmentation problem, for which deep
network approaches are currently the state-of-the-art. Hence,
we train two deep semantic segmentation networks (inspired
by U-net [16]]) on the Oxford RobotCar Dataset [[13] whereby
scenes were annotated semi-automatically using other sensor
modalities such as Lidar (road markings) and 2D laser (curbs).
A more detailed description of the weakly-supervised annota-
tion process, training, and network architecture is given in [3]].
The resulting segmented, pixel-based images are clustered and
segmented entities are obtained which are considered as input
for the scene interpretation process.

III. SCENE INTERPRETATION

In this work, we aim at a representation that is interpretable
(by machines and humans alike), extendable, and suitable
for different inference tasks. To this end, we introduce scene
graphs as a way to represent road scenes semantically using
well-defined concepts and relations which are grounded in the
vehicle’s perception system.

Formally, scene graphs are represented in Description Logic.
A scene is described by a set of instances of meaningful
classes and their relations. For example, a scene is composed
of a road which has two curbs and several lanes which in

turn are bounded by several road markings. It is important to
note that segments of road markings and curbs are both linked
to the output of the segmentation networks described above,
and hence, grounded in image space. This is important as it
allows us to reconstruct concepts higher-up in the hierarchy
(e.g. Lanes) based on low-level segmentations. In general,
scene graphs can be linked flexibly to other information due to
its underlying logical representation as we have shown [18].
For example, they can be linked to the outcome of detection
and tracking algorithms of traffic participants and/or domain
knowledge defined by the Highway Code.

In this work, we adopt the approach by [12]] and learn a
probabilistic context-free grammar for road scenes from a set
of annotated examples. To this end, we consider a set of scene
graphs that have been manually annotated according to well-
defined concepts and based on the detections of road markings
and curbs (Sec. [ll). We learn the structure of the production
rules and their probability from their frequency in the data.

For each annotated scene graph we compute a set of
geometric properties and spatial relations between instances
that share the same parent node. These geometric properties
and relations provide us with the ability to assess the overall
probability of the scene by considering all instances of a
tree t. For each geometric property and relation we learn a
probability distribution, namely Py.,(z) and P, (z), based
on the annotated data using Kernel Density Estimation (based
on Gaussian kernels). By computing the probability of each
individual property and relation we can compute the overall
probability of a tree based on the grounded representation as
P(slt,g) = [I,ct Pyeo(®) Prei(x), whereby s denotes a scene,
t a tree, and g a grammar.

To reconstruct the layout of a road scene we use an extended
version of a probabilistic Earley parser [6]. In the algorithm’s
predict step, rules are expanded according to the grammar.
This step guides the overall search in a top-down way. In the
scan step, the next input symbol is read and compared to the
next one that was predicted. If a production rule is completed,
the complete step has found a valid parse of a subtree and
overall search is advanced. This type of hybrid search using
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top-down down reasoning and bottom-up perception for scene
understanding can be very effective in real-world scenarios as
we have shown earlier [10].

Our adapted version of the parser takes the learnt proba-
bilistic grammar and a sequence of curb and road marking
segments as input. The segments form the lexicon of our
grammar and their probabilities are determined according to
P,eo(X) as defined previously.

After the parser has recognised the input, a forest of parse
trees can be retrieved. Parse trees are evaluated according their
probabilities: P(t|s,g) = P(t|g)P(slt, g).

P(t|g) is the product of all probabilities according to the
production rules and P(s|t, g) represents the data likelihood of
seeing this scene given the tree and the grammar. Eventually,
the best parse tree t* can be chosen according to the overall
probability: t* = arg max P(t|s, g).

IV. QUALITATIVE RESULTS

We evaluated the overall pipeline as depicted in Fig. 2] Tab.[[]
depicts the qualitative results for two scenes. It shows the input
image; the different segments produced by the networks (road
markings in green; curbs in orange); and the generated scene
graphs (or parts of it).

Scene (a): In this scene (Fig. [I), the segmentation cap-
tures curbs on both sides of the road and segments parts of
all road markings that are along the carriage way. However, a
stop line as well as the bicycle symbol are not detected. By
integrating some domain knowledge from the Highway Code
in form of rules, we can refine the scene graph by inferring
that there is a bicycle lane on the left-hand side as the lane’s
width is too narrow for a standard car lane. Thereby we can
infer classes which were not labelled in any of the examples.

Scene (b): This scene is interesting as there are curb
structures in the middle of the road. Furthermore, the left lane
has two stop-lines. However, it is important for an autonomous
vehicle to infer that is has to stop in front of the first one.
Note, that such an inference can only be drawn when local
context of the scene is considered, but not from the single
segment alone. These are situations in which we believe that
background knowledge and Al reasoning techniques can be
very helpful when interpreting scenes.

In future work we will perform a quantitative analysis of our
approach, in particular with respect to its real-time capabilities.

V. CONCLUSION

We presented an approach for scene understanding of com-
plex, real-world environments. To this end, we proposed scene
graph, a hierarchical, graph-based representation; a parsing
pipeline that generates and evaluates scenes graphs based on
partially segmented images; a learnt probabilistic grammar;
as well as geometric and relational models. In general, we
think that scene graphs have the potential to (1) reduce
the amount of manual annotation by understanding scenes
beyond labelled examples; (2) include prior information in the
learning process of deep networks; (3) provide interpretable
representations for planning and decision making; and (4) infer
missing information based on prior models. These examples
showcase interesting uses cases with exciting technological
challenges for applications of scene graphs. Hence we believe
that this functionality can have wide impact in the context of
autonomous driving and mobile robotics in general.
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