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Abstract— This paper concerns the efficient computation of
a confidence level with which a particular driver will be able
to reach a particular destination given the current state of
charge of the battery of an electric vehicle. This probability of
attainability is simultaneously computed for all destinations in a
realistically sized map while taking into account the driver, the
environment, on-board auxiliary systems and the vehicle battery
system as potential sources of estimation noise. The model uses
a feature-based linear regression framework which allows for a
computationally efficient implementation capable of providing
real-time updates of the resulting probabilistic attainability map.
It was deployed on an all-electric Nissan Leaf and evaluated
using data from over 140 miles of driving. The system proposed
produces results of a quality commensurate with state-of-the-
art approaches in terms of prediction accuracy.

I. INTRODUCTION

One of the principal factors impeding the mass market
adoption of electric vehicles (EVs) is considered to be
range anxiety [10]. Various methods exist for predicting
remaining miles given the battery charge [2], [11]. These
are however not very reliable since the remaining range can
vary significantly depending on driving conditions and other
influencing factors such as driving style, route preferences
and route geography [8], [7], [13]. In light of the limited
range of current EVs and a still sparse charging infrastructure
the problem of range anxiety is primarily caused by the poor
accuracy of instantaneous range predictions provided by the
vehicle.

In order to alleviate this problem a number of researchers
have recently proposed a generation of range maps indicating
the estimated energy requirement to reach a set of destina-
tions and comparing this to the current state of charge of the
battery [4], [14]. Commonly these maps require some degree
of user interaction or consider only a subset of destinations in
the map. The stochastic nature of the underlying processes in
terms of energy consumption and state-of-charge estimation
are often not considered. (An exception here is [11], which
does not provide a map but considers range as a random
variable by framing the estimation of the current battery
state-of-charge as a recursive estimation problem.)

Recently, [12] have proposed an efficient algorithm to
compute personalised attainability estimates for every des-
tination in a map based on route preferences learned from
GPS trajectories and a physical model of the likely energy
expenditure. Here we build on this approach to provide
personalised probabilistic attainability maps which consider
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Fig. 1. Range map prediction installed in a real electric car showing
destinations with estimated attainability probability at least 90%.

all sources of uncertainty in the system: the driver, the battery
and the environment. The model we propose is entirely data
driven and does not make use of an underlying physical
model of the battery or the world. Instead we learn a
regression model which incorporates current and past energy
usage information in order to improve estimates for known
trajectories as well as to provide accurate estimates for as
yet unknown routes. Due to the fact that energy usage is
modelled directly, as opposed to via a physical model of the
environment, the approach presented here implicitly captures
the influence of local driver behaviour (e.g. acceleration
profile) and exogenous factors such as typical traffic flow.

The model is also designed to dovetail with the approach
presented in [12] in that a life-long learning paradigm is
considered where the learning is done in a manner entirely
transparent to the driver and the same efficient algorithm
can be used to achieve map updates in real-time for maps of
realistic size. To the best of our knowledge this is the first
work to propose a computationally efficient, driver-specific
and probabilistic treatment of destination attainability. A
system overview is presented in Fig. 5. Our approach is
implemented on Nissan Leaf (see Fig. 1) and evaluated using
real data recorded over 140 miles of driving.

II. PREDICTING ENERGY CONSUMPTION

Consider an electric vehicle which is routinely deployed in
a given area for which a map is available. Specifically, we
consider a map to consist of a road network composed of
individual road segments, si, which are joint at intersections
and set of actions ai corresponding to possible turns at the
end of each road segment, Fig. 2.

Given the current location of the vehicle, sstart, and the
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Fig. 2. State-action space of the road network. States correspond with
oriented road segments and actions correspond with possible actions at the
end of a road segment.
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Fig. 3. A statistical interpretation of destination attainability pi given the
distributions of required energy Ei and available energy Esoc.

current state of charge of the vehicle battery, Esoc, the goal
of this work is to provide a framework which efficiently
computes an accurate estimate of the probability that a
particular destination can be reached for every destination
in the map. In particular, we estimate a probability pi that
energy Ei required to travel to destination si is at most the
available energy Esoc

pi = p(Esoc ≥ Ei) (1)

and consider this destination attainable if this probability
is at least commensurate with a user-specified confidence
threshold pt

Γi =

{
1 if pi ≥ pt
0 otherwise

. (2)

Equivalently to Eq. 1, the value of pi can be expressed in
terms of a transformed random variable Êi = Esoc−Ei (see
Fig. 3) such that

pi = p(Êi ≥ 0), (3)

which leads to an intuitive formulation in terms of the
cumulative distribution function of Êi, PÊi

(x), as

pi = 1− PÊi
(0). (4)

If we assume that the original quantities involved are
normally distributed (i.e. Ei ∼ N (µi, σi) and Esoc ∼
N (µsoc, σsoc)) it follows that Êi is also normally distributed
such that

Êi ∼ N (µ̂i, σ̂i), (5)
µ̂i = µsoc − µi, (6)
σ̂2
i = σ2

soc + σ2
i . (7)

Fig. 4 demonstrates attainability of destinations for different
levels of pt. Eq. 4 can then be expressed in terms of

Fig. 4. Attainable range with 90% (blue), 50% (yellow) and 10% (red)
probability.

the cumulative distribution function of the standard normal
distribution such that

pi = 1− Φ

(
− µ̂i
σ̂i

)
. (8)

Note that this formulation caters for the state of charge esti-
mate to be a random variable with associated measurement
noise, which can be considerable [3]. While it is conceivable
that these parameters are also learnt as part of this model, in
the following we will use typical values for µsoc and σsoc
as discovered in prior art.

In this context, therefore, the challenge of estimating the
chance of reaching a particular destination with a given state
of charge consists of accurately and efficiently estimating the
parameters µi and σi, which characterise the likely energy
use for any given road segment. Our modelling framework
builds on our prior work [12] which uses a feature-based
approach to model driver behaviour in the form of route
preferences which was first introduced in [15]. We next give a
brief summary of this model before extending it to estimating
energy values for individual road segments.

A. Driver Model

A driver’s route preferences can considerably skew the
energy required to reach a particular destination [8], [7].
To account for this variation [12] learns personalised route
preferences directly from observed driving behaviour. In
particular, consider a trajectory, ς, which consist of an
ordered set of road segments. The probability of traversing a
particular trajectory is characterised via a reward, Rς , such
that

p(ς) ∝ eRς . (9)

The reward for the trajectory is derived from rewards for
individual state-action pairs, {s, a}, along the trajectory,
where states represent road segments and actions represent
actions potentially taken at the end of a segment (e.g.
turning). These individual rewards are modelled as a linear
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Fig. 5. System architecture overview.

combination of feature values parameterised by a driver-
specific weight vector θρ,

Rς =
∑

{s,a}∈ς

Rs,a (10)

Rs,a = θ>
ρ · fs,a (11)

where fs,a are features of the particular road segment and θρ
is learnt from data using inverse reinforcement learning [15].
Features of road segments can be extracted from community
projects like OpenStreetMap [6]. In this work they consist
of the road class (highway, 1st, 2nd, 3rd, residential, service,
etc.), the segment length, the amount of turn at the end of
the segment (straight, turn left, turn right), whether a stop is
likely at the end of the segment (e.g. due to road priorities or
the presence of a traffic light or stop sign) as well as the total
elevation increase and decrease along the segment obtained
from Google Maps Elevation Service.

B. Energy Model

Here we outline the framework used to model energy con-
sumption on route to a particular destination. As in [12] we
consider the energy required to reach a particular destination
to be computed with respect to a distribution over possible
trajectories to that destination. In contrast to [12], however,
we consider the energy used for a particular trajectory, Eς
to be a random variable with distribution parameters derived
from real data. Ei is therefore a mixture of distributions
describing the energy consumed along possible trajectories,
Eς , with the mixing coefficients provided by the probability
of a driver taking that particular trajectory

Ei =
∑
ς

p(ς)Eς . (12)

As there is potentially a very large number of trajectories
connecting two destinations, an exact evaluation of equ. 12
is often infeasible. For computational efficiency and similar
to [12], we consider only the set of all trajecotries consisting
of less than N segments for a large value of N and also re-
approximate Ei with a normal distribution specified by [5]

µi =
∑
ς

p(ς)µς , (13)

σ2
i =

∑
ς

p(ς)
(
(µς − µi)2 + σ2

ς

)
. (14)

We model the energy of a trajectory as a sum over it’s
traversed road segments

Eς =
∑

{s,a}∈ς

Es,a (15)

Assuming energy expenditure on all road segments is nor-
mally distributed and independent from each other implies
Eς is also normally distributed with given mean and vari-
ance:

Es,a ∼ N (µs,a , σs,a) (16)
Eς ∼ N (µς , σς), (17)

µς =
∑

{s,a}∈ς

µs,a , (18)

σ2
ς =

∑
{s,a}∈ς

σ2
s,a . (19)

The parameters µs,a , σ2
s,a are modelled using a feature-based

linear model similar to the one employed to model segment



rewards,

µs,a = θ>
µ · fs,a , (20)

σ2
s,a = θ>

σ · fs,a , (21)

where fs,a again denotes a feature vector associated with
every state-action pair and θµ and θσ denote driver specific
weights parameterising the energy consumption. The weights
are learned by maximising the likelihood of observed energy
consumption (Eq. 16) over the lifetime of the system by
constrained optimisation subject to θ>

σ · fs,a ≥ 0 ∀s, a
[1]. To accommodate for different energy demand caused
by different accessory settings and selected ECO mode 1 we
learn the weights for specific settings of variables thus we
obtain different set of weights for different settings of the
car. During prediction the appropriate weights are selected
to reflect the current car settings.

III. IMPLEMENTATION

In this section we describe the efficient computation of
the parameters µi and σi as required for the generation of
probabilistic attainability maps. Consider an arbitrary func-
tion Gs,a factorizing over state-action space. In essence, the
generation of an attainability map requires the computation
of an expectation gi of Gs,a over the distribution over all
possible trajectories ς from a starting position to a particular
destination si

gi =
∑
ς

p(ς)
∑

{s,a}∈ς

Gs,a . (22)

In [12] we describe an efficient polynomial-time algorithm,
Q(·), which, given a reward structure R, computes this
expectation from a starting position sstart to every possible
destination si in the map all at once, such that

{gi} ← Q(sstart, Rs,a , Gs,a), (23)

where {gi} denotes the set of expectations computed for all
destinations. In [12] this algorithm was employed to evaluate
equs. 13 and 18 to obtain the expected mean energy usage,
µi, by letting

Gs,a = µs,a . (24)

Here we extend this approach by also computing the ex-
pected variance σ2

i . To do this we first execute Q(·) as
above to obtain the mean energy usage for every destination.
Consider now a road segment sk, which is reached by
performing action aj at the end of road segment si

~σ2
si,aj = σ2

si,aj +
(
µsi,aj + µi − µk

)2
(25)

Substituting ~σ2
s,a for Gs,a as input to algorithm Q then

allows for the efficient computation of σ2
i as output

of algorithm Q. The entire algorithm is summarised in
Algorithm 1.

1ECO mode reduces car acceleration, energy provided to the air condi-
tioning system and increases regenerative braking in order to extend the
drivable range.

Algorithm 1 Probabilistic Attainability Map Computation.
Input: sstart position of the car

µsoc, σsoc battery charge
Rs,a segments routing preferences
µs,a , σs,a segments energy consumption
pt confidence threshold

Output: Γi attainability of destinations
Compute predictive mean

1. µi = Q(sstart, Rs,a , µs,a)

Compute predictive variance
2. ~σ2

si,aj = σ2
si,aj +

(
µsi,aj + µi − µk

)2
3. σ2

i = Q(sstart, Rs,a , ~σ
2
s,a)

Compute resulting drivability map
4. µ̂i = µsoc − µi
5. σ̂2

i = σ2
soc + σ2

i

6. pi = 1− Φ
(
− µ̂i

σ̂i

)
7. Γi =

{
1 if pi ≥ pt
0 otherwise

Fig. 6. The RobotCar (Modified Nissan Leaf) platform used for data
gathering.

The algorithm is implemented as a part of a more complex
system providing the user real-time updates of attainable
range (see Fig. 5). First, in the preprocessing part, records
of traversed routes together with extracted road segment
features fs,a are used to learn model parameters of energy
consumption θµ,θσ and route preferences θρ. These are
subsequently used to predict the energy consumption µs,a
σs,a and user preference cost Rs,a for all road segments
of the map. Next, in the on-line part, these are taken as an
input of the algorithm together with the car position sstart
and battery charge µsoc, σsoc to produce the attainability of
all destinations for a specified confidence threshold pt. This
information is then presented to the user in the form of a
visual attainability map.
Our implementation of the algorithm uses a GPU-accelerated
computation carried out on a standard MacBook Pro capable
of performing prediction every 5 seconds for a map in radius
of 100 miles surrounding the car. This is sufficient for a real-
time application given the car maximum drivable range, it’s
position and battery charge rate of change.
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Fig. 7. Examples of driver specific probabilistic attainability maps showing 90% (blue), 50% (yellow) and 10% (red) confidence bounds for various route
preferences, driving styles and levels of battery charge estimation noise. Top row: [a] minimum-time route preference, [b] motorway route preference and
[c] motorway avoidance route preference. Bottom row: minimum-time route preference with [d] ECO mode ON, [e] air conditioning ON and [f] 10%
uncertainty in battery charge.

IV. EXPERIMENTS

Our approach is evaluated using data gathered over 140
miles of driving using an all-electric Nissan Leaf (Fig. 6).
The vehicle has been modified to record positioning informa-
tion provided by a GPS unit. Energy usage information for
various vehicle components and state of the battery charge
are recorded as reported by the CAN-bus. The corresponding
road-network information (including values for road segment
features) required for attainability map computation was
extracted from OpenStreetMap [6] for a surrounding area
in radius of 100 miles. For data association we matched
GPS trajectories to sequences of traversed road segments
using a Hidden Markov Model as described in [9]. In order
to perform a meaningful quantitative evaluation a single
route was chosen (covering a variety of road types) and
traversed ten times by the same driver. Fig. 7 gives an
indication of the types of maps produced by our model
for a range of scenarios. As the contribution of this work
is a probabilistic model of energy consumption, for these
plots the driver’s route preferences were set by manually
specifying θρ. Parameters for the energy model were learned
from data. In particular, the figure shows the attainability map
for a given vehicle location and remaining battery charge
µsoc = 1.2kWh and σsoc = εsoc · µsoc for an RMS
state-of-charge estimation precision εsoc which was, apart
from Fig. 7(f), set to εsoc = 3% as indicated in [3].

# energy used energy predicted µ error σ error
[Wh] [Wh] [%] [%]

1 280.69± 27.17 291.52± 24.28 3.86 10.63
2 102.20± 27.48 102.41± 11.81 0.21 57.00
3 132.99± 13.49 132.60± 27.90 0.29 106.80
4 230.53± 27.35 219.42± 19.76 4.82 27.74
5 368.20± 56.05 403.36± 43.02 9.54 23.23
6 362.58± 50.32 313.76± 66.89 13.46 32.93
7 244.38± 19.23 259.08± 21.90 6.01 13.91
8 464.24± 24.16 433.97± 29.85 6.51 23.54

TABLE I
PREDICTED MEAN, µ, AND STANDARD DEVIATION, σ, COMPARED TO

THE EMPIRICALLY OBSERVED DISTRIBUTIONS FOR EIGHT INDEPENDENT

TRAJECTORIES.

The evolution of the maps is rather intuitive. Fig. 7(a)-
(c) demonstrate the effect of different driving preferences
on the attainability maps. While a detailed interpretation is
heavily dependent on the particular road network considered,
in this case a minimum-time route preference allows to
travel furthest, while both motorway and non-motorway
preferences are more restrictive. Fig. 7(d) shows an extended
driving range when parameters θµ,θσ were trained while
the ECO mode was ON, thereby limiting engine power.
Similarly, Figure 7(e) shows a reduced range when the air
conditioning is turned ON. Finally, increasing uncertainty in
the battery state-of-charge estimate leads to increased width
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Fig. 8. Empirical proportion of successful attempts to reach destination as
a function of predicted attainability probability. Optimal response is linear
- marked grey.

of the confidence bands reflecting increased uncertainty in
the attainability of destinations. In order to quantitatively
evaluate the system we split the dataset into eight non-
overlapping trajectories, each of which was traversed ten
times. Leave-one out cross-validation was used to provide
energy prediction results for each of these trajectories. For
these experiments we consider the battery state-of-charge
estimate to be noise free. Table I compares the predictions
obtained from our system with the empirically measured
values. On average our method is able to estimate µ with
an average error of 6%, which is commensurate with state-
of-the-art approaches such as [8].

To assess the accuracy of our system’s predictions of
attainability we compare for each one of the eight test
trajectories the predicted probability of attainability with
the empirically observed one. In particular, for each test
trajectory, we vary the available battery energy to control
the probability of traversing it to its end. We then compare
this to the empirical frequency of successful traversals which
require up to that amount of energy. The results of these
experiments are shown in Fig. 8, which plots the empirical
frequencies against the ones obtained by our model. If
the system was perfectly calibrated (i.e. the predictions are
exactly right) the relationship would be perfectly linear (grey
line). The figure suggests that, while noise exists due to
prediction errors, on average the predictions made indeed
correspond to those observed.

V. CONCLUSIONS

This paper introduces an efficient approach to comput-
ing probabilistic attainability maps for electric vehicles. It
considers energy consumption to be a random variable and
leverages a feature-based linear regression framework to
model the distribution parameters associated with it. Due to
the fact that energy usage is modelled directly, as opposed
to via a physical model of the environment, the approach
presented here implicitly captures the influence of local
driver behaviour (e.g. acceleration profile) and exogenous
factors such as typical traffic flow. Noise in the vehicle

battery state-of-charge estimate is explicitly accounted for.
The simplicity of the model allows it to dovetail with an
efficient algorithm to model a driver’s route preferences. It
therefore achieves a wide coverage of sources of variation
while providing for real-time update rates for realistically
sized maps. Despite the simplicity of the model (and a
number of distribution assumptions) our method provides
prediction accuracies of a quality commensurate with state-
of-the-art models while, in addition, providing confidence
bounds which are well calibrated vis-a-vis observed data.
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