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MobileFusion: Real-time Volumetric Surface Reconstruction and
Dense Tracking On Mobile Phones

Peter Ondriska, Pushmeet Kohli and Shahram Izadi

Fig. 1. Example objects scanned in real-time on a mobile phone using our system. Note we only use the internal RGB camera, and all
computation is performed on the device.

Abstract—We present the first pipeline for real-time volumetric surface reconstruction and dense 6DoF camera tracking running purely
on standard, off-the-shelf mobile phones. Using only the embedded RGB camera, our system allows users to scan objects of varying
shape, size, and appearance in seconds, with real-time feedback during the capture process. Unlike existing state of the art methods,
which produce only point-based 3D models on the phone, or require cloud-based processing, our hybrid GPU/CPU pipeline is unique
in that it creates a connected 3D surface model directly on the device at 25Hz. In each frame, we perform dense 6DoF tracking, which
continuously registers the RGB input to the incrementally built 3D model, minimizing a noise aware photoconsistency error metric. This
is followed by efficient key-frame selection, and dense per-frame stereo matching. These depth maps are fused volumetrically using
a method akin to KinectFusion, producing compelling surface models. For each frame, the implicit surface is extracted for live user
feedback and pose estimation. We demonstrate scans of a variety of objects, and compare to a Kinect-based baseline, showing on
average ~ 1.5¢m error. We qualitatively compare to a state of the art point-based mobile phone method, demonstrating an order of
magnitude faster scanning times, and fully connected surface models.

Index Terms—3D object scanning, surface reconstruction, mobile computing
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1 INTRODUCTION

In recent years, low-cost object scanning has become a key consumer ~ real-world geometry to be modeled in a spatially continuous manner.

scenario, spurred on by interest around 3D printing, and more ubiq-
uitous ways to consume and share 3D models on our devices (e.g.
WebGL). The importance of providing live feedback during the acqui-
sition process is particularly important, and ensures that the object or
scene is captured without missing important details or parts. Systems
such as KinectFusion [16, 9] have demonstrated the importance of live
capture of 3D surface models as opposed to point-based representa-
tions (e.g. [25]). Surfaces encode connectivity information, allowing
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These connected surface models also seamlessly integrate into existing
3D applications and tools e.g. for viewing and editing 3D content,
printing or game physics. However, the majority of existing methods
for live 3D surface reconstruction require active depth sensors and/or
high end GPUs. This limits object scanning scenarios to PCs or high
end laptops and tablets, with custom hardware. Whilst work, such
as Google’s Tango project [8] have begun to explore more integrated
solutions for mobile depth camera hardware, the cost, form-factor, and
power considerations have yet to make such devices ubiquitous.

We present a new system for making real-time scanning of 3D sur-
face models even more cheaper and ubiquitous, using mobile phones
we already have in our pockets, without any hardware modification. Ex-
isting state of the art mobile methods approximate surfaces using simple
visual hull constraints [23], Delaunay triangulation [18], or purely point-
based representations [28, 12]; or use cloud-based processing to avoid
on-device computation [2]. Instead our system reconstructs real-time
3D surface models directly on the device, allowing lightweight capture
of detailed 3D objects, at speeds that have yet to be demonstrated by
other systems. We describe our pipeline in full, emphasizing compo-
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nents for uncertainty-aware dense model tracking, robust key-frame
selection, dense stereo, volumetric fusion and surface extraction, and
their efficient mobile phone implementation, which allows for 25Hz
performance. We show qualitative results of our system (see Figure 1
and accompanying video !), and compare to the point-based method
of [28, 12]. Additionally, we compare the accuracy of our method
quantitatively against a consumer depth camera baseline using a new
dataset of 3D reconstructions which we make public.
Our key contributions can be summarized as:

e The first real-time fully dense surface reconstruction pipeline
for mobile phones, which operates only on live RGB input, with
computation fully on the device. This includes at 25 frames-per-
second: dense camera tracking, key frame selection, dense stereo
matching, volumetric depth map fusion, and raycast-based surface
extraction.

e A dense, feature-free, six degree-of-freedom (6DoF) tracker, reg-
istering the RGB data to the volumetric surface model in real-time.
Whilst semi-dense methods for mobile phone hardware exist [26],
to our knowledge, this is the first time that a fully dense method
has been demonstrated. We extend [17] modeling uncertainty
directly from the implicit volumetric surface, and fast GPU-based
model extraction and alignment.

e Demonstration of volumetric depth map fusion [4, 16, 9] on com-
modity mobile phones. Including extensions to [21] for more
robust key-frame selection, and [16, 9] for more efficient depth
map fusion and extraction.

e Compelling new object scanning examples, demonstrating ex-
tracted 3D meshes at speeds and quality yet to obtained with
off-the-shelf mobile phone hardware.

e A new dataset of 3D models that enables quantitative evaluation
of methods for dense surface reconstruction. 2

2 RELATED WORK

In terms of active sensors, early 3D scanning systems used custom
structured light sensors and point-based techniques for 3D object acqui-
sition [25, 30]. The advent of consumer depth cameras such as Kinect,
and GPGPU computation capabilities gave rise to real-time surface
reconstruction systems such as KinectFusion [16, 9], based on more
sophisticated volumetric depth map fusion techniques [4]. Whilst excit-
ing work exists on mobile depth cameras [8, 24], few mobile phones
have such capabilities today. The RGB camera remains the prevalent
and ubiquitous visual sensor, and due to costs, power, form-factor and
photo capture scenarios, this is likely to remain the case in the near
future.

The ubiquity of visible light cameras has motivated much research
in real-time or live structure from motion (SfM), multi-view stereo
(MVS) or simultaneous localization and mapping (SLAM). Early work
demonstrated real-time disparity estimation using handheld cameras
[20], as well as live [19] or efficient [32] GPU-based depth map fusion
techniques. This line of research even explored extending the implicit
volumetric surface reconstruction techniques proposed for active sen-
sors [4].

Early SLAM systems [11, 5] instead looked at sparse mapping
using single monocular cameras, for the purpose of real-time 6DoF
tracking. More recently, there has been a shift towards semi-dense
[6, 7] or fully dense [14] tracking techniques but again the purpose has
remained robust camera tracking rather than detailed 3D reconstruction
per say. Dense stereo matching techniques have been combined with
either sparse [21, 15, 27] or dense trackers [14] to create compelling
surface reconstructions. In this later work [21, 14] per frame, dense
stereo computation was combined with volumetric techniques [4, 16, 9].

1Video is available at: http://youtu.be/5tsLLg02xnk
2 Datasets are available at: http://mrg.robots.ox.ac.uk/mrg_
people/peter—ondruska/
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Fig. 3. Camera pose estimation based on feature-based tracking (red)
and dense tracking (blue) together with resulting models. Dense tracking
increases robustness in situations without salient image features visible
at all times.

However, these systems require heavyweight GPGPU pipelines, which
even with the new generation of mobile graphics hardware cannot be
deployed on mobile devices without major adaption.

The technical challenges of mobile reconstruction combined with the
ubiquity of such devices has led to much interest in this space. Certain
approaches simply avoid the computation problem by offloading to
servers [31] or the cloud [2], but this requires continual high bandwidth
connectivity, and often reconstructions can take many minutes to be
completed [2]. SLAM systems have explored efficient 6DoF pose
estimation on mobile devices [29, 10, 26, 24], but have avoided the
challenge of reconstructing detailed surfaces under such computational
constraints. [18] use panoramic images captured on a mobile device
to reconstruct building facades, but can only coarsely approximate 3D
geometry using Delaunay-based triangulation. [23] reconstructs convex
3D shapes in real-time on a mobile phone, using a silhouette-based
multi-view approach. [28, 12] create point-based 3D models using a
mobile phone, but lack the ability of reconstructing connected surface
models, as shown in their supplementary video. Further, their approach
takes several minutes to scan objects.

Our approach differs to these techniques in that we support full
volumetric surface reconstruction and dense tracking in real-time on
the phone. To the best of our knowledge this is the first time that
dense detailed surfaces have been captured with off-the-shelf mobile
phone hardware. Interestingly, even custom depth camera mobile
phones such as Google’s Tango have yet to support such surface-based
reconstructions, relying on point-based techniques only.

3 SYSTEM OVERVIEW

Our pipeline is shown in Figure 2, and comprises of five main steps:
dense image alignment for pose estimation, key frame selection, dense
stereo matching, volumetric update, and raytracing for surface extrac-
tion. Given a stream of RGB image frames coming from the camera,
the tracker estimates the 6DoF camera pose by aligning the entire RGB
frame with a projection of the current volumetric model. Key-frames
are selected from this live input, using an efficient and robust metric that
evaluates the overlap between frames. Next, the camera pose is used
to select a key-frame which after rectification can along with the live
frame be used to perform dense stereo matching. The output depth map
is then fused into a single global volumetric model. While scanning the
visualization of the current model from camera perspective is displayed
to the user for live feedback, and then passed into the camera tracking
phase for pose estimation.

As depicted in Figure 2, we use I; to denote the camera image frame
at time step i. The 6DoF pose of the camera corresponding to this image
will be denoted by matrix 7; (encoding a 3D rotation and translation).
We use a volumetric model [4] for representing the surface model,
where a truncated signed distance function (TSDF) is stored in the
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Fig. 2. System pipeline. See text for details.
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Fig. 4. Detail of the weighted image alignment scheme for camera
tracking. Model view {I1,Dy} is used for per-pixel alignment of camera
image ;. We downweight pixels corresponding to noisy parts of the
model using the projection Yy, of weights W(p) stored in the TSDF.

voxel grid. This volumetric model is represented by a voxel grid P of
size K x K x K. Each voxel p € P is associated with three quantities:
the value of the TSDF S(p) which encodes the signed distance of the
voxel to the nearest surface measurement, the color vector C(p) and the
cumulative weight W (p) that represents the confidence the algorithm
has in the TSDF and color values corresponding to voxel p.

4 UNCERTAINTY-AWARE CAMERA POSE ESTIMATION

Estimation of the camera pose plays a critical role in our scanning
system and significantly affects the quality of the resulting model.
Achieving high tracking performance is particularly challenging in our
‘outside-in’ scanning scenarios, as the camera observes very different
views as it moves around the object. We observed that using a feature-
based camera tracker often results in position drift or even tracking
failure as a result of the lack of robust global features that are visible in
all views. This drift affects the performance of all down-stream stages

of the pipeline and leads to poor reconstruction (see Figure 3).

To make tracking robust, we use a dense feature-free monocular
camera tracking approach, which has been shown superior to feature-
based methods [17, 26]. In our approach, the camera pose is being
estimated directly using the volumetric model being built. Using this
dense tracking pipeline, the pose of the camera is computed based
on the per-pixel photo-consistency of the rendered model and the live
camera image. In general we seek a pose 7; from the incoming camera
input image /; where the rendered image of the (partially completed)
model aligns with the observed input image. The pose is computed
using a 2.5D image alignment [17]. Let )y be a projection of the
model {S,C,W} from pose guess T, close to true camera pose and
Dy, is the corresponding depth of every pixel u € Q where Q is the
set of valid pixels of the rendered model. We estimate pose 7, from
the last camera frame 7;_; optionally updated by incorporating IMU
information. Relative pose 7;; of incoming frame /; is obtained by
minimizing the photometric error

F(Tu) = Y (fu(T)) (1)
ueQ
fu(Ty) = Li(o(Ty,u,Dag(u))) — Iy () )

where a(T,;,u,d) is a projection of a point (u,d) from rendered
model view [, into camera image /; given by transform 7,,;. The final
pose 7; is then given as T; = T,;T,.. Using this method the optimal pose
is computed robustly based on a dense consensus of pixels, instead
of sparese features used in tracking methods such as [10]. Note this
2.5D optimisation scheme requires only colour /j; and depth Dy of the
rendered model, and only the camera image Ij;. Specifically it does
not require input depth of pixels in the camera image D;. This depth is
instead computed separately at a later stage of the pipeline, after the
pose T; is known as described in Section 5.

Projecting the Model Model projection for given camera pose T,
is achieved through raycasting in a manner similar to [16, 9]. Specif-
ically, for each pixel u, we march along the corresponding ray in the
volumetric grid P until a zero crossing in the S(p) is found, which spec-
ifies the pixel depth Dy (u). Pixel color is computed by interpolating
C(p) at this point. As the projection is one of the most computationally
demanding parts of algorithm, the efficient implementation is more
closely explained in Section 7.

Noise aware photometric error While the dense model based
tracking (as defined above) works well, it can still lose tracking in
certain conditions. We observed that a major source of these errors was
the presence of erroneous depth values that had been aggregated in the
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Fig. 5. Progress of object scanning from a sequence of length 25 seconds. Each column captures live camera view, per frame depth map, raytraced

RGB, 3D model and model confidence, over time.

volumetric TSDF (see Figure 4) resulting in outliers in the cost function
Equation 1. This is especially the case when occluded parts of the object
are seen for the first time. Due to limited number of observations of
these parts of the object, the volumetric data is noisy. This problem can
be solved using a robust cost function based on the Huber norm. Using
the Huber norm however makes the optimisation more complicated as
it involves iterative re-weighting Levenberg-Marquardt minimization
[26]. Instead we used a simpler method which explicitly down-weights
contribution of pixels in Ijs originating from recently initialised voxels
i.e. having small voxel weight W (p). Specifically we assign a weight
to each pixel u such that the optimized photometric error becomes

= Y Yu(w)(fu(T))*. 3)

ueQ

Weights Y, for each pixel u are computed simply by projecting voxel
weight function W (p) which in turn is computed using the number and
value of observations that have been made for each voxel. Minimization
of the uncertainty aware photometric error defined above is achieved
through simple Gauss-Newton gradient descent [3, 6, 17]. In practice
this optimization scheme works well for smooth camera trajectories
and video frame rates (25Hz). It does not even require a coarse-to-
fine pyramidal approach [26, 27]. For rapid motion, a more efficient
pyramidal approach together with a more robust cost function can be
used to further improve tracking performance.

Figure 6, shows progress of minimizing the cost function in Equa-
tion 3. In this plot we see the importance of frame-rate for fast conver-
gence of our optimizer. In our system we maintain 25Hz for the full
pipeline, which given the smaller distances traveled per frame results in
convergence after around 3 frames. As shown, if our system was slower
then the number of solver iterations would be significantly higher.

5 MONOCULAR DEPTH ESTIMATION

After pose estimation, we estimate depth D; of the input image using a
simple pair-wise stereo matching method. Using the current camera im-
age and one selected key-frame from the past, this method traingulates
the depth of every pixel using a block-matching schema to find dense
pixel correspondances between both frames. We chose this method
as opposed to methods using multiple-frame stereo [27] as it allows
faster incremental build-up of the model, and in practice, the level of
redundancy of per-frame estimation allows filtering of depth outliers

1800 ‘ ‘ ‘ ‘ ‘ ‘ ‘
. —— FPS=25
1600 F ——— FPS=12 |1
,, ——FPS=6 ||
5 1400 ——— FPS=4
< ,,
s 1200 | B g
& 10001 g
T goof. T 1
S
2 e00f X T g
< L
400 [T\ T \l \i { —
NNC I ey | T |
200 ;\}\;; % T =
5 10 15 20 25 30 35
iteration

Fig. 6. lterative alignment of live image during camera tracking. Our plots
show the importance of maintaining high frame-rate camera tracking to
ensure fast and precise convergence.

caused by occlusions or lack of texture. Moreover as further described
in Section 7. the block-matching can be implemented extremely effi-
ciently on a mobile phone GPU. This allows for a fast depth-estimation
system that runs at 25Hz as opposed to 0.5Hz of [28, 12] coarse-to-fine
scheme.

Key-frame Selection We maintain a pool of last M = 40 RGB
frames and choose appropriate key-frame /; for stereo matching, based
on very simple but robust scoring function which can be computed
extremely efficiently given just knowledge of camera poses. Upon
receiving a new input frame, we look at this pool to select a key-frame.
We need to trade-off between two objectives during key-frame selection.
Firstly, to ensure that depth can be computed for as many pixels as
possible in the image, we want to ensure that there is a high-overlap
between the frame and the current camera view. In other words, the
key-frame captures the same part of the scene as the current camera
view. This objective can be quantified in terms of the fraction of overlap
Sn(Ty) between the rectified camera image and considered key-frame.

Secondly, we need to make sure that the stereo pair containing the
key-frame has an appropriate baseline. Having a very small baseline
would mean that depth for objects that are farther away cannot be
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computed. Here, there is a trade-off between the width of the baseline,
accuracy and maximum disparity search range, where the depth of
objects less than 1/d,,,, cannot be estimated. As the scanned object is
inside the voxel grid, projecting the § vertices of the voxel cube provide
upper Opmax(7;) and lower bound 8y, (T for the object disparity. To
penalize either disparity of pixels being over the designated range or
utilizing only a small fraction of it, we consider the term S;(T;) =

- ‘1 — % and the final scoring function is simply a sum of these

two terms:

S(Tx) = Sn(Tx) +Sa(Tx) )

Disparity Estimation The depth map for each frame of the image
stream can be computed through dense stereo matching between the
rectified pair of current camera view (/;,T;) and past key-frame (I, Tj)
in a manner similar to [21]. An interesting trade-off is working with
a simpler and faster, but less accurate, stereo method, as a opposed to
one that is more precise but less efficient. In practice, given other parts
of the pipeline (in particular camera tracking) rely on maintaining high
framerates, and given our ability to fuse every frame volumetrically.
We found that going for efficiency and less per frame accuracy, but with
high amount of redundancy in terms of computed and fused depths
maps leads to compelling 3D reconstructions.

However, as highlighted, it is critical to maintain framerate for
robust tracking (and hence reconstruction), therefore instead of using
a propagation-based stereo method, mobile device reduces a number
of computational constraints. These considerations prevented us from
using sophisticated but slow algorithms for stereo matching as they
lead to drastic reductions in the frame rate and result in poor tracking
and 3D reconstruction.

This trade-off led us to a simple but fast, block matching approach for
disparity estimation. As further discussed in Section 7, we implemented
the block matching method to run on the mobile phone GPU which
allowed us to perform stereo matching in real-time. We performed
block matching over dj,,x = 64 steps along the epipolar line with patch
size of 5x5 pixels, and sum of square error matching score. We also
experimented with larger patch sizes which resulted in smoother but
less detailed depth maps. We do L-R check to remove outliers caused
by occlusions or lack of texture. Furthermore we obtained subpixel
accuracy by post-processing the depth maps using parabola fitting in
the neighbourhood of the disparity with minimum cost. Implementation
of these operation on the GPU allowed us to generate depth maps of
320x240 resolution at 25Hz.

Note we do not provide any further post-processing refinement
of depth-maps such as total-variation optimisation [27] or spatial-
regularisation [26] as our aim is not to generate high-quality individual
depth maps but rather fuse many moderate-quality depth maps with
regularisation inherently implemented in the volumetric fusion step.

6 FusING DEPTH IMAGES

For every generated depth map D, we fuse the observations to refine
our volumetric model. This step is akin to the voxel update performed
in [16], but as described later, can be performed for all voxels inde-
pendently without requiring an explicit sweep of the volume. Using
volumetric fusion has numerous advantages including robust handling
of outliers and efficient model update. Moreover as opposed to unstruc-
tured point cloud or surfel model representations used in recent mobile
approaches [12, 28], this volumetric approach provides a continuous
and connected implicit surface model, which can be extracted using
raycasting or marching cubes [13].

For any voxel p € P, given it’s projection into camera space g = T;p,
and the projection into camera view 7(q) = ( fX% + ¢y, fy% +cy), we
compute the quantities:

silp) = Di(n(q)) —q: 5)
cilp) = Ii(n(q)) ©6)

K=128, FPS=25Hz K=256, FPS=15Hz

K=64, FPS=10Hz K=128, FPS=4Hz

Fig. 7. Effect of different model resolution and FPS on model quality. Our
current implementation supports K = 128 at 25Hz and K = 256 at 15Hz.
Note that processing speed is however the more dominant contributor to
model quality. This is because at higher frame-rates, the redundancy of
depth maps fused volumetrically leads to greater denoised results even
at lower resolutions.

and use them to perform a weighted update of the model as

Si—1(p) - Wi—1(p) +si(p) -wi(p)

Sitp) Wir () - wilp) @
Ci—1(p)-Wi_1(p) +ci(p) -wi(p)

Ci(p) Wi () T i) ®

Wilp) = Wi_i(p)+wi(p) 9

where wy(p) is the weight of the new measurement. Note we only
update voxels which project inside the camera image and for which
the pixel depth information is valid (i.e. was not rejected by the L-R
check of stereo depth computation step as an outlier). Filtering out
depth measurements outliers greatly reduces the amount of noise in
the depth fusion step. For this reason we have used a constant weight
wy(p) = 1 for new measurements and found no considerable difference
with weighted average methods. Moreover as in [16] we only update
voxels within a range around the surface having s (p) > —u (i.e. visible
voxels) and truncate the remaining sg(p) to [—u, 1] (where u = 8
voxels). Similarly, we limit the maximum weight Wy (p) to Wy,4x = 50.
The voxel resolution and frame-rate are again an important trade-off
for reconstruction quality, as shown in Figure 7.

7 MOBILE PHONE IMPLEMENTATION

In this section we describe some of the important factors which al-
lowed a real-time implementation of the described pipeline on an Apple
iPhone 6. Our implementation utilizes both CPU and GPU of the mo-
bile phone to process the camera stream at a resolution of 320x240 at
25Hz for both tracking and reconstruction.

Initialization  To bootstrap the system we use a publicly available
feature-based tracker [1], although open source trackers such as [10] or
[26] can be used instead. Running this tracker, the user first interactively
specifies the position of the volumetric grid (see accompanying video),
such that the desired object is placed within. The tracker is used to
provide pose T; to initialize the model and dense tracking pipelines.

Mobile CPU & GPU Utilization Despite significant development
of mobile devices in recent years, they are still 5-20x less powerful
compared to their desktop counterparts. We measured the raw peak
CPU performance of our platform to be 3GFlops using SIMD instruc-
tions and 70GFlops on GPU using OpenGL ES 2.0 shaders. Where
possible we chose to use the GPU for demanding parallelizable tasks
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Running time (ms)

Operation Unit

5 5s 6
Camera alignment CPU 383 345 326
Key-frame selection CPU 53 4.5 4.1
Stereo depth computation ~ GPU  67.1 184 17.3
Model update (K=128) GPU 213 85 8.1
Model update (K=256) GPU 68.8 261 254
Model raycasting (K=128) GPU 46.7 162 153
Model raycasting (K=256) GPU 81.8 263 24.2

Table 1. Running time of different stages of pipeline on iPhone 5, 5s and
6. Our method spreads computation across CPU and GPU to parallelize
further. The CPU is used for tracking on the current input frame, whilst
simultaneously the depth estimation and fusion is performed on the
previous frame using GPU.

Sequence Scanning time Hau sdorff RMS
[sec] Distance [cm] [cm]
Shoes 15 1.5821 2.0092
Teddy 25 1.1875 1.4507
Pineapple 12 1.6945 2.0000
Kangaroo 33 1.4362 1.7836
Mask 6 1.7934 2.1312

Table 2. Reconstruction error (measured by Hausdorff Distance and
RMS) for different objects compared to depth camera reconstruction
obtained using KinectFusion [16]. We computed both relative error with
respect to voxel grid size and the corresponding absolute error in cm.

and the CPU for the tasks with sequential computation. Computational
speed for each of the five main stages of our pipeline, running on three
different phone models is summarized in Table 1.

CPU implementation We use CPU for both keyframe selection
and dense camera alignment. CPU is especially suitable for the later
as the camera alignment requires accumalation of errors across the
entire input image. Utilisation of SIMD (NEON) instructions led to
significant speed-ups allowing us to process 4 pixels at a time (c.f.
[26]). In addition, the CPU and GPU tasks were run in parallel -
camera tracking of a new frame is performed at the same time as depth
computation and model update for the last frame.

GPU implementation We used GPU for stereo depth computation,
model update and raycasting. We chose OpenGL ES 2.0 shaders as
our GPU programming platform, due to its ubiquity on all mobile
platforms. Each of these tasks can be written in the form of simple

Fig. 8. Raytracing of the volumetric model minimizing random memory
access. Instead of marching each ray independently, all rays are marched
synchronously along an axis-parallel plane such that only one slice of
the voxel grid is accessed at once.

shader operating on data stored as RGBA values in textures. These
textures are used to store camera images, depth maps and the full TSDF.
For example, to store TSDF with K = 256 x 256 x 256, we generate a
texture of size 40964096 with every pixel containing value for single
voxel.

The use of the GPU provides three key advatanges.

First, the GPU allows effective parallelism of tasks with little or no
computational dependency. For stereo matching, each shader indepen-
dently computes depth for every pixel from a pair of rectified images.
The lack of computational dependency in the block-matching scheme
makes this operation very fast. Similarly model update through depth
map fusion is carried out independently for each voxel at a time, using
multiple textures. We observed that even for a volume of K = 256,
where the model contains 8 x more voxels than for K = 128, the com-
putational time is only slightly higher.

Next, costly operations like bi-linear interpolation of image value is
efficiently implemented in hardware through texture lookup operations.
This is very important for both model update and model raycasting
which are heavily depend on this type of interpolation. In the model
update step, the computed depth-map is repeatedly interpolated for
every voxel and in the model raycasting the SDF is interpolated for
every pixel.

Finally, GPU architectures natively supports 4-way SIMD paral-
lelism by applying the same operation at every element of a RGBA
vector. This is used during stereo computation (described in Section 5)
where the matching cost can be simultaneously computed for 4 dif-
ferent disparities at the same time. This is achieved by preprocessing
the image to store gray values of the pixel and three neighbouring
pixels corresponding to the disparities d + 1,d +2,d 4 3 as a single
RGBA vector. SIMD parallelism is also utilised in both model update
and raycasting when values of colour C; and sdf S; can be updated or
interpolated at the same time.

Additionally, for model raycasting we used a special optimisation.
The raycasted model is computed per pixel, by marching rays through
the voxel grid until passing a zero crossing. Independent marching of
every ray by fixed distance however results in poor performance as it
exhibits random memory access. Moreover to obtain the precise point at
the zero crossing a tri-linear interpolation of 8 neighboring voxels must
be performed. To improve the performance of raycasting, we process
all rays on a per slice basis (see Figure 8). This operation is very
efficient as it involves hardware accelerated bi-linear interpolation and
all the memory access is coalesced within the given texture subregion.
‘We render each slice in order as a polygon, eliminating random memory
access, and filter between slices using a custom blend operation — a
task that graphics cards are extremely efficient at.

8 [EVALUATION

In this section and accompanying video, we show both qualitative
and quantitative results. Figure 7 shows a variety of different objects
scanned which were captured in roughly 20 seconds with our method.
Note the completeness of obtained surfaces, which would be chal-
lenging to achieve with point-based methods. The objects are also of
varying sizes, ranging from 5° to 0.3% meters, and varying amounts
of texture and appearance cues. While scanning, the user moves the
phone around the entire object. We kept ISO sensitivity, exposure
mode and camera focus constant to prevent changes in appearance and
camera geometry caused by refocusing. The extracted colored and
regular surface geometry is shown directly as extracted and rendered
on the phone, at real-time rates. The bottom row of images, shows the
final 3D models registered to baseline models captured with a Kinect
camera, and high resolution KinectFusion implementation [22]. Table
2 highlights an average error close to 1.5cm between the two models,
which is encouraging given that our system is not metric, and uses no
active illumination.

Another important property of our system is the speed at which the
3D models are acquired and the continual per-frame incremental build
up and preview of the 3D model. As shown in Figure 5 and supple-
mentary video, the surface models are acquired extremely quickly, and
rapidly build up live in front of the user. In Figure 11, we see a direct
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Fig. 9. Examples of generated models as object shape [bottom row] and textured shape [top row]. Each model was created during approximately 20

seconds of scanning on a mobile phone.

qualitative comparison with the method of [12]. Note that this work is
a derivative of [28] with improved accuracy and efficiency.

Whilst both systems are compelling, there are clear holes in the final
3D model produced from [12] due to the point-based nature of their
work. Note that our results clearly show a connected surface model.
Our method can also allow the model to be acquired more quickly due
to our ability to process both tracking and fusion parts of the pipeline at
25Hz. This leads to a complete capture in a matter of seconds instead
of minutes.

Limitations  Obviously our method also has some limitations. As
with many passive stereo methods, objects with no texture cause prob-
lems. This could be fixed by using depth estimation algorithms that
employ regularization to extrapolate depth values for pixels where left-
right check fails. In the presence of specular or glossy surfaces, the
model can contain missing geometry or noise. Color bleeding across
voxels is also an issue, Figure 10. Finally, by registering continually
with the accumulated 3D model, some drift can be mitigated during
loop closure, but there are cases where inherent sensor drift causes
more significant errors. Note also that currently we do not support cam-
era relocalization after tracking loss. Further, the voxel resolution is
currently limited due to GPU hardware, and our models are not meteric
i.e. (although this can be solved using the IMU [28]).

9 CONCLUSIONS

We have presented the first pipeline for real-time volumetric surface
reconstruction and dense 6DoF camera tracking running purely on
standard, off-the-shelf mobile phones. Using only the embedded RGB

camera, our system allows users to scan objects of varying shape, size,
and appearance in seconds, with real-time feedback during the capture
process. Unlike existing state of the art methods, which produce only
point-based 3D models on the phone, or require cloud-based processing,
our hybrid GPU/CPU pipeline is unique in that it creates a connected
3D surface model directly on the device at 25Hz. We believe these
types of 3D scanning technologies, will bring 3D acquisition to a new
audience, where lightweight capture of the real-world becomes truly
ubiquitous.
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