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Fig. 1: Given an input image, road boundaries are inferred irrespective of whether or not the boundaries are actually visible. Our coupled
approach first segments visible road boundaries with a fully convolutional network and then passes output to our deep network to infer
occluded road boundaries. Our network contains intra-layer convolutions and produces outputs in a hybrid discrete-continuous form.

Abstract— This paper is about the detection and inference of
road boundaries from mono-images. Our goal is to trace out,
in an image, the projection of road boundaries irrespective
of whether or not the boundary is actually visible. Large scale
occlusion by vehicles prohibits direct approaches - many scenes
present 100% occlusion and so we must infer the boundary
location using scene context. Such a problem is well suited to
CNN derived approaches but the sinuous structure of a hidden
narrow continuous curve running through the image presents
challenges for conventional NN-architectures. We approach this
as a coupled, two class detection problem -solving for occluded
and non-occluded curve partitions with a continuity constraint.
Our network output is in a hybrid discrete-continuous form
which we interpret as measurements of segments of the true
road boundary. These measurements are passed to a model se-
lection stage which associates measurements to minimal number
of a-priori unknown set of geometric primitives (cubic curves)
representing road boundaries. We present a semi-supervised
method which leverages a visual localisation to generate 25
thousand labelled images for training and testing - the results
of which are presented in the conclusion of the paper.

I. INTRODUCTION

In the context of autonomous driving, curbs (road bound-

aries) play an important role as they delimit, legally and

intentionally, drive-able space. They provide information for

mapping, path planning and navigation, and can be used as

reference structure for accurate lateral vehicle positioning

on a road. Curb detection is a crucial component of ADAS
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(Advanced Driving Assistance Systems) such as parking

assist systems. Knowing where the road ends is always

good. However the purpose of roads is to carry vehicles

and those very vehicles occlude the road boundaries. Our

goal here is to infer road boundaries despite the occlusion.

Our motivating observation is the orientation and location of

occluding objects (overwhelmingly vehicles) is an observa-

tion of a hidden state namely the road boundary. Although

our own camera cannot see the road boundary explicitly,

we assume that an observer in the occluding vehicle does

and is driving and positioning the vehicle accordingly. Note,

moving forward we will use “road boundary“ and the shorter

“curb” synonymously.

In recent years, machine learning has achieved state-of-

the-art performance in segmentation and object detection

problems. However, many existing image segmentation or

object detection methods do not explicitly infer geometry

of road boundaries, rather segment the road [1]. Curb de-

tection using deep learning approaches from mono images

hasn’t been addressed deeply in the literature. The small

width and elongated shape of curbs make curb detection

challenging for state-of-the-art deep models. Presence of

occluding obstacles makes this even more challenging. We

propose a deep learning based approach that relies on a

single camera image and capable of detecting visible curbs

and estimating positions of occluded curbs behind other road

users (cars, cyclists, pedestrians). To train our deep models

we propose a framework that enables swift accumulation of

ground truth masks of visible and occluded target. We make



no assumptions about structure, shape or colour of curbs or

occluding obstacles.

The main contributions of this paper are as follows:

• An image annotation framework to easily generate curb

masks for hundreds of images within an hour.

• A way to detect curbs without making any assumptions

about their 3D structure, shape or appearance.

• A new deep model architecture based on convolutional

layers to estimate curbs that are occluded by other road

users.

• Inferring occluded road boundaries using a single image

without temporal information.

• Performing a model selection step to return cubic repre-

sentation of road boundaries without placing assumption

on the number of continuous curbs within the scene.

This paper is structured as follows. Section II provides

an overview of curb/road boundary detection methods using

different sensors. We explain our framework for generating

ground truth data to train our models in Section III. A

detailed description of our model is provided in Section

IV, which is followed by road boundary classification and

evaluation of our approach through various experiments. A

summary of our contributions is given in Section VII.

II. RELATED WORK

Curb detection using single frame images is a hard prob-

lem, curbs are narrow, long and have no clear form in either

appearance or geometry. If one assumes curbs always have

a change in height (we don’t) then the 3D structure can be

modelled as a 2D step function in the image. This assumption

is used in many curb detection approaches that rely on

laser sensors or stereo cameras, where the 3D information is

extracted to detect curbs.

a) Camera-based methods: In [2], a camera-based ap-

proach is used which exploits appearance, temporal informa-

tion and 3D geometry to detect curbs with the underlying

assumptions that the road surface is flat and curb planes

are orthogonal to the road plane. A support vector machine

is used for patch classification using histogram of gradients

as image descriptor and the classifier is evaluated to detect

curbs up to 2 metres away. 3D point clouds and intensity

images are obtained from stereo cameras and used for curb

detection in [3]. Curbs are detected independently of their

orientation and geometry in relation to the car. The intensity

images are used for correction of extracted curbs from 3D

point cloud. In [4], normal vector information extracted from

stereo images is used to determine boundary areas. Three

Bayes models are established based on the surface normal

vector, height and colour cues. A Naive Bayes framework,

using these cues, provides a confidence level for each point

in the boundary area. A Digital Elevation Map (DEM) is

built in [5] from stereo images to detect curbs and height

variation is used to detect edges. A multi-frame persistence

map is used to reduce 3D-noise by performing temporal

filtering and selecting only persistent points. Straight and

curved curbs are extracted via a Hough accumulator. A

curb detection algorithm based on a DEM is presented

in [6], where different mapping techniques are compared.

Parameters of a 3D curb model are estimated based on 3D

point cloud obtained from dense stereo vision in [7]. 3D

points are assigned to the curb surfaces using a temporally

integrated Conditional Random Field (CRF) and then param-

eters of curb and road surface are estimated. The method can

reconstruct only some part of partial occluded curbs. A multi-

cue image-based curb classifier using Local Receptive Field

(LRF) features is presented in [8]. Here cues from intensity

images and three dimensional height profile data are used

for curb classification.
b) LIDAR-based methods: A 3D LIDAR that provides

dense point cloud data is used in [9]. Ring compression

analysis followed by false positive filters are applied to detect

curb points on input data. Then curb models are estimated

using Least Trimmed Squares (LTS) that estimates road

shape on occluded curbs. However, the presented occluded

curb estimation examples are from simple scenarios, where

there are curbs on both sides of the road, and this method

would likely fail in more complex scenarios, such as junc-

tions or roads with fully occluded curbs. Range and intensity

information from 3D LIDAR is used in [10] and visible curbs

are detected using elevation data, which again fails in the

presence of occluding obstacles. Similarly, a LIDAR-based

method presented in [11] detects visible curbs using sliding-

beam segmentation followed by segment-specific curb detec-

tion, but fails to detect curbs behind obstacles.
In this work we opt for a machine-learning approach to

curb detection. Unlike many works reported in the literature,

in this work visible and occluded curbs are detected from a

single monocular camera frame. We do this without making

any assumptions on the structure or shape of the curbs.

The large amounts of samples needed to train this network

are swiftly accumulated using the module described in the

following section.

III. OBTAINING GROUND TRUTH AND TRAINING DATA

A. 3D Annotation

Obtaining well generalised, high-performance deep net-

works often requires large amounts of training samples. To

cope with the variability of curbs, the required data should

equally incorporate great variability changes in environment

due to scale, appearance, colour and background clutter,

occlusion, perspective and illumination. Fine-grained anno-

tation of data requires time-consuming human interaction

where labels of different classes must be assigned to outlined

distinct regions. To avoid time-consuming image by image

hand labelling process, we annotated points corresponding

to curbs in a 3D point cloud data that was collected by a

2D laser attached vertically to the rear of a test car. During

the annotation, points lying on the same continuous curb

are given the same ID. The annotated points are projected

to images that are collected using forward facing camera of

the car. Between consecutive points with the same IDs, lines

are drawn to annotate curb regions in-between the points.

While projecting the points to the images, we apply distance

and time constraints (e.g. project points that are within 100

metres of the car) to obtain reasonable annotations. This

method enables us to easily obtain hundreds of images within

an hour (approximately 750 images).



Fig. 2: An annotated 3D point cloud (top) used for generating the
training data. Points lying on the same continuous road boundary
are given the same ID and lines are drawn between consecutive
points to annotate road boundary regions in-between the points.
The raw road boundary mask (bottom) is generated by projecting
3D annotations into the corresponding image. The mask contains
both visible and occluded road boundaries.

a) Leveraging hi-fidelity localisation: Additionally, we

obtain labels for the curbs that are occluded by other road

users by leveraging multiple passes through the same scene.

As above, we annotated one of the 10 kilometres long

datasets from the OxfordRobotcar Dataset introduced by [12]

and generated several thousand images with semi-annotated

curb masks. To boost the number of training samples, we

used a vision based localiser [13] to project labels from

the annotated dataset to other traversals at different times of

data and weather conditions. As a result, we obtained 25K

labelled images. Our data contains images from a diverse set

of scenarios such as straight roads, parked cars, junctions and

etc. (Figure 3).

B. Partitioning Training Data

We split our task into two sub-tasks: detecting visible

curbs and hallucinating occluded ones. Beyond an algorith-

mic advantage discussed later, this has an operational/safety

perspective - it’s good to know when a solution is directly

observed as opposed to hallucinated/inferred. Our raw curb

masks, which are generated by projecting 3D annotations

into images (see above), contain both visible and occluded

curbs as a single class. To separate our training data into

two classes, we trained U-net architecture [14] with the

raw masks. U-net is a fully convolutional network that we

used here to detect and precisely localise visible curbs.

The network concatenates higher resolution “input-side”

features from convolution layers with up-sampled outputs

form deconvolution layers as illustrated in Figure 4. This

typically enables the network to localise detected objects

more precisely. Although U-net can segment visible curbs

on an image, it is not able to estimate correct position and

structure of occluded curbs (reasons are explained later). As a

result, the U-net trained with the raw labels generates blurry

outputs over occluding obstacles, which enables us to obtain

masks for visible curbs as illustrated in Figure 5.

IV. OUR APPROACH

Having visible and occluded curbs as two separate classes

enables sees us tackle the curb detection problem in two

steps. But the steps are coupled; visible curbs provide clues

about occluded ones. A glimpse of a curb in-between parked

cars is a clue about occluded curbs behind the cars. Likewise

and as an example of global context curb in one side of a

road is a clue about the location and geometry of the partner

curb on opposite side.

A. Detecting visible curbs

To detect visible curbs, we straightforwardly leverage the

U-net architecture which yielded reasonable performance of

detecting visible curbs even when we trained it with both

visible and occluded curb labels for training data partitioning

(see above). Of course post partition we re-trained with

visible boundaries only.

B. Hallucinating occluded curbs

Although U-net can segment visible curbs on an image,

it is not able to estimate correct position and structure of

occluded curbs, because (1) the network has small receptive

field, which is not big enough to capture context around

large obstacles and to estimate position of curbs behind

them, and (2) the network doesn’t have any structures to

bias it towards detecting thin space curves across an image.

As a result, when the U-net is trained to segment occluded

curbs, it produces blurry outputs over occluding obstacles,

even if masks of segmented visible curbs are given as an

input to the network. To tackle this problem, we approach it

as an object detection problem with parameter-wise outputs

instead of segmentation problem with pixel-wise outputs.

Similar to [15], our proposed model consists of convolutional

layers that produce output of detected curbs as discrete lines

in multiple scales as illustrated in Figure 6. The network

estimates parameters of lines that correspond to each cell of

the grid at each scale. The network discretises the output

space of lines into a set of default (anchor) lines over

different orientation angles. At inference time, the network

generates probabilities for the presence of occluded curbs for

each anchor line orientation and estimates adjustments to the

lines to estimate orientation of the curbs more precisely.

Having predictions of occluded curbs at multiple scales is

important due to the different sizes and shapes of occluding

obstacles. After experimenting, taking into account running

time and accuracy of the model, we settled one 3 scales of

parameterised outputs (Fig 6). To convert pixel-wise curb

labels to parameterised labels, we divided curb masks into

grid of squares in each scale and fitted lines for each cell

as illustrated in Figure 7. The lines are parameterised in

discrete-continuous form: fitted lines are assigned to one of

4 anchor line categories and then offsets from the anchor

lines to the fitted lines are calculated. The anchor lines pass



Fig. 3: “Raw” road boundary mask examples from our dataset overlaid on top of RGB images. The dataset includes masks of semi-annotated
visible and occluded road boundaries from various scenarios.
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Fig. 4: 3 layers deep fully convolutional U-net architecture. To
localise detected objects more precisely, the network concatenates
higher resolution “input-side” features from convolution layers with
up-sampled outputs form deconvolution layers as illustrated with
red arrows.

from the centre point of cells and form an angle under 22.5,

67.5, 112.5 or 157.5 degrees with an imaginary horizontal

line (see Figure 8). Lines are assigned to the category of the

closest anchor line (e.g. lines with angles between 0 and 45

degrees are assigned to the category 1). Once the fitted line

is discretised, two continuous parameters are calculated: (1)

angle offset between fitted and anchor lines (ωk
i, j,gt ), and (2)

distance from the centre point of the cell to the fitted line

(β k
i, j,gt ). As a result, we obtain 16 numbers for each cell, 4

numbers for each line category.

The model has 3 layers at the end of the network that

progressively decrease in size and allow multi-scale pre-

dictions. The output scales have 80 x 36, 40 x 18 and 20

x 9 grids, where each cells on the grids corresponds to

8 x 8, 16 x 16 and 32 x 32 pixels on the input image

respectively. For each cell the network estimates 16 numbers

that represent presence of curb lines in one of 4 categories

and their adjustments. Estimating presence of a curb line is

a classification problem, but estimating adjustments to that

line is a regression problem. To teach the network to perform

the classification and regression at the same time, a discrete-

continuous loss is applied during the training process.

1) Discrete-continuous loss: Total loss of the model Lt is

defined as:

Lt = Ld +αLc (1)

1 64 64

128 128

256

256 128

128 64 64 2

6
4

0
 x

 2
8

8

6
3

8
 x

 2
8

6

6
3

6
 x

 2
8

4
3

1
8

 x
 1

4
2

3
1

6
 x

 1
4

0

3
1

4
 x

 1
3

8
1

5
7

 x
 6

9

1
5

5
 x

 6
7

1
5

3
 x

 6
5

3
0

6
 x

 1
3

0

3
0

4
 x

 1
2

8

3
0

2
 x

 1
2

6
6

0
4

 x
 2

5
2

6
0

2
 x

 2
5

0

6
0

0
 x

 2
4

8

6
0

0
 x

 2
4

8

3x3 convolution


1x1 convolution


copy and crop


2x2 deconvolution


2x2 max pooling

U-net

Trained with the raw labels

Blurry output over


occluding obstacles

New labels with two classes

Fig. 5: Given input images, the U-net model trained with the raw
labels detects visible road boundaries, but generates blurry outputs
over occluding obstacles. We obtain masks for detected visible
boundaries by applying threshold to the outputs. AND operation
between the raw labels and thresholded outputs give us labels for
visible road boundaries. Labels for occluded road boundaries are
obtained by subtracting labels for visible from the raw labels.

where Ld is discrete loss of curb line category classification,

Lc is continuous loss of curb line parameters regression and

α is the weight term. The discrete and continuous losses are

defined as:

Ld =
S

∑
i=1

Ldi
(2)

and

Lc =
S

∑
i=1

Lci
(3)

respectively, where S is the number of scales (there are 3

scales). Let p̂k
i, j be a softmax output of the network for the

k-th anchor line category in j-th cell of the i-th scale, then
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Fig. 6: Our model architecture for inferring occluded road boundaries. The model takes an RGB image and mask of detected visible road
boundaries as inputs. The model consists of convolutional layers and there are 3 “base” layers followed by intra-layer convolutions that
are slice-by-slice convolutions within feature maps. The intra-layer convolutions increase the capacity of the model to capture information
from all over the image and spatial relationships across columns and rows. They are applied in 4 directions: downward, upward, rightward
and leftward. Last 3 layers of the model progressively decrease in size and allow multi-scale predictions.

Fig. 7: Examples of parameterisation of occluded road boundary
labels. In the left column pixel-wise labels are shown followed by
the division of pixel-wise masks into a grid of squares at different
scales. The final occluded road boundary masks are drawn based on
parameterised labels in the right column. The grids on the first and
second rows have sizes of 32 x 32 and 16 x 16 pixels respectively.

the discrete loss for the i-th scale is:

Ldi
=−

Ci

∑
j=1

A

∑
k=1

(yk
i, j log( p̂k

i, j)+(1− yk
i, j) log(1− p̂k

i, j)) (4)

where A is the number of anchor line categories (there are

4 categories), Ci is the number of cells in the i-th scale and

yk
i, j is the ground truth for the k-th anchor line category in

j-th cell of the i-th scale. The continuous loss is a smooth

L1 loss between the predicted line (ωk
i, j,pr, β k

i, j,pr) and the

ground truth line (ωk
i, j,gt , β k

i, j,gt ) parameters. The continuous

loss for the i-th scale is defined as:

Lci
=

Ci

∑
j=1

A

∑
k=1

(yk
i, j(smoothL1(ω

k
i, j,pr −ωk

i, j,gt)

+ smoothL1(β
k
i, j,pr −β k

i, j,gt))

(5)
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Fig. 8: Parameterisation of road boundary lines in discrete-
continuous form. Each cell of the grid at each scale is represented
with 16 parameters: 4 numbers for each line category. Lines are
fitted to road boundaries in each cell and are assigned to one of
4 anchor line categories. Then offsets from the anchor lines to the
fitted lines are calculated: angle offset between fitted and anchor
lines (ωk

i, j,gt ), and distance offset from the centre point of the cell

to the fitted line (β k
i, j,gt ).

where the smoothL1 is [16]:

smoothL1(d) =

{
0.5d2 if |d| ≤ 1

|d|−0.5 otherwise
(6)

2) Intra-layer convolutions: The length of the occluded

curbs clearly depends on the size of occluding objects,

ranging from 10-15 pixels long curbs occluded by traffic

cones to 200-300 pixels long ones occluded by cars parked

one after another. Estimating the correct orientation and

position of occluded curbs in crowded areas requires the

model to have a large receptive field. To increase the capacity

of the model to capture information from all over the image

and spatial relationships across columns and rows, we added

intra-layer convolutions [17] before the multi-scale parameter



estimation layers. Traditional layer-by-layer convolutions are

applied between feature maps, but intra-layer convolutions

are slice-by-slice convolutions within feature maps. This

enables the model to propagate spatial information across

rows and columns as illustrated in Figure 6.

Given a 3D tensor, C x H x W (C - channels, H -

height, W - width), intra-layer convolutions are applied in

four directions, downward, upward, rightward and leftward.

To apply convolutions downward, the tensor is split into H

slices, where H in the number of rows. Starting from the

top slice, convolution with kernel size C x s, where C is the

number of channels and s is the kernel width, is applied to the

first row and the output is added to the second row. Then

the convolution is applied to the updated second row and

output is added to the next row. This process continues until

reaches to the bottom row. Similarly, intra-layer convolutions

are applied upward, rightward and leftward.

V. ROAD BOUNDARY SET FORMATION

From the output of the network, we need to transform

pixel-wise output into a set, with unknown cardinality, of

semantically and geometrically meaningful road boundaries.

When the motion of the vehicle is parallel to the road

boundaries, simple approaches such as using the pixels to

the left and right to form two separate boundaries would

lead to a usable set. However, the motion of the vehicle in

comparison to the road boundaries set is not known a-priori.

And of course road junctions present a larger number of road

boundaries where this simple approach fails.

Instead we opt for a robust global energy based formu-

lation based on a Convex Relaxation Algorithm (CORAL)

[18] that has been shown to be superior to greedy sampling

techniques such as the widely used Random Sampling and

Consensus (RANSAC) [19] algorithm at detecting multiple

geometric primitives. This approach jointly optimises the

overall assignment of points to models by while seeking

compact solution that explains the data with as few models

as possible. This allows in our case for a minimal number

of best-fit cubic curves (boundaries) to be associated to the

network output with the global energy shown in Equation 7:

∑
L
l=1

(
n

∑
i=1

(‖D(Alui)‖)φl(u)

︸ ︷︷ ︸

Data Term

+λ
n

∑
i=1

|∇N φl(u)|

︸ ︷︷ ︸

Smoothness Term

)

+ β‖L‖
︸ ︷︷ ︸

Compactness Term

(7)

The data term in Equation 7 accounts for the distance

between a point and a curve model. Here A is the curve

equation A = (a0,a1,a2,a3) and we refer to D as the Eu-

clidean distance between a point ui = (x,y) and the curve A.

The assignment of data points to their respective models is

encapsulated through an indicator function

φl(u) =

{

1 u ∈ Ll

0 otherwise
(8)

where the uniqueness in the label assignment can be achieved

by adding the constraint ∑
L
l=1 φl(u) = 1. To account for

outliers –where some data points might not be explained by

a geometric model– a special label /0, representing the outlier

model is added. In this way a constant cost, γ , is assigned

to points that cannot be explained by any geometric model.

The model cost for the outlier model is simply given by

D(A /0,u) = γ .

The smoothness term in Equation 7 promotes a homoge-

neous assignment of labels to neighbouring points. The ∇N

operator calculates the gradient of the indicator function over

the neighbourhood N of a point and penalises points that

belong to the same neighbourhood but do not share the same

model. The parameter λ controls the trade-off between the

smoothness cost and the data cost. Finally, the third term

in Equation 7 penalises the number of models by adding a

constant cost β per model. This eliminates redundancies in

models resulting in a compact solution.

For the minimisation of this energy CORAL leverages

a primal dual optimisation that utilises a parallel approach

implementable on a General Purpose Graphical Processing

Unit (GPGPU) is able to achieve real-time performance on

geometric model detection. Due to space constraints, we refer

the reader to [18] for further implementation details. The

minimisation thus reveals a minimal set of cubic curves that

encapsulate the road boundaries.

VI. EXPERIMENTAL RESULTS

In this section we provide qualitative and quantitative

results for experiments carried out to test the performance of

our approach. Due to the lack (to the best of our knowledge)

of a public road boundary detection benchmark, comparison

with other existing approaches could not be undertaken. Nev-

ertheless, we present quantitative results based on evaluations

with our ground truth test data. Our experiments consider an

assessment that demonstrates the importance of the intra-

layer convolutions for inferring occluded road boundaries.

In order to evaluate the proposed road boundary detection

approach, we used one of the datasets from OxfordRobotcar

Dataset [12] that wasn’t included in the training process.

Qualitative results (Figure 10) show that our approach is

able to produce accurate pixel-wise visible road boundary

detection and infer occluded ones even the percentage of

occlusions increases. This is followed by cubic curve fitting

to reveal the road boundary models using CORAL. Figure

11 shows that CORAL is able to reveal the minimum set

of road boundary models that represent the viewed scene

without making any assumptions of the number of geometric

models available over a diverse set of viewed scenes.

As mentioned in Section III, the training and ground

truth data contain semi-annotated curb masks as they were

generated by projecting the 3D annotated points to the

images under some constraints. To calculate the accuracy

of the trained models, we selected 1000 images that have

all the road boundaries annotated ignoring the 50 px height

area on top of the images as illustrated in Figure 9. Note that

the width of curb line annotations on the ground truth masks

are always the same regardless of the height of curbs as

the annotated points don’t contain any such information. To

compensate that we have 4 px tolerance when calculating

precision, recall and F1 score. Table I summarises the

accuracy for the whole system and separately for U-net and

our model.
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Fig. 9: Left: the area inside the green box is taken into consideration
during the evaluation. Right: the width of the ground truth curb line
is always the same regardless the height of the curb.

TABLE I: Precision, recall and F1 score of the model

Labels Precision Recall F1 Score

Visible road boundaries only 97.01 92.64 94.77
Occluded road boundaries only 90.47 88.24 89.34
All road boundaries 96.17 92.68 94.40

In Section IV we emphasised the importance of the intra-

layer convolutions for inferring occluded road boundaries.

They increase the capacity of the model to capture informa-

tion from all over the image and spatial relationships across

columns and rows, which enables the model to infer occluded

boundaries behind obstacles in any size. To demonstrate the

importance of the intra-layer convolutions in practice, we

trained our model by taking out intra-layer convolutions from

the network and evaluated against our ground truth data.

Table II summarises the results, where 12.26% performance

drop can be seen for occluded road boundaries.

TABLE II: Precision, recall and F1 score of the model without
intra-layer convolutions

Labels Precision Recall F1 Score

Occluded road boundaries only 78.19 76.00 77.08
All road boundaries 94.37 90.62 92.45

Our proposed approach is implemented in Python with

TensorFlow library. Running times for the whole pipeline

and for some of its tasks are presented in Table III. With

input images of size 640 x 288, the system runs at 8.33

Frames Per Second (FPS) on a NVIDIA 1080 Ti GPGPU.

TABLE III: Average Running time per task

Tasks Milliseconds FPS

U-net 50 20.0
Our Model 65 15.3
U-net + Our Model 104 9.56
U-net + Our Model + Post Processing 120 8.33
CORAL 90 11.11

VII. CONCLUSIONS

In this paper, we presented a method to detect and infer

road boundaries from mono-images irrespective of whether

or not the boundaries are actually visible. We demon-

strated that our coupled approach first segmented visible

road boundaries with U-net and then inferred occluded road

boundaries with our our CNN-based network that contained

the intra-layer convolutions and produced outputs in a hybrid

discrete-continuous form. Our approach worked without any

assumptions about 3D structure, shape or appearance of

road boundaries and didn’t use any temporal information to

infer occluded road boundaries. To easily generate training

data for our models, we presented an image annotation

framework that enabled us to generate visible and occluded

road boundary masks for hundreds of images within an hour.

Through our experiments we demonstrated that our approach

achieved high performance for both visible and occluded

road boundaries. Finally, we performed the model selection

step to return cubic representation of road boundaries with-

out placing assumption on the number of continuous road

boundaries within the scene.
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