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Abstract— This paper is a demonstration of how a robot
can, through introspection and then targeted data retrieval,
improve its own performance. It is a step in the direction
of lifelong learning and adaptation and is motivated by the
desire to build robots that have plastic competencies which are
not baked in. They should react to and benefit from use. We
consider a particular instantiation of this problem in the context
of place recognition. Based on a topic based probabilistic model
of images, we use a measure of perplexity to evaluate how well
a working set of background images explain the robot’s online
view of the world. Offline, the robot then searches an external
resource to seek out additional background images that bolster
its ability to localise in its environment when used next. In this
way the robot adapts and improves performance through use.

I. INTRODUCTION

This paper is about having a robot actively seek data
to improve its understanding of the world. The big picture
motivation of the work is to enable robot longevity and in
this paper we consider a specific instantiation of this problem
- that of asymptotically improving scene recognition with
a camera. We shall make use of the FAB-MAP algorithm
(Cummins et al. [4], [5]) which probabilistically associates a
current view of the world (image) taken by a robot with
a previously visited or a new place. FAB-MAP requires
priming with a set of images (which we shall refer to
as a sample set) which in concert, statistically represents
the appearance of the robot’s workspace. For operation in
urban settings, for example, one equips it with a sample
set containing random images of cities and towns. There
is an obvious shortcoming here - the robot is constrained
to work in settings in which its sample set has sufficient
explanatory power. If moved into surroundings quite different
from those represented by its sampling set performance drops
- nothing is as expected and everything is astounding. In
this paper, we show how by producing a generative model
of the underlying topics present in observed images we can
actively grow a customised sample set by incorporating well
chosen examples from an external corpus which is more
representative of the workspace the vehicle is experiencing.
In this way, we replace the inflexibility of a static a-priori
sample set with a plastic, dynamic one and we show this
affords an improvement in performance over time. One
could think of this as a robot actively seeking to widen its
experience, better understand its surroundings and becoming
less perplexed with time.

Our problem setup is as follows. A mobile robot must
maintain a compact on-board sample set summarizing the
visual appearance of its environment. The robot explores the
environment collecting image data and identifies the most

perplexing images based on its current sample set. It then
searches the least explained images in a large repository of
image data (or past datasets from the robot) finding images
with similar thematic content. Next, the robot retrieves
examples (based on their likelihood in the environment) and
assimilates them into the sample set, thereby improving its
representation and performance. The rest of the paper details
this framework and presents the following components:
• Use of Latent Dirichlet Allocation (LDA) topic model

to extract a low-dimensional thematic representation for
images incorporating word co-occurrence statistics in an
unsupervised manner, Section III.

• Identifying most novel images seen by the robot given
its current representation using a perplexity-based mea-
sure, Section IV.

• Finding images similar in thematic content from an
external repository applying language-model based in-
formation retrieval approach, Section III.

• Application to FAB-MAP, presenting an algorithm for
constructing a representative sampling set, Section V.

• Experimentation on real datasets collected by a mobile
robot, Section VI.

II. RELATED WORK

This paper builds on research in the areas of long-term
topological mapping, topic-based document modeling and
information retrieval.

In [13], Milford and Wyeth present a biologically inspired
system for persistent mapping that can learn long-term
changes in workspace appearance. For topological mapping,
Konolige et al. [11] present view based maps based on
geometric feature matching in stereo views. Angeli et al. [1]
discuss an incremental loop-closure detection scheme with
epipolar geometry checks.

Topic models based on Latent Dirichlet Allocation (LDA)
were developed by Blei et al. [3] in the context of statistical
text analysis. In computer vision, Sivic et al. [15] employed
LDA for discovering object categories in image corpora and
present a hierarchical model for unsupervised discovery of
object class hierarchies in [16]. Fei Fei et al. [7] present
an application for learning natural scene categories. Re-
cently, Philbin et al. [14] introduced geometric LDA, where
trasformations from the latent spatial model are additionally
estimated.

Within robotics, Endres et al. [6] applied LDA for unsu-
pervised discovery of object classes in 3D laser range data.
In the information retrieval community, Wei and Croft [19]
used LDA-based topic models for ad-hoc document retrieval



extending a previous work by [12]. Hörster et al. [10] applied
this technique for image retrieval tasks. In another related
work Zhang et al. [21] discuss novelty detection for adaptive
filtering applications.

III. PROBABILISTIC TOPIC MODELS

Probabilistic topic models represent documents as a mix-
ture of intermediate latent topics. Given a collection of
documents such as scientific abstracts, each represented as
a bag-of-words vector, the model is able to learn common
topics such as ecology, astronomy etc. in an unsupervised
manner [8]. Topics are distributions over words and each doc-
ument is a distribution over topics. Different documents can
have varied mixing proportions of each topic. By mapping
documents to a low-dimensional thematic representation, the
model can semantically associate ones with similar topics,
even though the documents themselves might have few words
in common. Using the approach by Sivic et al. [17], images
can be represented as a vector of visual words. Hence, we
use the terms documents and images interchangeably.

Latent Dirichlet Allocation (LDA) is a widely used prob-
abilistic topic model [3]. LDA is a hierarchical bayesian
generative model for a collection of discrete data possessing
tractable inference to estimate topics and topic propor-
tions. The following sub-sections review the LDA generative
model, inference and its application for retrieving images
similar in thematic content. For detailed description on LDA
please refer to [3], [8] and [9].

A. LDA Generative Model

A document d from a corpus of D documents consists
of a set of words (w1, w2, . . . , wNd), where wi is a single
word occurrence from a vocabulary of size W . The model
postulates T topics, each characterized by a distribution
over words P (w|z). The generative process (Figure 1) for
each word begins by first sampling a topic label zi from
the multinomial distribution over T topics for the given
document P (z|d) followed by sampling a word wi from
the distribution over words P (w|z) for the sampled topic
label. Hence, the likelihood of a word in a document can be
obtained via marginalization over intermediate topics.

P (wi|d) =
T∑
j=1

P (wi|zi = j)P (zi = j|d) (1)

The topic-proportion P (z|d) for each document d and
word likelihoods P (w|z = j) for each topic j are abbreviated
as θ(d) and φ(j) respectively [8]. Symmetric Dirichlet priors
are placed on θ(d) and φ(j), with θ(d) ∼ Dirichlet(α)
and φ(j) ∼ Dirichlet(β), where hyper-parameters α and
β control the sparsity of these distributions.

B. Inferring Topics and Topic Proportions

Estimating the set of topics and topic-proportions from
observed word tokens requires reversing the generative pro-
cess. For each obsered word w let z be the topic indicator
variable. The goal is to estimate the topic distributions that
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β w

z
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T

Fig. 1: LDA Generative Model. Topics, φ(z) are multinomial
distributions over vocabulary words (with dirichlet prior β).
The generative process for a document, d begins by sampling
a distribution over topics, θ(d) (with Dirichlet prior α).
Document words are generated by first drawing a topic label
z from topic-proportion θ(d) and then sampling a word w
from φ(z).

best describe the data by evaluating the posterior distribu-
tion P (z|w, α, β) ∝ P (w|z, β)P (z|, α). Exact inference
is intractable and approximated via Markov Chain Monte
Carlo (MCMC) using collapsed Gibbs sampling in the state
space of topic labels (Griffiths et al. [8]). The Markov chain
is initialized by a random assignment of topic labels z.
Subsequent states are reached by sequentially sampling each
variable zi from a distribution conditioned on observed words
and current assignment of all other topic labels. The desired
conditional distribution is expressed as:

P (zi = j|z−i,w) ∝
[
n

(wi)
−i,j + β

n
(.)
−i,j +Wβ

][
n

(di)
j + α

n
(di)
−i,. + Tα

]
(2)

Here z−i refers to the current topic assignments of all
other word tokens and n

(.)
−i is the count excluding the

current assignment zi. Equation 2 expresses the conditional
distribution for topic label zi assigned to word wi as a
product of the likelihood of word wi under topic j and the
probability of topic j in document di. Upon convergence
after sufficient iterations topic labels are recorded and the
maximum likelihood multinomial estimates for topics and
topic proportions are obtained as:

φ̂
(w)
j =

n
(w)
j + β

n
(.)
j +Wβ

(3)

θ̂
(d)
j =

n
(d)
j + α

n(d)
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(4)

Topics are typically estimated once for a large corpus. For
a new document, topic proportions θ(d) can be inferred using
the learned topic distributions φ̂(w) via Gibbs sampling using
the following conditional distribution:

P (zi = j|z−i,w) ∝
(
φ̂

(w)
j

)( n
(di)
j + α

n
(di)
−i,. + Tα

)
(5)



C. Retrieving Similar Images

Topic models provide a low-dimensional representation
of bag-of-words data capturing their thematic content via
word co-occurrences. We employ this representation to find
images similar to a query image from a repository. Please
note that our application does not require precise geometric
image matches. Instead, we seek images similar in semantic
content.

Given a large repository of images we learn topics φ
and topic proportions θd for images in the corpus, thereby
forming a topic-based model P (w|d, θd, φ) for each docu-
ment. We define query-document similarity using the LDA
generative model. A document is similar to a query if
the document model has a high predictive likelihood of
generating the query. This formulation is also termed as
language-model based retrieval [19]. Formally, for a given
query image da with Na words, the likelihood of originating
from document db is expressed as:

P (da|db, θb, φ) =
Na∏
j=1

P (waj |db, θb, φ) (6)

where waj represents the jth word in da. Word likelihood
P (waj |db, θb, φ) is evaluated using Equation 1. Further, as
discussed in [20], topic model based estimates must be
smoothed for retrieval with a unigram model and Dirichlet
smoothing ([12], [10]). Additionally, in [10], authors provide
quantitative results to show that an LDA based approach
performs better than simpler measures like cosine distance
or Jenson-Shannon divergence on image retrieval tasks.

IV. IS AN IMAGE PERPLEXING?

We now address the task of determining the novelty (or
redundancy) of an observed image given a corpus. As dis-
cussed in the previous section, the LDA generative model al-
lows us to calculate the document likelihood P (da|db, θb, φ)
via a topic model representation (Equation 6). Note that
the computed likelihood is dependent on the query length.
We seek a length normalized measure and hence estimate
perplexity [9] of the observed image given a document model
from the corpus as:

Perplexity(da|db, θb, φ) = exp

{
−logP (da|db,θ

b,φ)
Na

}
(7)

Perplexity indicates the uncertainty in predicting a single
word. Chance performance results in the maximum possible
value of perplexity which equals the vocabulary size. A
model that better captures word co-occurrences requires
fewer possibilities to pick words, yielding lower perplexity
per word for new data.

The next step is determining the redundancy of a new
unseen document in relation to a corpus. A new document is
redundant, if its information content is covered by documents
present in the corpus. Similarly, documents highly dissimilar
to the ones seen previously contain new information and
hence considered novel. We adapt the framework proposed
by Zhang et al. [21] in the context of adaptive information

filtering and define redundancy of document di vis-à-vis a
document dj as:

R(di|dj) = −Perplexity(di|dj , θj , φ) (8)

where θj is the topic proportion estimated for dj . The
redundancy of an observation given a document corpus, D
is expressed as:

R(di|D) = maxdjεDR(di|dj) (9)

Finally, given an observed image set Q, the most novel
image dNovel(Q) pertaining to an existing corpus D is
selected as:

dNovel(Q) = argmindjεQR(di|D) (10)

Intuitively, the novel images thus identified are the ones
least explained by images in the corpus. Hence, we seek
images similar to the perplexing ones and augment those
to the corpus forming an improved representation. Next,
we apply this technique to improving appearance based
navigation.

V. APPLICATION TO TOPOLOGICAL MAPPING

We now apply our framework to an appearance based
mapping algorithm FAB-MAP (Cummins et al. [4], [5]).
FAB-MAP is a loop closure detection system that allows
a navigating robot to determine if the current observation
comes from a known location in its map or from a new one.
Our goal will be to show that over time we can improve
its performace with experience. Next, we present a brief
summary of FAB-MAP followed by a procedure to build
a sampling set over time to improve performance.

A. FAB-MAP Overview

At time t, the robot’s workspace has nt locations Lt =
{L1, . . . , Lnt} where each location Li has an associated ap-
pearance model represented by a distribution over appearance
words. When the robot collects a new observation Zt, we
compute the distribution over locations given the observa-
tion p(Li|Zt) formulated as a recursive Bayes estimation
problem:

p(Li|Zt) =
p(Zt|Li,Zt−1)p(Li|Zt−1)

p(Zt|Zt−1)
(11)

where Zt is the set of all observations up to time t,
p(Zt|Li,Zt−1) is the observation likelihood of the ob-
servation given the location Li. The normalization term
p(Zt|Zt−1) is the total likelihood of the observation, Zt. An
observation can come from the set of locations currently in
the robot’s map (M ) as well as the set of all previously un-
known locations (M ). Hence, the denominator is expressed
as:

p(Zt|Zt−1) =
∑
m∈M

p(Zt|Lm)p(Lm|Zt−1)

+
∑
u∈M

p(Zt|Lu)p(Lu|Zt−1) (12)
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Fig. 2: Sampling set evolution. Topics φ are estimated from
the image repository and used to infer topic proportions θ for
sampling set and repository images. Online, the robot collects
observations from which most novel images are identified.
These perplexing images are searched in the repository for
thematically similar images which are retrieved (respecting
the underlying distribution) and augmented to the evolving
sampling set.

The second term involves summation over all unmapped
places and is approximated via sampling location models Lu
[4]. This is instead approximated by sampling observations
Z and using them to form location models. Observation like-
lihood p(Zt|Lu) is evaluated for each sample and Equation
12 is expressed as:

p(Zt|Zt−1) ≈
∑
m∈M

p(Zt|Lm)p(Lm|Zt−1)

+
p(Lnew|Zt−1)

ns

ns∑
u=1

p(Zt|Lu) (13)

Here, ns is the number of samples used and p(Lnew|Zt−1)
is the prior probability of being at a new place, uniformly
distributed among samples. A reasonable number of samples
is 2,800. This yields the total probability of the observation
originating from a place not in the map. The resulting PDF
over locations is used to decide whether to add a new location
to the map or not.

B. The Sampling Set

The sampling set forms the robot’s compact representation
of the workspace visual appearance. The sampling set is
critical for performance since it ameliorates the perceptual
aliasing problem: the fact that different parts of the environ-
ment appear the same to robot’s sensors. e.g., similar looking
foliage and brick walls appear commonly while navigating
outdoors. The sampling set captures such commonly seen
visual features and hence the normalization step distributes
the probability mass preventing a false loop closure declara-
tion. In [4], the sampling set was constructed by randomly
picking 2,800 images from data sets obtained from previous

Algorithm 1 FAB-MAP Sampling Set Evolution
// Sampling Set, SS
// Database, DB
// Observed Image Set, ObS
// Topics, φ
// Topic-proportions, θ
SS[0] ← Random image from DB.
for each improvement cycle, t

// Operate
ObS[t] ← Collect data from robot.
Use FAB-MAP on ObS[t] with SS[t].
// Introspect
for each image di ∈ ObS[t]

//Estimate redundancy
R(di|SS[t]) eq:9

end
Get novel image dNovel ∈ ObS[t] eq:10
// Retrieve
for each image dj ∈ DB

//Estimate redundancy
Mult_dist[j] ← p(dNovel|dj , θ

j , φ) eq:6,7

end
Ret_samples ← Sample from Mult_dist

// Improve sample set.
SS[t+1] ← SS[t]

⋃
Unique(Ret_samples)

end

runs of the robot. Specific examples of common features
(potential perceptual aliasing cases) were explicitly added
through inspection to make the sampling set representative
of the application environment.

Recently, FAB-MAP has been successfully demonstrated
to create maps exceeding 1000km [5]. Consequently, the map
generated (visual experience of the robot) can far exceed the
size of the sampling set (onboard workspace representation).
Hence, for long term operation, there is a need to form a
compact and representative sampling set that improves over
time with the robot’s experience.

C. Sampling Set Evolution

We now apply techniques introduced in previous sections
to identify gaps in the sampling set representation and
improve performance through introspection.

The procedure begins by estimating topics φ on a large
repository of images (Figure 2). The sampling set is initial-
ized with a single image picked randomly from the database.
Topic proportions θ are inferred for all images in the database
and the sampling set. From the images collected online by
the navigating robot, most novel images given the current
sampling set are identified using Equations 9 and 10.

The most perplexing images are queried in the large image
repository and images similar to the queried images are
retrieved and augmented to the evolving sampling set. For
each selected novel image, topic model based similarity to
each database image is estimated, yielding a multinomial
distribution over database images. Similar images in the
repository must be retrieved respecting their natural occur-
rence frequency in the environment (as represented in the
database). For example, images containing foliage features
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Fig. 3: Iterations for MCMC convergence. Data loglikelihood
plotted after each MCMC iteration for varying number of
topics. For topics 3, 50 and 200 the chain converges within
200 iterations. Convergence for 500 topics is much slower
and stabilizes after 600 iterations. Hence, the number of
Gibbs sampling iterations was set to 600.

are very common compared to rare images of sign boards.
Hence, we retrieve a greater number of images when the
likelihood distribution is more uniform. This is accomplished
by sampling the likelihood multinomial a fixed number
of times and selecting only the unique samples, thereby
accepting fewer samples when the distribution is peaked. The
retrieved samples are then augmented forming new sampling
set. The steps are summarized in Algorithm 1. Hence, we
create a compact sampling set targeted to the operating
environment, eliminating the need for a very large sampling
set including all past datasets.

Please note that in the present formulation, relevant images
are only added to the sampling set. Over time, it might be
desirable to remove images no longer relevant and restrict
the sampling set size. One possible solution is to remove
the most perplexing images in the sampling set given the
currently observed set of images. However, we wish to
formally explore replacement strategies as part of future
work.

VI. RESULTS

We tested the system on data collected from a mobile
robot. A collection of 2,800 images from 28km of urban
streets and parks using the robot’s camera formed the
database. Images were captured perpendicular to robot’s mo-
tion and did not overlap. Images were converted to a bag-of-
words representation [17] by first extracting SURF features
[2] and later quantizing them against a fixed vocabulary of
size 11K.

Topic models were estimated on this dataset using Gibbs
sampling (Section III). In order to determine the number
of iterations required to ensure MCMC convergence to the
target distribution we used data loglikelihood as a measure
[8]. Figure 3 plots loglikelihood with each iteration for
varying number of topics T . Dirichlet priors were set to
α = 50/T and β = 0.1. For the runs with topics 3, 50
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Fig. 4: Selecting the number of topics, T for the urban
dataset. The plot shows the data loglikelihood (upon conver-
gence) for varying number of topics. The data loglikelihood
peaks for 50 topics. Hence, we set T = 50 (assuming a
uniform prior on topics).
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Fig. 5: Illustrative visual topics discovered on the urban
dataset. Five most probable visual words for each topic
appear along rows and common instances along columns. In
(a) a topic capturing visual words co-occurring on foliage and
trees is shown. In (b) a topic representing words appearing
on walls and houses is illustrated.

and 200 the loglikelihood stabilizes within 200 iterations.
However, convergence for the run with 500 topics is much
slower and stabilizes after 600 iterations. We also experi-
mented with observing multiple runs of the Markov chain
and convergence rates were similar. Hence, the number of
sampling iterations was set to 600.

The LDA model require the number of topics to be
specified. This can be cast as a model selection problem.
The appropriate number of topics modeling the dataset was
determined by maximising the data likelihood given topics
P (w|T ) (assuming a uniform prior on the number of topics).
As suggested in [8], P (w|T ) can be approximated using
P (w|z, T ) where topic-labels z are obtained from the Gibbs
sampler upon convergence. Figure 4 plots the result. The data
loglikelihood (upon convergence) for the dataset peaks with
50 topics.

Figure 5 shows two illustrative visual topics discovered
on the urban dataset. The most probable visual words oc-



(a)

(b)

Fig. 6: Illustrative results for topic-model based image re-
trieval. Query image is shown top left and five most similar
images from the database are shown subsequently. Note that
the retrieved images represent a common visual theme.

cur along rows and typical occurrences are shown along
columns. Co-occurring words frequently get assigned to a
particular topic. Figure 5a shows a topic for words commonly
occurring on foliage and trees and Figure 5b illustrates a
topic modeling words appearing on walls and houses.

Figure 6 shows examples of topic-model based image
retrieval. The query image is highlighted and the most similar
images in the database are shown. Note that the system
returns images that are thematically similar as opposed to
strict geometric matches. This is key to our approach. While
querying to find images similar to a perplexing image (say an
image of a building) we are not looking for exact instances
of the same building. Rather, we wish to retrieve examples of
the class of similar looking buildings which better represents
a common mode of visual appearance and is accomplished
via a low-dimensional topic representation. By mapping
visual features on buildings to a topic that probabilistically
models co-occurring words on buildings (e.g. Figure 5b),
other relevant images containing similar visual features are
retrieved.

To test our approach for detecting most novel images, we
slightly modified the setup. In this experiment, we learnt
topic models on the New College Dataset [18], where visual
appearance is restricted to medieval buildings and parkland
areas. Typical images are shown in Figure 7a. A restricted
set of 564 images were used from the dataset (removing
loop closure pairs) and the number of topics was set to
50. We then estimated the redundancy values for images

(a) Typical images from the New College Dataset used for topic learning.

R = −1.32× 103R = −1.17× 103 R = −1.18× 103

(b) Least novel (most redundant) images in urban dataset.

R = −7.86× 103 R = −6.54× 103 R = −1.05× 104

(c) Most novel (least redundant) images in the urban dataset.

Fig. 7: Detecting novel images. Topics were learnt on the
New College Dataset with typical images of medieval build-
ings and parklands, shown in (a). For images in the urban
dataset, redundancy values were computed and listed below
each image. (b) Brick wall and foliage images were least
novel due to high similarity to visual themes in the New
College Dataset. (c) Images of road signs, cars and modern
buildings were found most novel.

in the urban dataset introduced previously. Images of brick
walls and foliage were found to be most redundant due to
high similarity to visual themes in the New College Dataset
(Figure 7(b)). Images of sign boards, road vehicles and
modern, regular shaped buildings were found to be most
novel (least redundant). Since, no such examples are present
in the New College Dataset, the learnt topic model is highly
perplexed to encounter these feature sets.

Finally, we bring the above components together and
test performance on the FAB-MAP algorithm. We use the
urban dataset as the database to construct the sampling set,
initialized with a single randomly-selected image from the
database. We used the City Centre dataset as the observed
dataset [4]. The City Centre dataset is 2km in length,
possessing 2474 images and provides a challenging setup for
image matching due to considerable scene change in images.
This dataset does not overlap with the urban dataset used for
learning topics.

To simulate days of operation (improvement cycles) the
dataset was split into 10 sections and presented sequentially
to the sampling set construction algorithm. In each iteration
we identify 25 most novel images and sample the similarity
multinomial distribution of database images 50 times and
pick the unique image samples to be retrieved (parameters
set empirically). After each iteration, the sampling set (in-
crementally developed) was used for loop closure detection
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Fig. 8: Asymptotic increase in FAB-MAP loop closure
detection performance. Precision-recall curve is plotted after
each improvement cycle. The curve moves upwards with
each iteration (indicating improved performance) as a better
sampling set is evolved. Maximum precision increases from
58.3% to 65.3%.

using FAB-MAP on the City Centre dataset. The visual
detector parameters [4] were set to p(zi = 1|ei = 0) = 0
and p(zi = 0|ei = 1) = 0.39. Ground truth was generated
via visual inspection. The prior probability over locations
in the map was left uniform to test the core inference
component independent of a motion model. Precision-recall
was calculated by varying the probability threshold at which
loop closures are accepted. Figure 8 plots the precision-recall
curves after each iteration. The curve moves upwards after
each improvement cycle indicating an improved performance
as a better sampling set is evolved by the algorithm. Maxi-
mum precision increases from 58.3% to 65.3%.

VII. CONCLUSIONS

We have shown how a robot can, through introspection
and then targeted data retrieval, improve its own navigation
performance. It is a step in the direction of lifelong learning
and adaption and was motivated by the desire to build robots
that have plastic competencies which are not baked in. They
should react to and benefit from use. We have considered a
particular instantiation of this problem in the context of place
recognition using the FAB-MAP algorithm. We used LDA
based topic models to enable the calculation of a measure of
image perplexity viz-a-viz a sample set which is supposed
to be representative of all scenes experienced by the robot.
This measure guides a retrieval of additional images that
share topics with the confusing ones. The sample set is
thus extended to better explain the images that the robot
is seeing at run time - in a sense, the robot is customising
itself to its surroundings. Although we have demonstrated
adaption in the context of a particular problem this is part of
a bigger picture - one in which lifelong learning is achieved
by robots actively and continually seeking out training data
or experience as a result of on going use.
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