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Abstract— This paper is about localising at night in urban
environments using vision. Despite it being dark exactly half
of the time, surprisingly little attention has been given to this
problem. A defining aspect of night-time urban scenes is the
presence and effect of artificial lighting – be that in the form
of street or interior lighting through windows. By building a
model of the environment which includes a representation of
the spatial location of every light source, localisation becomes
possible using monocular cameras. One of the challenges we
face is the gross change in light appearance as a function
of distance due to flare, saturation and bleeding – city lights
certainly do not appear as point features. To overcome this,
we model the appearance of each light as a function of vehicle
location, using this to inform our data-association decisions and
to regularise the cost function which is used to infer vehicle
pose. In this way we develop a place-dependent but stable sensor
model which is customised for the particular environment in
which we are operating. We demonstrate that our system is
able to localise successfully at night over 12 km in situations
where a traditional point feature based system fails.

I. INTRODUCTION

An ongoing challenge for autonomous vehicles is the
problem of localisation: knowing where the vehicle is posi-
tioned relative to a map of its environment. While significant
progress has been made in this area, the vast majority of
research to date has only tackled the problem in daylight (or
under similar lighting conditions). This is only half of the
problem.

Unfortunately, conventional cameras typically perform
poorly at night, often lacking the dynamic range required
to capture scenes which can exhibit large luminance ranges
when bright lights are present in otherwise total darkness.
At this point we have a dilemma: either increase camera
exposure time (and/or sensitivity) in order to better resolve
poorly lit background, or decrease exposure time in order
to reduce saturation and bleeding caused by light sources.
Both of these compromises can increase noise and decrease
information in an image, and the best strategy depends on
the task at hand. For example, [1] uses the former approach
to localise along dark rural roads while [2] uses the latter
to detect car rear lamps. These problems can be avoided by
using cameras that are designed specifically for use at night,
however these are more expensive than consumer cameras
and often have limited use in daylight. As one of our aims
is to achieve cost effective autonomy using vision, we eschew
these alternatives in favour of low-cost conventional cameras.
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(a) A traditional point feature based system struggles to localise a live
stream of images against its map under night-time conditions. Data
association is made difficult by effects such as lens flare, movement
blur, and overall lack of visibility – most of the scene is pitch black.

(b) By specifically detecting and matching lights in the live scene
with those in a map, we are able to successfully localise. In addition
to position in image space, we also take into account the expected
appearance of each light, based on how far away it is. This greatly
improves the robustness of our data association and serves to better
inform our pose estimate.

Fig. 1. A visual comparison of how localisation at night fares using
transient point features versus permanent, static light sources.

A consequence of increased noise in images is that low-
level point features—widely used in visual mapping and pose
estimation systems—are not as effective as they would be
under optimal lighting conditions. Fortunately, many urban
areas are brightly illuminated at night by artificial light
sources of all kinds – street lights, traffic lights, road signs,
billboards, and windows. In images taken with a conventional
camera using typical exposure and shutter settings, these
appear as large saturated blobs and hence are very easy



Fig. 2. Examples of scenes where point feature based methods
fail. This is due to significant motion blur, saturation, lens flaring,
and lack of well defined edges. In our approach we explicitly take
advantage of the clearly visible light sources.

to detect and track. Most importantly these lights are often
permanent, static, and usually always visible from the road.
Therefore, they make suitable candidate landmarks of which
a localisation system can take advantage. We must also
however contend with dynamic light sources, for example
headlamps of oncoming vehicles, and reflections.

In this paper we present a mapping and localisation system
that: (i) automatically builds a map of artificial light sources
from an offline sequence of images; and (ii) detects and
matches observations of lights in an online sequence in order
to localise within this map. Additionally, we take advantage
of how the appearance of bright lights can radically change as
distance from them increases or decreases. By remembering
and modelling how a light’s appearance changes as a function
of distance during the map building process, we can refer
back to these saved appearances in order to improve data
association and better inform our pose estimate. We demon-
strate that our system is able to localise under conditions
where a point feature based teach-and-repeat system fails.

II. RELATED WORK

Visual landmark-based mapping and pose estimation has
been an active topic of research for decades. Many previous
works use interest-point feature detectors (such as Harris
Corners [3] or FAST [4]) to find small, distinctive image
patches as landmarks for vehicle localisation and visual
odometry (for example, [5], [6], [7], [8]). However, as these
patches are often on the order of 10 × 10 pixels in size,
they are highly sensitive to noise and image variability such
as drastic illumination changes. In addition, many rely on
sharp images in order to discern features such as corners
and therefore are particularly affected by motion blur. Low-
light conditions often exacerbate these effects for all but
the most expensive and specialised cameras, and therefore
systems that rely on these point features typically do not
perform well in darkness. Figure 2 shows some examples of
the conditions we must contend with at night.

One such previous work is a visual teach-and-repeat
system that uses small point features as landmarks [9]. It
works in a similar way to our system: a map of landmarks is
built offline and localised against in a subsequent traversal.
At each frame, the reprojection error of detected landmarks
is minimised in order to correct a visual odometry frame-
to-frame transformation estimate. We compare our new ap-

proach to our existing point feature based teach-and-repeat
system in later sections.

In [10], multiple images captured at different exposures
(exposure bracketing) are fused together in order to achieve
a high dynamic range (HDR) effect. This allows a greater
range of illumination to be captured but proves to be difficult
when the camera moves during a capture sequence. They use
the technique to improve robustness of SIFT key point de-
tection for localisation under varying illumination conditions,
however it is unknown how their system performs at night.

Our approach of using light blobs as landmarks has simil-
arities to star tracking which is used in aerospace applications
to determine a spacecraft’s orientation. Modern star trackers
are fully autonomous, have comprehensive star catalogs, and
are highly accurate and robust [11]. Due to the extreme
distances involved, star tracking is only able to determine
orientation, not position. In contrast, most light sources
visible from a vehicle navigating a well-lit urban area will
be sufficiently close to give an indication of relative position.
Moreover, we face very different environmental challenges
navigating on Earth than in interplanetary space: landmarks
can move, can be obstructed (possibly by other landmarks),
and can disappear entirely without warning.

One of the few examples of work that addresses the
problem of navigating a vehicle at night using consumer
cameras is SeqSLAM [12], in which localisation is achieved
by recognising coherent sequences of heavily down-sampled
images. Their results showed they could recognise a brightly
lit urban environment at night despite having previously seen
it only during the day. In a subsequent work they were able to
successfully localise even on unlit rural roads by maximising
camera exposure and gain settings [1]. While effective, these
techniques only provide an estimate of topological position:
in order to control an autonomous vehicle we require a metric
pose estimate. In addition, they require long sequences of
images to be processed before a position can be determined.

III. PREREQUISITES

Here we give a brief overview of prerequisite techniques
used in the following sections.

The problems of constructing a 3D map from a 2D image
sequence, and estimating pose from a set of 3D-to-2D point
correspondences are known as structure from motion (SfM)
and perspective-n-point (PnP), respectively. In both cases our
approach is based on minimising the reprojection error given
detection of landmarks in 2D images. Detailed explanations
of these problems can be found in [13].

Our optimisation approach is to use a slight variation of
Levenberg Marquardt with a robust cost function (Huber ker-
nel [14]). To greatly simplify expressions involving rotation
matrices we use the linearisation technique described in [15].
In the case of pose estimation we introduce two other terms:
(1) a weighted prior (on pose) by adding a regularisation
term that penalises solutions that are far from the prior; and
(2) distance constraints that take into account the estimated
distance of the camera from each observed light. Hence our
objective function C(x), given n measurements, is:
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where x ∈ R6 is the 6 degree-of-freedom (DoF) trans-

formation we are solving for, parameterised by translational
components x, y, z, and rotational components r, p, q. W
is a 6 × 6 diagonal matrix that weights the contribution of
the prior x̂. r(x) : R6 → R2n is a vector of reprojection
error residuals and s(x) : R6 → Rn is a vector of distance
constraint error residuals. Σr and Σs are diagonal matrices
containing the Huber weights for each measurement (

1
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denotes element-wise square root). Therefore our normal
equations [16] for the least-squares minimisation are:

JTΣJx = −JTΣy (2)

where J is the (3n+ 6)× 6 Jacobian:

J =

 δrδxδs
δx
W

 (3)

y is the (3n+ 6)× 1 vector:

y =

 r(x)
s(x)

(x− x̂)

 (4)

and Σ = diag(Σr,Σs,W ).
The following sections describe the two main tasks our

system is concerned with: (i) creating a map of light sources;
and (ii) localising within a map of light sources. In both
cases we process 2D image sequences from a number of
appropriately calibrated monocular cameras for which we
assume the standard pinhole camera model. We therefore also
assume that as a preprocessing step the images are corrected
to account for distortion.

IV. MAPPING

A. Overview

Building a map of suitable light sources is fundamentally
a structure from motion problem. Given a set of observations
of landmarks from a camera stream and a corresponding set
of 6 DoF vehicle poses, our main aims are twofold. Firstly,
we need to estimate a 3D location for each static light, ideally
discarding those that move – car head lamps, for example.
Secondly, we wish to create an individual appearance model
for every light – what it looks like and how its appearance
changes as we move relative to it.

We describe the map creation process for a sequence of
K frames I = {I1, . . . , IK} from a single camera. From
this point on we use the term blob to mean a 4-connected
region of high intensity pixels. An overview of the steps for
building a map are as follows:

1) Detect individual lights in each frame.
2) Track blobs between frames to obtain a set of light

tracks.

(a) (b)

Fig. 3. Light detection on a single frame. Figure (a) shows the
raw image converted to greyscale. Figure (b) shows the binary
thresholded image after erosion with bounding boxes and blob
centroids.

3) For each light track, solve the structure from motion
problem for every consecutive pair of observations to
obtain a set of candidate 3D locations. Tracks that
exhibit a large variance of candidate locations are
discarded.

4) For the remaining light tracks, solve the structure from
motion problem using all observations to obtain a final
3D location.

5) Extract and save appearance patches.

B. Light Detection and Tracking

For light detection we segment each image Ik ∈ I using
a fixed intensity threshold function to obtain binary image
IBk :

IBk (u, v) =

{
1 if Ik(u, v) > λB

0 otherwise
(5)

Each IBk is eroded to remove noise and lights that are too
dim or small to reliably observe. The blobs in each frame
are then extracted from the eroded binary image and their
bounding boxes and centroids are computed. This process is
illustrated in Figure 3.

We track lights across multiple frames using a nearest-
neighbour approach. A cost function that considers bounding
box overlap and distance between blob centroids is used to
find the best match for a blob in the previous frame. This
works well for sparse lights that can be disambiguated very
easily (for example solitary street lights) and less well for
clusters that exhibit similar movement patterns within the
image (for example groups of windows). We note however
that this is not an issue as the latter are likely to also be
ambiguous during localisation and make data association
more difficult. In any case, lights that are tracked incorrectly
in image space should not converge to a consistent location
in 3D space and so will be culled in the next step.

Lights are tracked until they go out of view; occlusions,
splittings, and mergings are not explicitly considered as these
may indicate an unreliable light source. We therefore obtain



Fig. 4. Example appearances of lights at varying distances from
the camera. Note how drastically their appearance changes as the
camera moves towards them – particularly those exaggerated by
flaring effects. In a point feature based system this would be
a problem, however it allows our system to distinguish between
different lights at varying distances with ease.

a set of n light tracks T = {T1, . . . , Tn}. A track Ti =
〈B1,B2, . . . ,Bni

〉 is an ordered sequence consisting of ni
blobs from consecutive frames.

C. Structure from Motion

Light tracks that contain fewer than λM observations are
discarded immediately. For each blob track Ti, we generate
ni − 1 estimates of the 3D position of the light using each
consecutive pair of blobs. If the variance of these candidate
locations is greater than a threshold λT , the blob track is
discarded as this may indicate a moving light source or an
otherwise incorrectly tracked object.

Surviving blob tracks are input to a final optimisation pro-
cess to obtain a 3D position by minimising the reprojection
error over all measurements. From this we obtain a set of N
lights L = {L1, . . . ,LN} where each Li ∈ R3.

D. Modelling Appearance

For every observation in each light track, we extract and
save a full-colour image patch from its corresponding frame,
centred on the blob, resulting in a ‘stream’ of (appearance,
camera pose) pairs for that light. Some examples of these
appearance patches captured at different distances are shown
in Figure 4. Additionally, the appearance stream is used to
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Fig. 5. Graphs of light blob area vs distance from camera for six
different lights fitted to Equation 6. This illustrates in particular
how by referring back to these models next time we see the
corresponding lights, we can accurately infer how far we are from
them. It also shows, along with Figure 4, just how diverse they look.
This is very much to our advantage during data association. It is
not perfect, however: light 6 is given as an example that does not
fit the model correctly. This is mainly true for planar and irregular
light sources, as well as those that are tracked incorrectly.

establish a 2-parameter functional relationship between the
blob area and distance from the camera. For light Li, we
posit that area A is related to distance d by:

d =
ai√
A

+ bi (6)

as the inverse square law A ∝ 1
d2 holds for the pinhole

camera model. Values for the two parameters ai and bi are
obtained by solving linear least squares. Figure 5 shows
some examples of how light area relates to distance from
the camera and the resulting graph fitted to Equation 6.

Both the appearance stream and functional relationship
given by Equation 6 form the basis of our individual ap-
pearance models for each light.

V. LOCALISATION

A. Overview

Given a set of observations of lights from a camera stream
and a map of known light sources L we wish to estimate
the camera pose. This is known as pose estimation or the
perspective from n points problem. Although each camera
has its own independent map, we are able to combine 2D-to-
3D point correspondences from all cameras in order to solve
for pose. It is assumed that all necessary camera calibration
parameters are known in advance.

One of the key ideas that should be evident from Figure 4
is that not only do lights look very different from one another,
but their individual appearances also change drastically as we
move closer or farther away from them. We therefore firstly
aim to use each light’s individual appearance model to make
our data association more robust. Secondly, Figure 5 shows



us that we can infer valuable information about how far away
lights are by their observed area. This relationship allows us
to derive distance constraints from these appearance models
that can influence our pose optimisation cost function.

An overview of the steps for localising with a new set of
camera frames are as follows:

1) Predict the current vehicle pose using the previous pose
and some estimate of incremental motion.

2) Detect lights in the current frame.
3) Using the current pose estimate, predict where lights in

the map should appear in the current frame. With these
predictions and the detected light blobs, use the joint
compatibility branch-and-bound algorithm to compute
a putative but mutually compatible set of 2D-to-3D
point correspondences.

4) Perform a second pass rejection step based on light
appearance, taking advantage of the fact that we know
what these lights should look like.

5) Estimate distance from camera to each remaining light
using its appearance model and Equation 6, providing
distance constraints for use in pose optimisation.

6) Finally, optimise to correct the pose estimate.

B. Pose Prediction

Assume we are given an estimate of the vehicle pose at
time k − 1 which we write as T̂k−1 ∈ SE (3). Additionally
we are given an estimate of incremental motion between time
k− 1 and time k. We write a predicted vehicle pose at time
k as:

T̂k = T̂k−1 ⊕ TV Ok−1,k (7)

Where TV Ok−1,k is an estimate of our incremental motion
which in our case comes from a VO system. We have
found that even at night this offers performance levels
commensurate with those we required to produce a seed
solution to the localiser.

C. Points Correspondence

Light detection is done as described in Section IV-B.
From this we obtain a set of nk candidate blobs Bk ={
Bk1 , . . . ,Bknk

}
. All mk lights Lk in the map within a

distance λD of the current pose estimate T̂k are considered
as observable candidates. Their predicted positions in the
camera image are computed by reprojecting them into the
current frame.

The joint compatibility branch-and-bound algorithm
(JCBB) [17] is used to obtain an initial set of point cor-
respondences. JCBB computes the maximal set of jointly
compatible correspondences and as such preserves the correl-
ation between measurements and predictions. However, as its
running time is exponential in the number of measurements,
we must invoke a policy to limit the number of candidate
blobs to λJ ≈ 20. Therefore, if more than λJ blobs are
detected in a frame, we use a nearest-neighbour approach
to prioritise candidate blobs that are closest to predicted
locations of lights.

Fig. 6. As part of our outlier rejection step, performed after
JCBB returns a set of tentative associations, a window of stored
appearances is searched for a match for our live light observation.
In this example, five stored appearances of the candidate light and
corresponding camera poses at their time of capture are shown. Our
predicted live camera pose, relative to the map, is shown in green.
Map pose 3 is closest (by distance) to our predicted location and
so we search a window centred at appearance 3.

1) Modelling Uncertainty: We consider the measure-
ment uncertainties for each light Lj ∈ Lk independently
so that the full covariance matrix takes the form R =
diag (R1, . . . , Rmk

), where each Rj = diag (ru, rv) repres-
ents the uncertainty of that light’s centre in image space.
We reason that due to over-exposure and flaring effects,
the observed centre of closer lights (i.e. larger blobs) is
more uncertain than the observed center of distant lights.
Therefore, for each light Lk, we scale ru and rv by the width
and height of the closest appearance patch, respectively. Our
process covariance matrix P is chosen to simply allow for a
small amount of variance in each pose parameter.

2) Appearance Matching: The set of 2D-to-3D corres-
pondences returned by JCBB may still contain outliers, but
we have yet to consider the crucial deciding factor: whether
the lights look how we remember them.

Recall that for every light Li in our map, we have a
set of (appearance patch, camera pose) pairs (Ai,j , Xi,j),
in temporal order, representing every observation of that
light and where it was observed from. Intuitively, we would
expect our observation to best match the appearance that was
captured at a location closest to our predicted pose. However,
due to the uncertainty in our pose estimate, we also consider
nearby appearances. This is as a result of the potential for a
light’s appearance to change considerably in the space of a
few metres.

Therefore, we consider a window of stored appearances:

Āi (x̄) =
{
Ai,j+k : j = arg minj ‖Xi,j − x̄‖ , |k| ≤ ω

}
(8)

Where parameter ω, determining the window size, can be
fixed or can vary according to our pose uncertainty. x̄ is
the current pose estimate. Figure 6 shows how this matching
process works.



We quantify appearance similarity by comparing image
patches in two different ways:

1) By normalised cross-correlation (NCC) between grey-
scale appearance patches. This ensures the observed
blob roughly matches the expected size, shape, and
intensity of the corresponding light. We select the
appearance Ai,j ∈ Āi with the highest NCC score
before testing it again in the next step:

2) By measuring appearance patch compatibility in colour
space. A simple euclidean distance measure in YUV
space is more than sufficient to distinguish between
lights of different colours, for example red/green traffic
lights and yellow sodium street lights.

If both the highest NCC score and corresponding YUV
distance are below a certain threshold, the correspondence
is finally classed as an inlier.

D. Pose Update

A delta pose estimate, ∆T , is computed by minimising
the cost function given by Equation 1. This is where our
individual appearance models come into play again – as well
as taking reprojection errors into account, our cost function
also considers how far away we appear to be from each
observed light. These distances are calculated based on the
area of each light’s observed blob using Equation 6. These
constraints allow the system to arrive at reasonable solutions
for configurations not possible with reprojection alone.

We compute ∆T using Equation (2) with x̂ = 06×1 as
a prior (as we have already applied the VO frame-to-frame
transformation) and lastly update the current pose estimate
to obtain a final pose for this frame:

Tk = T̂k ⊕∆T (9)

VI. RESULTS

In this section we compare our localisation system (Night-
Nav) against our stereo point feature based teach-and-repeat
localiser (VT&R) [18]. For both mapping and localisation we
used our survey vehicle, a modified Bowler Wildcat equipped
with a front-facing Bumblebee2 stereo camera (used by VO
and VT&R) and a front-mounted Ladybug2 omni-directional
camera system (used by NightNav). The Ladybug2 consists
of six separate cameras: five are arranged radially providing
360◦ field of view and a sixth points directly up. We use
only the five radially mounted cameras as these provide
the best views of lights surrounding the vehicle but it is
worth noting that our technique generalises to any number
of monocular cameras in any configuration. The Automatic
Multi-Camera Calibration Toolbox [19] was used for camera
extrinsic calibration, with intrinsic parameters provided by
the manufacturer.

For our results we used four datasets collected from a
well-lit urban route around central Oxford (shown in Figure
7) measuring approximately 4km in length. Datasets 1 and
2 were collected in January 2014 and datasets 3 and 4 were
collected in June 2014. A map was built with dataset 1 using
the method described in Section IV. Our VO system [20]

determined the map trajectory. We found it to be sufficiently
locally accurate despite not being optimised for low-light
conditions. The vehicle was then localised in subsequent
traversals (datasets 2, 3 and 4) using the method described
in Section V.

Threshold parameter values were determined experiment-
ally. We found for our setup that 220 ≤ λB ≤ 240 (where
λB ∈ [0, 255] is a greyscale value) was a suitable range
for the image intensity threshold that preserved bright light
centres but not reflections. During map construction, only
lights tracked for a minimum of λM = 10 frames were
considered reliable. Similarly, λD = 80m was found to be
suitable maximum distance for candidate lights as this is
around the distance at which a typical streetlight becomes
visible in the intensity-thresholded image. For the weighting
of the prior in our cost function (Equation 1), a value of
W = I6×6 was found to give the most robust results.

Figure 8 shows the proportion of the total distance tra-
versed in each dataset during which each system travelled
more than a particular distance without successfully loc-
alising. For NightNav, a successful localisation requires a
minimum of two matching lights. For VT&R, a successful
localisation requires a minimum of three feature correspond-
ences. Note that both NightNav and VT&R were configured
to exhaustively search from the last known good location
in their maps in an attempt to reseed their locations if they
travelled more than 30m by dead-reckoning. In most of these
cases, NightNav managed to relocalise almost immediately
whereas VT&R would continue for many metres before
recovering. These failures occurred mainly along relatively
dark sections of the route such as that highlighted in Figure 7.
In several instances VT&R also gets lost when other vehicles
obscure parts of the scene. It is clear from these results
that because NightNav relies on permanent features in the
environment rather than transient point features, it gets lost
less often and for shorter distances.

Localisation is challenging for both NightNav and VT&R
in datasets 3 and 4 compared to dataset 2, however NightNav
continues to outperform VT&R. We believe the main reason
for this degradation is the difference in foliage coverage
between winter and summer. In many sections of the route,
lights are partially or fully obscured by leaf-covered trees.

Figure 9 shows the computed trajectory for both NightNav
and live VO projected onto the X-Y plane, in comparison
to the map trajectory. This shows NightNav localising suc-
cessfully within the map and demonstrates that it does not
suffer from drift that affects uncorrected VO. Also shown
is the cross track error in x, y, and z, measured relative to
the map trajectory. The median x, y, and z errors over all
three datasets are 0.35m, 0.36m, and 0.31m respectively. In
computing these errors we assume that we precisely follow
the map trajectory route and therefore these values can be
partly attributed to variations in position when driving in
lane. Large spikes in cross track error, however, occur when
a lack of visible lights causes a localisation failure. Again,
this happens most frequently when localising against datasets
that were collected five months after the map dataset.



Fig. 7. A map showing the ~4km route taken through central Oxford
in all four datasets. Street lighting is present on both sides of the
road along its entire extent, with the exception of the section shown
in dotted yellow where illumination is sparse and it is exceptionally
dark. Consequently, both VT&R and NightNav had difficulties
localising in this area. Map imagery from OpenStreetMap2.

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Distance / m

%
 o

f 
tr

a
v
e

rs
a

l

 

 

NightNav

VT&R

(a) Dataset 2 (January 2014) ~4km total

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Distance / m

%
 o

f 
tr

a
v
e

rs
a

l

 

 

NightNav

VT&R

(b) Datasets 3 and 4 (June 2014) ~8km total

Fig. 8. Graphs showing the proportion of the total traversal during
which each system has travelled more than a certain distance
without successfully localising. For example in Figure (a), VT&R
spends almost 17% of the total traversal in a state where it is lost
for more than 0 metres. In contrast, NightNav spends only 6%
of the total traversal in the same state. Localisation performance
degrades in datasets 3 and 4 (Figure (b)), which were both captured
five months after the map dataset. However, NightNav continues to
outperform VT&R.

2http://www.openstreetmap.org/

VII. CONCLUSIONS

We have demonstrated a novel system that builds maps
of artificial light sources and subsequently uses that map
to localise at night using vision only. By modelling (via a
database of appearances) the behaviour of the light sources
at night, we are able deal with saturation, blurring, and
distance-dependent lens flare in images. We show that this
system out performs a point feature based localiser over
many kilometres of testing in a city at night.
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(a) Dataset 2 trajectories (January 2014)
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(b) Dataset 2 cross track errors (January 2014)
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(c) Dataset 3 trajectories (June 2014)
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(d) Dataset 3 cross track errors (June 2014)
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(e) Dataset 4 trajectories (June 2014)
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(f) Dataset 4 cross track errors (June 2014)

Fig. 9. Figures (a), (c), and (e) show NightNav (green) trajectories in the X-Y plane in comparison to the map trajectory (red) for datasets
2, 3, and 4 respectively, showing that it successfully localises. Uncorrected, integrated live VO (blue) is included for illustrative purposes
and as expected, suffers from drift. Note that as our map is built using a purely relative pose framework, it is not globally consistent and
hence does not precisely match the shape of the metrically-accurate trajectory shown in Figure 7. Figure (b), (d), and (f) show the cross
track errors in x, y, and z for NightNav’s trajectories in relation to the map trajectory. Large spikes are localisation failures caused by
lack of visible lights. These failures occur more often in datasets 3 and 4 as street lights are obscured by increased foliage as a result of
seasonal change between January and July.

[18] Winston Churchill and Paul Newman. Experience-based navigation
for long-term localisation. The International Journal of Robotics
Research, 32(14):1645–1661, 2013.

[19] Michael Warren, David McKinnon, and Ben Upcroft. Online calibra-

tion of stereo rigs for long-term autonomy. In International Conference
on Robotics and Automation (ICRA), Karlsruhe, 2013.

[20] Winston Churchill. Experience Based Navigation: Theory, Practice
and Implementation. PhD thesis, University of Oxford, 2012.


