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Abstract—This paper concerns the creation of efficient surface
representations from laser point clouds. We produce a continu-
ous, implicit, non-parametric representation with an update time
that is constant. The algorithm places no restriction on the com-
plexity of the underlying workspace surfaces and automatically
prunes redundant data via an information theoretic criterion.
This criterion makes the use of GP regression a natural choice.
We adopt a formulation which handles the typical non-functional
relation between XY-location and elevation allowing us to map
arbitrary environments. Results are presented that use real and
synthetic data to analyse the trade-off between compression level
and reconstruction error. We attain decimation factors in excess
of two orders of magnitude without significant degradation in
fidelity.

I. INTRODUCTION AND MOTIVATION

3D point clouds gathered from outdoor scenes are now
ubiquitous. While visually appealing when rendered, they have
limitations; two of which are addressed in this paper. Firstly,
they are discrete samples – they do not readily admit access to
the continuous nature of the workspace’s surfaces. Secondly,
they are inefficient in the sense of containing samples which,
given other nearby samples and reasonable smoothness as-
sumptions, are redundant and convey little information about
the underlying scene geometry.

Our motivation lies in the value of obtaining richer
workspace descriptions generated by a mobile robot. We re-
strict our attention to point clouds generated from the simplest
and cheapest of 3D data acquisition systems – the push
broom laser. Here, as shown in Figure 1, a single 2D laser
scanner is pushed through the workspace and a point cloud is
formed by aggregation. We describe a non-parametric method
which simultaneously generates a continuous representation
of the workspace from discrete laser samples and decimates
the data set retaining only locally salient samples. We attain
decimation factors in excess of two orders of magnitude
without significant degradation in fidelity.

At the heart of our method is the application of a Gaussian
Process (GP) to select support from a finite, time varying
region. This GP is used to generate a predictive distribution
of individual range measurements in constant time regardless
of the quantity of the collected laser data. By evaluating the
similarity between the distribution of the measurement itself
(using a sensor model) and its GP-predicted distribution, we
arrive at a criterion for keeping or dropping individual samples.
Here we draw inspiration from work in sparse GPs [20],
[2], [25]. We refer to this process as Active Sampling – the
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Figure 1. The geometry of a push broom laser. A single 2D sensor is pushed
through the environment sweeping out a sensed volume

GP framework actively guides us in deciding which of many
input points should be retained and later used for surface
reconstructions.

Our approach admits the calculation of every (x, y, z) point
that lies on a sampled workspace surface. A particular advan-
tage of our formulation is the ability to represent common
structures such as walls, which require multiple elevation
values to be associated with the same position on the x-y-
plane (Figure 2). Technically, this multivalued relation is non-
functional, and we use this term to distinguish it from that of
a single-valued, well formed function.

II. RELATED WORK

Within the robotics community, 3D surface reconstruction
from sparsely sampled environments is commonly motivated
by the need to model an unknown terrain or to provide an
accurate reconstruction of the workspace across scales. The
latter is commonly achieved by meshing techniques (see, for
example, [5], [7]) whereby every datum of a point cloud
forms the vertex of a polygon. Often such techniques are
augmented by a mesh decimation step which aims to obtain a
good representation of the environment while at the same time
reducing the amount of data to be stored. Commonly, mesh
creation as well as the reduction in the number of vertices
is based on sensor and environment dependent heuristics.
Problems are encountered when the data arise from a non-
homogeneous sampling of a workspace and/or coverage is
incomplete – both are frequently the case.

An alternative approach considers a parametric represen-
tation based on geometric primitives [6], [28]. Planar repre-
sentations are a popular choice since they are ubiquitous in



Figure 2. We wish to map scenes with multiple elevations for a given x, y
point (right), rather than being restricted to a trivial case (left).

man-made environments. However, the reliance on geomet-
ric primitives places strong assumptions on the environment
which are rarely justified in complex outdoor environments.

The requirement of robots to operate in ever larger envi-
ronments provides ample incentive for research into suitable
models of the terrain encountered. Consequently, much recent
work in 3D reconstruction techniques trace their origin to this
domain. Common approaches include discrete 2D, 2.5D and
3D methods such as [10], [1], [17], [29], which represent the
world as a regular grid of cells or voxels. Each cell stores the
probability of being occupied. As new sensor measurements
arrive these probabilities are continuously updated. These
representations are dependent on grid resolution and suffer
from the necessity to strike a trade-off between resolution (i.e.
memory requirements) and volume covered.

In recent years there has been a further trend in the terrain
modelling community to employ non-parametric continuous
models of surfaces. In this context, GP models are particularly
favoured for their ability to handle incomplete data in a
principled probabilistic fashion. Examples of such approaches
include [9], [19], [30], although they were first introduced
to the geostatistics field under the name kriging many years
previously by [11] amongst others. While these approaches
differ in their choice of (non-stationary) covariance function
and GP sparsification method, they adopt the same param-
eterisation of the problem – that is they model a function
f : R2 → R which associates a single elevation value z
with any given position (x, y) in 3D Euclidean space. While
this well formed functional mapping is effective for terrain
modelling it precludes application in the full 3D mapping
case (Figure 2). Our work aims to overcome this limitation
by introducing a more natural parameterisation of the surface
reconstruction problem, as well as providing a principled
method to sub-sample the data.

There has been much research into sparsification for GP
regression, with an overview provided in [20]. Within this
field, active subsampling strategies have been used to select
information-rich data through use of information theoretic
criteria [8], [3], [25]. Our work is particularly similar to [25],
but we exploit the time-sequential nature of laser data (see
Section IV-B) to form an exact and inexpensive predictive
distribution for use in our decision criterion.

While we share the common goal of accurate 3D surface
reconstruction with the literature discussed so far, this work

bears closest relation to that of Gaussian Beam Processes [18].
The authors model laser data on a per-scan basis using a
GP model to regress the range on bearing. However, while
our model also regresses on range, we achieve an implicit
model of the entire workspace through a sliding window
approach and active data selection. This provides significant
advantages above and beyond a mere extension of Gaussian
Beam Processes to the 3D case.

III. NON-FUNCTIONAL SURFACE REPRESENTATION VIA
BEAM-SPACE PARAMETERISATION

Our aim is to form an implicit representation of workspace
surfaces by processing data gathered from a laser sensor being
moved through space along an arbitrary path. In particular,
we pose queries of points in (x, y, z) on the workspace’s
surface as range queries along arbitrary rays emanating from
the sensor at a point along the sensor’s trajectory. Let a beam
from the laser be parameterised as a point q ∈ S × R where
q = [θ, t]T where θ denotes the 1D angular position of the
laser beam (not the whole sensor unit) and t denotes the
timestamp of the laser scan.

We describe q as a point in beam space, Q, as illustrated
in Figure 3 and refer to it as a particular configuration of the
laser sensor. Beam space provides a natural domain for range
regression since it is closely related to the state of the laser and
not that of the rest of the robotic system. The mapping from
beam space to range is necessarily a well formed function –
a laser sensor associates a single range r with any point in Q
such that

G : S× R→ R,q 7→ r (1)

Consider now a mapping from beam space to the Euclidean
workspace W

E′(q) = E(V (q), G(q)) (2)

where:

V : S× R→ S3 × R3,q 7→ p (3)
E : (S3 × R3)× R→ R3, (p, r) 7→ x (4)

For every point q in beam space, V (q) provides the six d.o.f.
pose of the sensor p ∈ S3 ×R3 at the time a measurement is
taken – represented as roll, pitch, yaw and position. E(p, r)
maps a six d.o.f sensor pose p and a scalar range measurement
r to a single point x in 3D Euclidean space. This parameter-
isation naturally eschews the non-functional relation between
elevation z and (x, y) location that is commonly found in
terrain mapping formulations (Figure 2). By keeping each
operation distinct, we also decouple robot trajectory estimation
V (q)1, from that of the regression of the laser data G(q).
This permits, for example, independent relaxation of the sensor
trajectory (which, for example, could be in response to loop
closure events).

To form an estimate of G(q) at any arbitrary postion in
Q we turn to Gaussian Process Regression. Given a set of
measurements D = {(qi, ri)}Ni=1 at a query point q∗ we can

1Note, however, the regression is dependent on the actual ground-truth
trajectory of the vehicle.



Figure 3. Parameterisation used in this work. (Left) A camera image used to provide the visual context for this example. The image is captured at the same
time as the laser data plots in (left-mid) to (right), which forms the central part of exemplar d) in Figure 8 (see Section V). (Mid-left) Beam space manifold
Q. Every point q on this manifold is parameterised by time t and the angular position of the laser beam θ. (Mid-right) Laser range image. Q is unwrapped
with t and θ of along the X and Y axes and output of the mapping G(q), range predictions r along Z. (Right) 3D Euclidean space. Ranges, r, and vehicle
poses, p, are mapped through E(p, r) to points in 3D. The robot trajectory is shown as coloured frames across the bottom. A coloured tiling is used to the
aid understanding of the mapping between beam-space and euclidean space.

obtain a predictive distribution p(r∗|q∗,D). In the following
section we present a brief summary of how this predictive
distribution is obtained from a sliding window in beam-space.

IV. ACTIVE SLIDING WINDOW USING GAUSSIAN PROCESS
REGRESSION

Gaussian Processes (GPs) provide for non-parametric prob-
abilistic regression over Q. A GP consists of a collection of
jointly Gaussian distributed random variables and describes a
distribution over latent functions underlying observations. It
is fully specified by mean µ(q) and covariance k(q,q′) func-
tions. In our application we are concerned with estimating the
mapping G(q) corresponding to these latent functions. Given
known ranges r from different configurations Q = {qi}Ni=1

and a query point q∗ with corresponding unknown target range
r∗ we can write:[
r
r∗

]
∼N

(
µ(Q)
µ(q∗) ,

[
K(Q,Q) + σ2

mI k(Q,q∗)
k(Q,q∗)

T k(q∗,q∗) + σ2
m

])
(5)

Each element of K is, in the stationary case, only on a
suitably chosen distance metric d = ‖q − q′‖ between two
corresponding points q and q′ in beam space. We explicitly
account for noise in the training observations r through
an additive white noise process of strength σm along the
diagonal entries of K2. The derivation of the mean E[r∗] and
covariance V[r∗] of the predictive distribution p(r∗|q∗,D) for
a deterministic µ(q) = 0 (as is commonly used [30]) are
standard and can be found, for example, in [21]

E[r∗] = k(Q,q∗)
T (K(Q,Q) + σ2

mI)−1r (6)
V[r∗] = k(q∗,q∗) + σ2

m −
k(Q,q∗)

T (K(Q,Q) + σ2
mI)−1k(Q,q∗) (7)

2We construct σ2
m = 0.02 from our sensor model in accordance with the

precision of a SICK LMS291-S14 (15mm) and lab measurements.

Throughout this work we use a member of the Matérn
class of covariance functions as advocated in [27]. We note,
however, that many others, including non-stationary covari-
ance functions [9] could be adapted and substituted in its
place (Section VI). The Matérn class is dependent on a
shape parameter, ν, which regulates the smoothness of the
interpolation. It equates to the more standard exponential
covariance function as a special case when ν = 1

2 , and the
squared exponential as ν → ∞. As suggested in [21], we
explored several common choices of ν =

{
1
2 ,

3
2 ,

5
2 ,∞

}
over a

number of workspaces varying in complexity. We found that
ν = 3

2 consistently produced accurate surface reconstructions
for a variety of support set sizes and length scales. Although
the smoother covariance functions ν =

{
5
2 ,∞

}
performed

well for simple workspaces, they seemed over constrained in
complex scenarios, and vice versa for the rough covariance
function ν = 1

2 . Thus

k(q,q′)matern ν= 3
2

= σ2
p(1 +

d
√

3

l
) exp(−d

√
3

l
) (8)

where σ2
p is the process noise, l is the length scale and d =

‖q − q′‖Q denotes the geodesic distance between q and q′

in beam space, which for this sensor configuration is the `2
norm.

The quantities of data we consider render the application
of a single monolithic GP infeasible – time complexity of
a naïve implementation of GP regression is cubic in N , the
size of D. Instead, for each prediction we enforce a fixed
predictive support window size n, formed from the closest
(in terms of the `1 norm from t to t∗) points that have been
actively accepted by our algorithm to guarantee a constant time
algorithm. The time-sequential nature of laser data ensures that
this support window slides across Q as the robot progresses
along it’s trajectory.

We are interested in minimising the computational com-
plexity of our algorithm for practical applications. In Section
IV-B we devise an active sampling strategy to intelligently



determine a salient subset of D, D′ to include in our active
window. The advantages of this are two-fold: we can achieve a
significant compression of D, and we can re-use the inversion
of Equations 6 and 7 across multiple predictions, thus decreas-
ing computational cost. Where we must incorporate new points
into the active window we update, rather than re-calculate the
inversion (Section IV-C). This lowers the overall worst case
prediction cost to O(n2).

A. Stochastic Mean Function

We affect a stochastic non-zero mean function µ(q) through
the use of explicit basis functions [21]. Explicit basis functions
h(q) with weightings β ∼ N (b, B), that are found in a
traditional Bayesian weight space view of linear regression, are
superimposed with the zero-mean GP Z(q) ∼ GP(0, k(q,q′))
of Section IV

G(q) = Z(q) + h(q)Tβ (9)

Crucially, in the absence of data, predictions using G(q)
tend to the explicit basis function surface estimate, rather than
that of the zero mean. One may view this formulation as
the GP modelling the residuals between the implicit surface
generated by the explicit basis function, and D, and has been
used successfully in robotics applications such as [14]. This
is particularly beneficial when predicting at the boundary of
our active window, and is the key to our compression rates
(Section IV-B).

We take the limiting case as the prior on the weightings
tends towards a uniform distribution, (B−1 → 0). Following
[15] we arrive at a predictive distribution that is independent
of b.

µg(q∗) = EZ [r∗] + uT β̄ (10)
σ2
g(q∗) = VZ [r∗] + uT (HK(Q,Q)−1HT )−1u (11)

where EZ [r∗] and VZ [r∗] are given by Equation 6 and 7
respectively, H = [h(q1),h(q2)...h(qn)] and

β̄ = (HK(Q,Q)−1HT )−1HK(Q,Q)−1r (12)
u = h(q∗)−HK(Q,Q)−1k(Q,q∗) (13)

This formulation affords us the benefits of explicit ba-
sis functions without requiring additional parameters, and
maintains the desirable predictive properties of GPs. Like
Equation 6 and 7 an inverse must be calculated, but its
dimension is the number of explicit basis functions chosen
for the application. We choose the polynomial set of basis
functions h = [1, θ, θ2, θ3, t, t2, t3, θt, θt2, θ2t, θ2t2]T and have
found cross terms above second order to have marginal overall
impact on predictions.

B. Active Sampling through KL Divergence

In this Section we describe our method for active point
selection. We decide if our prediction r∗ ∼ N (µg, σ

2
g) (Equa-

tion 10 and 11) differs significantly from each measurement
rm ∼ N (µm, σ

2
m) at q∗. We use the KL divergence between

the two distributions to ascertain if the average additional
information required to specify rm as a result of using r∗
(instead of the true rm) is greater than a threshold κ. This
threshold, naturally modulated by terrain complexity, sets
decimation fraction |D|

|D′| . Thorough analysis on parameter
choice can be found in Section V. The KL divergence between
two 1D Gaussian distributions has a closed form

DKL(Nm||Ng) =
1

2

[
loge

σ2
g

σ2
m

+
µ2
g + µ2

m − 2µgµm + σ2
m

σ2
g

−1

]
(14)

On adoption of any new point into the active support set
we introspectively analyse the closest (`1 norm in Q) rm that
had previously been decided redundant to determine if our
belief has changed, given the new information. On adoption
of this point introspection is then repeated for the next clos-
est redundant rm until there are no further adoptions. This
approach is demonstrated in Figure 4. Introspection allows
both sides of discontinuities to be analysed given the final
sampling of the opposite side of the discontinuity. Figure 5
demonstrates the results of this reverse sweeping, and the
typical D′ that is stored and used for subsequent predictions
instead of D. In the worst case, where there are truly complex
sections of the workspace, our algorithm performs as well as
a naïve implementation by using all D, while maintaining the
ability to automatically subsample simple scenes. We note the
resulting subsampling may also provide an information rich
subset of D. This may boost performance of other applications
especially registration, where careful selection of points can
increase accuracy and robustness [22].

C. Implementation Considerations

We seek to maximise the support set size for a given
computational capacity. This provides more fully conditioned
predictions, over a greater prediction window size, both while
D′ is constructed online and for subsequent surface querying.
We use Cholesky decomposition and rank one updates of K
to perform the expensive inversion in Equations 6 and 7, as
is common in the GP literature [16], [24], [23]. Each time
we accept a new point into our active set we first marginalise
the most stale point (at the back of the active window), then
expand the active set to include the new measurement.

Marginalisation: Given a positive definite matrix K, and
its Cholesky factor C such that CTC = K

K =

 K1,1 k1,2 K1,3

kT1,2 k2,2 k2,3

KT
1,3 kT2,3 K3,3

 C =

 C1,1 c1,2 C1,3

0 c2,2 c2,3
0 0 C3,3


we can remove the central row and column by marginalising

C to: [
C1,1 C1,3

0 Υ(CT3,3C3,3 + cT2,3c2,3)

]
(15)

Where Υ is the Cholesky update of [4] which exploits the
special structure of cT2,3c2,3, and is of complexity O(n2).
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Figure 4. Active sampling of a 1D data series. Each node connected by
the chained lines represents a measurement. Black indicates data accepted by
the forward pass of the active sampling algorithm, while the white have been
rejected and the blue are yet to be observed. Green nodes are predictions
made by our algorithm and red are points accepted through introspection.
Progressing downwards, each subplot represents the algorithm at successive
points in time. (top) The algorithm forms a prediction that has a KL divergence
from the measurement that is greater than κ, hence it is adopted into the
active support set (2nd row). (3rd row) The algorithm makes a back prediction
which, where it was previously in agreement with the measurement, now has
a significant error, that is greater than κ. (bottom) The measurement, which
was previously rejected, is therefore accepted into the active region.

An efficient implementation can be found in, for example,
cholupdate of MATLAB R©[12].

Expansion: Given K =

[
K1,1 K1,3

KT
1,3 K3,3

]
and correspond-

ing R =

[
R1,1 R1,3

RT1,3 R3,3

]
, we wish to expand to C through

insertion of a central row and column:

 R1,1 RT1,1\k1,2 R1,3

0
√
k2,2 − cT1,2c1,2

k2,3−cT
1,2C1,3

c2,2

0 0 Υ(RT3,3R3,3 − cT2,3c2,3)


(16)

where we have used \ above to indicate the solution of
c1,2 in the Equation RT1,1c1,2 = k1,2 is found by the use of
backwards or forwards substitution for the triangular R1,1.

V. EXPERIMENTAL RESULTS

In this section we analyse how changing κ affects the deci-
mation fraction of the original point cloud for data collected in
a commonplace urban environment. Examples were obtained
using the New College data set [26]. Data were gathered from
a two wheeled Segway RMP~200 platform with two vertically
aligned SICK LMS291-S14 laser sensors mounted on the side
of the vehicle. Pose estimates were obtained using visual
odometry from a forward facing stereoscopic camera [13].
Throughout we use the Matérn class of covariance functions,
a length scale l of 8, a process variance σ2

p of 0.05m and a
active window size of 200, all of which were found empirically

Figure 5. Result from using active sampling within our beam space
formulation. (Left) CAD model used to generate synthetic data based on the
wall section (7 × 3 × 1.5m) of exemplar a)(see Figure 8). (Right) Plot of
synthetic data as a laser is dragged from left to right in front of the scene.
Blue indicates all laser measurements, black denotes points selected on the
forward wave of the algorithm, and red are points that have been chosen
introspectively. We have used κ = 0.8nats as in other examples (see Figure
8). Note that the floating cube in (Left) generates a large (1m) discontinuity
which is automatically highly sampled on both sides. For a plot indicating
the effect of varying κ see Figure 7.

to produce consistently accurate surface representations, for a
given compression ratio, as discussed in Section IV. Error (in
m) is defined as the `1 norm in range between a hold out set
of measurements and corresponding predictions at the same
point in Q. Predictions are made as the centre of the active
window passes the hold out set in Q and are conditioned on
the current active set.

A. Compression

Figure 6 depicts typical subsampling as κ is varied. For
aggressive compression factors of 1000 we achieve a modest
mean error of 0.3m. For errors comparable with measurement
precision of 0.015m we can achieve a compression factor of
6.

In Figure 7 results are collated across a range of κ for
the four exemplars, a) through d), in Figure 8 and the two
synthetic cases, e) and f) (Figure 5). Intuitively, as the thresh-
old is increased an increasing compression ratio is produced,
accompanied by an increase in error as depicted by the box
plots in Figure 8. As one can discern from the images and
CAD models, the relative positions of the curves correspond
to the scene complexity: the more complex the scene, the lower
the compression ratio. Scenes b) and d) are the most complex,
with noisy foliage, measurements of ceilings behind window
panes and discontinuities as great as 5m, compared to that of
the 1m discontinuity the person in c) presents. In all cases,
these complex regions have been sampled most heavily – the
outline of the person can be recognised in the Euclidean plot
of c) in Figure 8.

B. Surface Error

Box plots indicate surface error distributions for each of the
examples in Figure 8. As compression increases, error typi-
cally migrates from being that of a tightly bunched distribution
around that of the measurement noise, to one with an increased
mean and a significant tail – into the metre range in the worst



κ = 0.3nats κ = 1.26nats κ = 3.18nats

Figure 6. Point subsample plots for κ = {0.3, 1.26, 3.18}nats for example c) of Figure 8. The 28892 Original measurements are in blue and points
selected by our active sampling algorithm are in black. The vehicle trajectory is represented by the coloured frames across the bottom of each plot. (Left)
4543 laser measurements are used to produce predictions resulting in a mean error of 0.014m while in (middle) 323 points are used with a 0.177m average
error. (Right) only 28 points have been selected, providing an average error of 0.32m.

Figure 7. compression verses κ for a variety of urban environments. Images
of the workspaces can be found in Figure 8 for examples a) through d) and
a CAD model f) in Figure 5. Example e) is the wall and ground plane of
example f), which is a simplified 1 : 1 model of example a). Compression,
measured as the percentage of D selected by our algorithm, is plotted against
κ at each of the configurations denoted by crosses. Greater compression results
from higher thresholds and scenes that are less complex.

case. A profile view of example a) is used to highlight how
errors change with κ in Figure 9.

To demonstrate the spatial distribution of error we pro-
vide the surface predictions of example a) and b) coloured
according to error in Figure 10. We observe that the worst
errors results at discontinuities and very noisy surfaces such
as foliage. In these areas the performance is that of a naïve

κ = 0.32nats κ = 0.8nats κ = 2nats

Figure 9. Profile view of a short section of wall and ground plane from
example a) (Figure 8 and 10), with κ = {0.32, 0.8, 2}nats from left to right.
D is shown in black, while predictions conditioned on D′ are collated into
the surfaces. Larger thresholds create larger point decimation, hence smoother
surfaces that are in greater error.

implementation that uses all D as discussed in Section IV-B.

VI. CONCLUSIONS

In this paper we introduced a novel, beam space, parame-
terisation for push broom lasers. This formulation allows us to
leverage well-formed techniques on what is in essence a non-
functional problem domain. A Gaussian Process framework
permits us a continuous surface representation using only a
small subset of available points. Indeed, we can comfortably
decimate point clouds of simple workspaces by factors in
excess of two orders of magnitude, without significant degra-
dation in fidelity. This is possible through use of a principled
sampling strategy and a stochastic mean function. Further, we
manage variables that are used throughout the active sampling
process to ensure the algorithm is O(n2) in the size if of the
active window, which is constant, rather than O(N3) in the
size of the dataset.



a) b) c) d)
Figure 8. real-world examples (column-wise). Images (top) were captured at the same time as the laser data (2nd row) .Black points (2nd row) indicate
actively sampled D′ and blue, raw D, in Euclidean space for κ = 0.8nats. One can clearly observe that intersections of planes, a person, bushes and
other complicated regions of W are more heavily sampled than simple regions. Box Plots (bottom) denote median and interquartile range for each of the
logarithmically spaced thresholds in Figure 7. Whiskers are plotted that extend a maximum of one and a half times the interquartile range.

Experimentation has provided insight into the compression
ratio and surface reconstruction error that results from varying
the KL divergence threshold used in our active sampling.
To date we have considered the Matérn class of stationary
covariance function, setting hyper parameters to best values
found through search. We have experienced (Figure 10) that
the accuracy of predictions in complex regions becomes that
of the system with no subsampling. In order to enhance predic-
tions in these complicated regions there is clear motivation to
investigate possible alternative explicit basis functions such as
chebychev polynomials, and non-stationary covariance func-
tions such as [9], or [16]. The latter two approaches have the
enticing benefit of automatically controlling hyper parameters,
thereby allowing our predictions to be truly parameter free. We
are also interested in online assessment of the active set size
n to reduce computational load where a small n will suffice.
In workspaces where the same regions are repeatedly mapped,
one can imagine enormous compression ratios if we re-use the

set D′ that was created on the first iteration. In order to do this
one would require a method to map between different sections
of our beam space parameterisation. These developments are
our next focus.
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