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Abstract— In outdoor environments shadows are common.
These typically strong visual features cause considerable change
in the appearance of a place, and therefore confound vision-
based localisation approaches. In this paper we describe how
to convert a colour image of the scene to a greyscale invariant
image where pixel values are a function of underlying material
property not lighting. We summarise the theory of shadow
invariant images and discuss the modelling and calibration
issues which are important for non-ideal off-the-shelf colour
cameras. We evaluate the technique with a commonly used
robotic camera and an autonomous car operating in an outdoor
environment, and show that it can outperform the use of
ordinary greyscale images for the task of visual localisation.

I. INTRODUCTION

“Shadows are everywhere! Yet, the human visual
system is so adept at filtering them out, that we
never give shadows a second thought; that is until
we need to deal with them in our algorithms. Since
the very beginning of computer vision, the presence
of shadows has been responsible for wreaking
havoc on a variety of applications.” [1].

Vision-based localisation systems rely on place models
based on scene appearance recorded as an image. However
image formation is an interplay of both scene structure
and the current lighting conditions. Ideally the same place
would always produce the same image, but observations are
strongly influenced by illumination. For place recognition
we are not interested in modelling the lighting variations
between observations, these only act as distractors in the
image. Indeed, if we could always just observe the intrin-
sic scene appearance, uncorrupted by illumination changes,
localisation would be a less messy business.

As a motivating example consider Figure 1(a), the road
appearance is dominated by transient shadows. Now consider
the transformed image in Figure 1(b). Clearly the strong
shadowing effects on the road surface have been removed
and the road appears as a grey tone — its true underlying
appearance. Applying this transformation to all our shadow
effected observations removes the illumination distractors
and makes localisation considerably easier — similar places
actually look similar, Figures 1(c) and 1(d).

The ability to deal with confounding shadows and vast
illumination change is important for any localisation algo-
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(a) Image with shadows (b) Shadow invariant image
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(d) Precision-recall curve

Fig. 1. Shadows create confounding effects in images (a). The shadow
invariant image eliminates the effect of lighting (b) by capturing the intrinsic
material properties of the scene, invariant to shadow effects (c). This has a
effect on significantly improving place recognition based on image similarity
metric (d). Figure best viewed in colour. In (c-d) the red and blue plots are
used for the original grayscale and shadow invariant images respectively.

rithm hoping to achieve long-term success. One example
is our recent Experience Based Navigation [2] where we
model the world as a set of independent but related ex-
periences. The number of experiences stored for a place
is a function of its visual diversity: highly varying places
require many experiences, while relatively staid regions are
described by a handful. We found that sections like Figure
1(a) spawned many experiences, not because the underlying
scene had changed, but due to the large illumination changes
it undergoes. We are therefore motivated to find an invariant
representation that removes these ephemeral shadow effects.

In this paper we present a novel approach to appearance-
based localisation for an outdoor robot, based on intrinsic
rather than visual scene appearance. We apply recent results
on shadow removal to eliminate the effects of scene illu-
mination and recover an image that more truly reflects the
intrinsic, or material, characteristics of the environment. To
make this work with a real colour camera we have developed
a new approach to computing the sharpening matrix which
is used to partly decouple the colour channels. The overall
approach is evaluated using images from a real outdoor
robot acquired at different times of day, at a number of
locations, and across several days. The data includes major
illumination changes and shadow effects. Using this dataset
we demonstrate a significant improvement in precision and



recall over standard vision-based image retrieval.
The next section presents related works and Section III

introduces the theory of shadow removal — a much studied
problem in the computer vision community — which sets
the scene for the rest of the paper. Section IV applies the
technique to real images with a non-ideal camera as required
for our problem of image-based robot localisation. Section V
demonstrates the approach on imagery collected by a mobile
platform and finally Section VI concludes the paper.

II. RELATED WORKS

Researchers in the computer vision community have
explored shadow detection and removal in images, with
approaches falling under two categories. The first relies
on learning classifiers based on intensity and colour cues,
combined with an energy minimisation step to ensure global
consistency. For example, Zhu et al. [3] use boosting and
CRFs to classify shadows in single monochromatic natural
images. Guo et al. [4] compare pairwise patches of the
same texture under similar and different lighting conditions
in a graph-cut framework to produce a binary labelling.
Shadow removal is performed using a soft matting technique
to reduce edge effects of the binary classification.

The second class of techniques attempt to model the
physical process of image formation: the illumination and the
underlying scene reflectance properties. In a series of papers,
Finlayson et al. [5] [6] developed the idea of invariant im-
ages. Modeling the image formation process, they compute
a transformation from RGB to an invariant log-chromaticity
space. Further, Narasimham et al. [7] demonstrated that the
radiance of the same scene observed under large illumination
changes can be used to classify material type and produce
invariant images. Nayar et al. [8] [9] present a physics-based
approach for describing scene appearance when imaged
under non-ideal weather conditions like haze and fog. The
model allows recovery of pertinent scene properties like 3-D
structure and clear day contrasts given one or more images.

Recently Kwatra et al. [10] presented an information-
theoretic approach, which can be considered as a hybrid of
the two categories of approaches described above. Leverag-
ing the fact that the entropy is always greater in the observed
image than the reflectance and illumination fields, they use
an energy minimisation scheme with texture and smoothness
priors to remove shadows. Their solution is continuous and
works effectively on diffuse shadows such as those cast by
clouds in aerial imagery with processing times of 10-20
seconds for typical image sizes on a very high end machine.

Within mobile robotics the problem has received recent
attention in the context of detection shadows cast on the road
by vehicles and surrounding structure. Park and Lim [11]
estimate the lit-road texture by sampling a small window in
front of the host cars bumper, which they assume is unob-
structed, and then apply background subtraction techniques.
Boosting is applied at the pixel level followed by global
smoothing. They incorporate heuristic and contextual cues
specific to the shadows cast by cars, and are unable to cope
with natural shadows.

In this paper we apply the model based approach described
by Finlayson et al. [5] [6] to produce invariant images. We
use these to improve our localisation performance for scenes
that exhibit strong shadowing effects.

III. THEORY OF INVARIANT IMAGES

In this section we briefly recapitulate the theory related
to shadow removal, that is, how to create a greyscale in-
variant image from a colour input image [5] [6]. The key
concepts in the colour perception process are the source of
illumination (the illuminant) with a spectral power density
of E(�)W/m2

/m; a point in the scene with reflectance
R(�) 2 [0, 1] which produces a luminance L(�)W/m2

/m
that induces a stimulus in the sensor possessing a spectral
response given by M(�).

Referring to Figure 1(a) we see bright parts of the scene
which are illuminated directly by the sun and the darker
shadow regions which are illuminated, not by the sun, but
from the sky whether blue or cloudy. Our first assumption
is that points in the scene are illuminated by a blackbody
radiator, that is, one whose radiant power spectral density is
given by Planck’s law

E(�) =
2hc2

�

5(ehc/k�T � 1)
W/m2

/m (1)

where h, k and c are Planck’s constant, Boltzmann’s constant
and the speed of light respectively. T is the temperature of the
radiator but in this context can be considered the colour tem-
perature of the illuminant which varies from 2,000-3,000K
for dawn or dusk, 5,000-5,400K for noon-day sun, 8,000-
10,000K for an overcast sky, and 10,000-12,000K for blue
sky. Shadows therefore have two identifying characteristics:
they are dark and they are more blue than the same material
under direct sun illumination.

For trichromatic vision the response of the colour channels
is given by

R =

Z

�

E(�)R(�)M
R

(�)d� (2)

G =

Z

�

E(�)R(�)M
G

(�)d�

B =

Z

�

E(�)R(�)M
B

(�)d�

where M

x

(�) is the spectral response of the sensor for the
channel x 2 {R,G,B}. If we consider the sensor responses
as the ultimate narrow band filters, Dirac functions M

x

(�) =
�(�� �

x

) we can simplify the integrals of (2) and write

R = E(�
R

)R(�
R

)M
R

(�
R

) (3)
G = E(�

G

)R(�
G

)M
G

(�
G

)

B = E(�
B

)R(�
B

)M
B

(�
B

)

where M

x

(�
x

) is the peak response of the sensor at wave-
length �

x

.
The next step is to reduce dimensionality by removing the

effect of changes in illumination magnitude. We achieve this
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Fig. 2. In the log-chromaticity space the colour appearance of each material
appears along parallel lines as a function of illuminant temperature T . A
shadow invariant greyscale image is obtained by projecting the points on to
the direction (defined by ✓) orthogonal to the illumination change direction.

by, for each pixel, computing chromaticity coordinates

r =
R

G

, b =
B

G

. (4)

For the case of r we substitute (1) and (3) and write
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R
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and similarly for b. The particular choice of chromaticity
coordinates and alternatives is discussed in Section IV-A.
A helpful approximation is to eliminate the -1 term, which
is reasonable for colour temperatures in the range under
consideration, and this allows us to simplify

r ⇡ e

hc/k�GT

R(�
R

)M
R
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e
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which is a function of the colour temperature T and various
constants: natural constants, sensor response wavelength �

x

and magnitude M

x

(�
x

), and material properties R(�
x

). We
treat b similarly. Taking the logarithm leads to the very
simple form for red and blue chromaticity:

log r = c1 �
c2

T

, log b = c

0
1 �

c

0
2

T

. (5)

Plotting log b against log r then each pixel is mapped to a
point, but as the colour temperature changes the coordinate of
each pixel will move along a line with a slope of c02/c2, see
Figure 2. Importantly this means that as illumination changes
all points move in the same direction, so a projection onto
the orthogonal direction results in a 1-dimensional quantity
invariant to colour temperature and a function of material
reflectance and camera sensor properties. We exponentiate
the projected value to improve the dynamic range and return
a positive number.

To verify the performance of this algorithm we ran a sim-
ple simulation. We considered the standard Gretag-Macbeth
colour checker test chart, see Figure 3(a), for which R

i

(�)
has been measured and tabulated for each of the i = 1 · · · 24

(a) Gretag-Macbeth colour chart (b) For sharp non-overlapping bands

(c) For Sony sensor (d) For Sony sensor with sharpening

Fig. 3. Locus of Gretag-Macbeth colour checker test squares (shown in
a) as colour temperature varies from 2,500–10,000 K. Numbers indicate
the corresponding tile on the colour checker chart (numbered left-right and
top-bottom). (b) For narrow-band, non-overlapping, spectral bands. (c) For
Sony sensor as per Figure 4. (d) For Sony sensor with sharpening transform
and geometric mean.

tiles1. For a range of blackbody illuminants with colour
temperature spanning the range of 2, 500 � 10, 000K we
can plot the locus of the points in the log-chromacity space,
see Figure 3(b) and they are indeed straight lines as theory
predicts.

To summarise, we have mapped a 3-dimensional pixel
value which is a complex mixture of material and illumi-
nation properties at the world point to a 1-dimensional pixel
value which is a function of only material reflectance proper-
ties. To achieve this we have made a number of simplifying
assumptions: that points in the scene are illuminated by a
Planckian source, that the camera sensor magnitude response
is a linear function of scene luminance and its spectral
response is a Dirac function. Importantly, a mixture of two
Planckian sources is not Planckian and many artificial light
sources are not Planckian.

IV. INVARIANT IMAGES FROM REAL CAMERAS

In practice the assumptions just stated do not hold. Real
colour cameras have overlapping spectral responses and we
verify the negative impact of this in simulation, and then
investigate some strategies to rectify it.

A. Real camera spectral response

In this work we use the well known Point Grey Bumblebee
2 stereo colour camera, although just the left image is
used for the results in this paper. This camera has a linear
magnitude response, that is, it has � = 1, but the spectral
response for its Sony ICX204 sensor as shown in Figure 4
is far from three Dirac functions — there is considerable

1The tiles in the bottom row of the chart are shades of grey and therefore
have the same shaped spectral response, differing only in magnitude. They
are all tones of the colour white.
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Fig. 4. Spectral response of the Sony ICX204 sensor as used in the Point
Grey Bumblebee 2 camera.

spectral overlap between all three colour channels. If we
repeat the previous simulation exercise for the case of this
camera the locus of the points on the log-chromaticity plane
is shown in Figure 3(c) and far from straight. Projecting
the points onto a line would not result in an illumination
invariant value, the tiles would map to overlapping intervals
not points.

There are a number of solutions that can ameliorate this
result. The first is to revisit the chromaticity coordinates that
we chose earlier. There is no particular reason to have chosen
the green value for the denominator, green is not privileged
in any way. It certainly will lead to problems when the
green value is zero or even small and dominated by photosite
noise (shot and thermal noise). Instead of (4) we choose to
normalise by the geometric mean

r =
R

(RGB)1/3
, b =

B

(RGB)1/3
(6)

which improves the straightness of the loci on the log-
chromaticity plane.

The second is to introduce a sharpening transform [12]
which is applied to camera tristimulus output values such
that

[R0
, G

0
, B

0]T = M[R,G,B]T

where M 2 R3⇥3 and the columns have unit norms. We
define a cost function which penalises all pairwise channel
overlaps (R-G, B-G and R-B)

J =

Z

�

(R0(�)�G0(�))2+(B0(�)�G0(�))2+(R0(�)�B0(�))2d�

(7)
and adjust M to minimise this. In order to ensure unit column
norms we consider each column as a point on the surface of
a unit-sphere which we parametize by two angles (latitude
and longitude), giving six variables to optimise over. The
result

M =

0

@
0.998800 �0.066900 �0.000100
�0.049700 0.988600 �0.000100
�0.004300 �0.134600 1.000000

1

A (8)

is quite close to a unit matrix. Figure 5 shows the original
sensor response and the sharpened response. The change is
quite subtle but nevertheless leads to a significant improve-
ment in computing a shadow invariant image.

Fig. 5. Original sensor response (blue) and sharpened response (green) for
the ICX204 sensor.
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Fig. 6. (a) Example of shadow invariant variance as a function of projection
angle. Variance is computed over a set of pixels that belong to the same
material. (b) Histogram of shadow invariant pixel values for the image in
Figure 1(a).

The result of applying the chromaticity coordinates (6) and
the sharpening transform leads to the log-chomaticity plane
loci shown in Figure 3(d) which are considerably straighter.

B. Estimating the projection angle

Points on the log-chromaticity plane move parallel to the
vector [c2, c02] and the orthogonal projection line is therefore
[c02,�c2]. c2 and c

0
2 are functions of well known physical

constants and the peak spectral response of the green channel
(denominator) and the channel X = R,B. Theoretically the
angle of this line can be shown to be 2.73 rad but the many
assumptions made will introduce errors.

Instead, we train for the angle based on a sample image.
The user selects a region (by clicking perimeter points on
an image) that comprises the one type of material under
varying lighting conditions. For the case of the image shown
in Figure 1(a) we highlighted the lit and shadowed road
region. We first compute the log-chromaticity image where
each pixel is (log r0

uv

, log b0
uv

) and then find the projection
angle ✓ that minimises variance over the region

✓ = arg min
✓2[0,⇡]

X

hu,vi2R

(g
uv

� ḡ)2 (9)

where

g

uv

= (log r0
uv

, log b0
uv

)T (cos ✓, sin ✓) (10)

and hu, vi 2 R are the pixels in the user selected image
region R. A typical plot of variance versus ✓ is shown



in Figure 6(a) and across many images we see results
consistently around 2.3 rad.

C. Practical considerations

There are a number of important practical issues in imple-
menting this algorithm. If any pixel in the scene is saturated,
that is it has one or more of R = 255, G = 255 or B = 255
then the true colour of the corresponding world point cannot
be known. If any pixel has R ⇠ 0, G ⇠ 0 or B ⇠ 0 then the
denominator of (4) or (6) will be small and the result will
be either infinity or a large value dominated by pixel noise.
Chromaticity values can therefore have any value between 0
and 1 as well as being indeterminate (NaN). After taking
logarithms the result can be in the range �1 to +1 as
well as being indeterminate (NaN). To prevent some of these
extreme values and to deal with saturation we choose only
pixels where ⌘ < R < 255 � ⌘ and ⌘ < G < 255 � ⌘ and
⌘ < B < 255� ⌘ and we have chosen ⌘ = 10.

As shown in Figure 3(d) the result after various ameliora-
tions is still not perfect. That is, a single material maps to an
interval in the invariant image. This cannot be avoided unless
we use a camera with non-overlapping spectral responses,
and some multispectral cameras do have this property.

The dynamic range of the invariant image is quite small
and the images appear to be somewhat washed out. Con-
trast enhancement techniques such as linear stretching or
histogram normalisation can be applied. The pixel value
distribution, for example Figure 6(b) has long tails due to the
numerical issues mentioned above. In this example, although
the distribution is not Gaussian, the standard deviation of
0.0252 is a very small fraction of the total dynamic range.

Finally, we note that we have taken the camera specifi-
cation at face value and have not tested the linearity of the
camera or whether the camera channels have any DC offsets.

V. RESULTS

To evaluate the approach we conducted experiments on
data collected from our autonomous vehicle, the Wildcat
shown in Figure 7(a). The vehicle is equipped with a
Point Grey Bumblebee2 stereo camera mounted on the front
bumper. The data was collected around our field test site in
Begbroke, Oxfordshire, Figure 7(b) over multiple runs under
different weather conditions and times of day.

A. Qualitative results

Firstly, we present results on representative images taken
from a wide range of outdoor scenes. Figure 10 presents
some typical examples of shadow removal in our test images.
In frames (a) and (b) foliage shadows are removed, while (c)
and (d) remove human and lamp-post shadows. Frame (b)
is taken under bright (in an English sort of way) sun which
causes shadows on the road as well saturation of the building
at the top left. The shadow invariant cannot be computed for
these pixels. Note in (d), the yellow bin in the background
is mapped to a very dark greyscale value.

(a) Wildcat vehicle (b) Begbroke site

Fig. 7. (a) Wildcat autonomous platform used to collect data for the
experiments. The vehicle is equipped with a Point Grey Bumblebee 2 stereo
camera mounted on the front bumper of the vehicle. (b) Overhead image of
the field site indicating the GPS trajectory taken by the vehicle. The colours
indicate the number of experiences created and the white stars are the places
we consider.
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Fig. 9. Comparison of Jensen-Renyi divergence for the set of invariant and
original images for 5 places imaged under varying shadow conditions. The
divergence values are smaller for the set of invariant images demonstrating
that they indeed capture the intrinsic representation of the scene irrespective
of shadows effects. Note the log-scale on y-axis.

B. Place recognition

In our recent work on Experience Based Navigation [2],
a proposed framework for long term navigation, we allow
the visual diversity of a place to dictate the number of
representations needed to model that place. We found most
regions could be described by a handful of experiences, but
sections influenced by transient shadows created more. We
consider several locations, marked in Figure 7(b) with white
stars, where the system has failed to localise and caused
many experiences to be remembered. These sections are
characterised by overhanging trees which cast ever changing
shadow patterns, producing images with unique appearances.
For the 5 selected points around this corner we gather all
images that the robot considers to be exemplars of a new
experience. The number of images per experience varies
from 2 to 9. Figures 11 and 12 show example images (top
row each) from two places demonstrating the diversity of
visual experiences recorded at a place along the route.

We compute image similarity using the approach similar
to [13] where the images are subsampled to 48 ⇥ 64 and
compared using the zero-mean normalised cross correlation
measure (ZNCC) [14]. Color images are first converted to



(a) Confusion matrix: original images (b) Confusion matrix: shadow invariant images
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(c) Precision-recall curves

Fig. 8. Image similarity computed for 5 places that were considered as 28 different visual experiences. Confusion matrix (bright is similar) computed on (a)
original greyscale images and (b) shadow invariant images. Note that images of the same location in the invariant space are found more similar to each other
and more dissimilar to images of other places (appearing as bright blocks) compared to original images (where similarity pattern is chaotic). Precision-recall
curves (c) for original greyscale and shadow invariant image similarity for five different places. The curve for the invariant images dominates.

greyscale using the ITU-509 transformation [14], whereas
the invariant images are taken as is. The pairwise similarity
of all images is computed and displayed as a confusion
matrix in Figure 8 for the original and invariant image
cases. We can see that using the greyscale image results
in a confusion matrix that is quite chaotic showing very
little interplace similarity or intraplace dissimilarity, Figure
8(a). The confusion matrix for the shadow invariant case
shows much greater structure where images of the same
place display higher similarity and greater dissimilarity with
images from other places, Figure 8(b).

Figure 8(c) illustrates the precision-recall curves derived
from these matrices obtained by varying the threshold at
which images are considered to be from the same place.
The PR curve for the invariant images dominates the case for
original images demonstrating that places can be significantly
more reliably recognised using only image similarity if the
shadows are first eliminated. In the context of this navigation
system [2] this similarity could be used as an additional
navigation cue to prevent the number of robot experiences
growing without bound due to the almost infinite variety of
lighting patterns due to shadows cast on the scene.

C. Measuring intrinsic nature

Next, we quantify the degree to which invariant images
capture the intrinsic appearance of a place i.e., yield similar
reflectivity results irrespective of lighting. For each place we
measure the coherence within the set of invariant images and
the original image set respectively.

Formally, we compute the Jensen-Renyi (JR) divergence
[15] between the set of images for a single place represented
as intensity histograms. The JR divergence evaluates the
cumulative dissimilarity between two point sets (histograms
in our case). We use a closed-form solution which uses
Mixture of Gaussians [15], relying on a kernel density [16]
driven non-parametric estimate of the pdf that automati-
cally incorporates smoothness ameliorating bin-quantization
effects [17] [18].

Figure 9 plots the result (note the log-scale on the y-axis).
The JR divergence values are significantly and consistently

lower for the invariant images compared to those for the
original images affected by shadow changes. This indicates
that the invariant images are indeed closer to generating an
intrinsic representation of the scene.

D. Computational cost

The invariant image is computationally cheap to compute
— it is not much more expensive than converting a colour
image to greyscale. Importantly, it can be computed in
constant time. In (6) the cube-root operation is the most
expensive but we can first take the logarithms of the R,
G and B images and then use addition, multiplication and
subtraction to compute the log-chromaticity coordinates.
On a 2.6GHz i7 processor using MATLAB the invariant
transform can be computed at 39ns/pixel, or 40ms for a
megapixel image.

E. Benefits of shadow invariance

Computing the shadow invariant can be considered as a
preprocessing step prior to a standard object recognition or
feature extraction step. We gain the advantage of processing
a scene free of distracting and confusing shadow artefacts.
Most object recognition algorithms rely on a region seg-
mentation step based on intensity appearance. If we apply a
state-of-the-art graph-based segmentation [19] to the heavily
shadowed image of Figure 13(a) we obtain the highly over
segmented result shown in Figure 13(b). This clearly shows
a complex pattern of segments that do not correspond to
the materials present in the scene, rather they reflect the
instantaneous pattern of lighting on the scene.

For most robotics tasks the lighting is irrelevant, we are not
interested in pixel values but rather the semantics associated
with those pixels. For a road navigation task that might be
whether the pixel lies on the road or off it. For example,
the shadow invariant image is shown in Figure 13(c) and the
corresponding segmentation (using the same parameters) is
shown in Figure 13(d). We clearly achieve a reduction in
the number of segments and a very crisp delineation of the
primary navigation feature — the road.

The shadow artefacts are not only irrelevant they are also
distracting — corner detectors are drawn to the high contrast



Fig. 14. The approach does not compensate for shadows containing
reflected lighting from objects in the scene. The figure illustrates an example
where shadows next to coloured walls are not fully removed.

textures induced by shadows rather than the underlying
structure. We have applied standard point feature extraction
(e.g. SIFT, SURF etc. [20]) to the invariant image with
success. Despite the lower SNR of the invariant image all
but the smallest scale features reliably associate with material
rather than lighting features of the scene.

F. Limitations

One of the limitations of this method is that the model
assumes scene lighting by a single Planckian source, (Section
IV) and hence cannot fully compensate when shadows are
partly-illuminated by light reflected from objects populating
a scene. For example, Figure 14 shows a strong shadow next
to a building but the shadow is clearly still evident in the
invariant image. In this case the shadow region is illuminated
by sky light reflected from the coloured wall of the building
which makes its spectrum non-Planckian.

VI. CONCLUSION

In this paper we have described an approach to eliminate
shadows from colour images of outdoor scenes that is known
in the computer vision community and applied it to a hard
robotic problem of outdoor vision-based place recognition.
We have described the details of key implementation steps
such as minimising camera spectral channel overlap and
estimating the direction of the projection line, and discussed
approaches to overcome practical problems with low and
high pixel values.
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(a) (b) (c) (d)
Fig. 10. Gallery of results showing the original (top row) and shadow invariant (bottom row) image for a selection of places. Shadows cast by trees (a,
b), people (c) and street lights (d) are removed in the invariant images.

Fig. 11. Original (top row) and invariant (bottom row) images for one of our test places. Note how images with significant and varying shadow effects
are transformed back to a shadow-invariant representation.

Fig. 12. Original (top row) and invariant (bottom row) images for one of our test places. Regardless of the shadowing effect, it is removed in the invariant
image. Also note in the final image, the small piece of foliage fallen on the road that appears in the invariant image as it is a different material.

(a) Original image (b) Colour image segmentation (c) Shadow invariant image (d) Invariant image segmentation

Fig. 13. Comparison of region segmentation [19] based on intensity appearance for original and invariant images. The road path is clearly segmented
out unaffected by shadow patterns in the invariant image. The result for the original image is over-segmented with the algorithm confounded by the
instantaneous shadow and illumination patterns.


