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Abstract—This paper is concerned with generat-
ing a continuous implicit representation of a robot’s
workspace using sparse point cloud data. We adopt
a Gaussian Process (GP) framework to model the
underlying workspace surfaces and suggest a non-
parametric formulation which allows us to capture
the non-functional relation between ground plane and
elevation that is not possible with, for example, terrain
mapping algorithms. The point clouds we are processing
are typically vast such that blind application of a Gaus-
sian Process leads to computational intractability. We
therefore use a mixture-of-GPs model where individual
GP support sets are chosen via segmentation in both
laser and appearance space. We provide results that
highlight the robustness of our algorithm, and apply
our framework to semantically guide resampling of the
workspace.

I. INTRODUCTION

3D point clouds of outdoor scenes are now ubiq-
uitous. They originate from diverse sources such as,
for example, the aggregation of lidar data from a
moving platform, a sequence of stereo pairs or, more
recently, flash laser sensors. The significant increase
in workspace coverage provided by these 3D range
sensors over traditional systems offers advantages in
problems such as localisation and planning. However,
while this technology paves the way towards new vis-
tas of operation, it also presents significant challenges
to be overcome in terms of the amount and quality of
the data provided. The sequential nature of the data
acquisition has previously implied a trade-off between
sparsity of the coverage and the time required to gather
data from an entire workspace. Recent developments
in sensor technology have lead to systems providing
rapid and relatively dense coverage, at rates in excess
of two orders of magnitude beyond existing systems1.
This puts a significant strain on existing algorithms.

This work addresses the challenge of forming an ef-
ficient, continuous 3D workspace representation from
a 3D laser point cloud. Our motivation lies in the value
of obtaining richer workspace descriptions generated
by a mobile robot. We especially consider the domain
of assisted autonomy where a human operator relies on

1This comparison is based on a SICK LMS200 model and the
more recent Velodyne high definition laser range scanner.

Figure 1: An illustration of a non-functional relation
where multiple z values are associated with the same
(x, y) pair.

a detailed and accurate representation of an otherwise
inaccessible workspace. Concretely, based on the evi-
dence of the original point cloud, our approach admits
the calculation of every (x, y, z) point that lies on a
sampled workspace surface. We adopt the formulation
of [1] which is able to represent the non-functional
relation between ground plane and elevation (see
Figure 1) that is not possible with, for example, terrain
mapping algorithms. This parameterisation allows us
to model common structures such as walls, which
require multiple elevation values to be associated with
the same position on the Euclidean x-y-plane.

We recognise the value of uncertainty estimates in
the surface predictions and therefore adopt a regres-
sion framework based on a mixture of Gaussian Pro-
cesses. This Bayesian framework permits robustness to
noisy and erroneous measurements (typical in highly
reflective surfaces sampled by lasers). Uncertainty
estimates also naturally reflect areas that have a low
density of sampling and, together with the predictions,
can be coupled with the corpus of Bayesian methods
to provide a complete and principled processing chain.
For example, one can imagine surface predictions
from laser point clouds could be used to help refine
vehicle trajectory estimates. As data becomes denser,
we may also wish to leverage sparsification techniques
found commonly in the GP literature (see [2]).



To enable richer workspace descriptions, and pro-
vide an example of the flexibility of this approach,
we determine the subsets of the laser data used
for the individual GPs by using a segmentation in
appearance space. This choice is motivated by the
common availability of classifiers which operate in
this space and is envisioned to enable semantics-
guided model-selection, filtering and resampling —
e.g. as a precursor to CAD model generation — in
the future. We note, however, that our framework is
by no means bound to this form of segmentation,
and demonstrate empirically that this approach to
support-set selection does not adversely affect the GP
regression performance. We illustrate an initial appli-
cation for this framework using semantic information
to resample a workspace.

The remainder of this paper is structured as follows.
Section II provides an overview of related works.
Our parameterisation of the workspace as well as
the GP regression model adopted are introduced in
Section III. We present results on real outdoor urban
data in Section IV. Finally, we conclude in Section V.

II. RELATED WORKS

Within the robotics community, 3D surface re-
construction from sparsely sampled environments are
commonly used to model an unknown terrain or
in order to provide a faithful reconstruction of the
workspace across scales. The latter is commonly
achieved by meshing techniques (see, for exam-
ple, [3]) whereby every datum of a point cloud forms
the vertex of a polygon. Often such techniques are
augmented by a mesh decimation step which aims
to retain a faithful representation of the environment
while at the same time reducing the amount of data
to be stored. The creation of the mesh as well as
the reduction of the number of vertices are based on
sensor and environment dependent heuristics. Prob-
lems are encountered when the data present only non-
homogeneous samples of a workspace and coverage
is incomplete — which is commonly the case in the
complex outdoor environments we consider.

An alternative approach considers a parametric
representation based on geometric primitives [4, 5].
Planar representations are a common choice since they
are ubiquitous in man-made environments. However,
the reliance on geometric primitives places strong
assumptions on the environment which are often not
met in complex outdoor environments.

The requirement of robots to operate in ever larger,
unstructured environments provides ample incentive
for research into suitable models of the terrain encoun-
tered. Recent works in 3D reconstruction techniques
trace their origin to this domain. Common approaches
include discrete 2D, 2.5D and 3D methods such as [6]
and [7, 8, 9, 10], which represent the world as a regular

grid of cells / voxels. Each cell stores the probability of
it being occupied. As new sensor measurements arrive
these probabilities are continuously updated. These
representations suffer from the necessity to strike a
trade-off between resolution (i.e. memory require-
ments) and volume covered. Like our algorithm, [6]
also produces uncertainty estimates on surface predic-
tions but through confidence maps which do not allow
straightforward integration into a principled toolchain
as we desire. As mentioned in [6], the technique is also
prescriptive in the form of the surfaces permissible
for a given point cloud. These algorithms also require
further processing to produce a continuous surface
representation.

In recent years there has been a further trend in
the terrain modelling community to provide non-
parametric continuous models of surfaces. In this
context, GP models are particularly favoured for their
ability to handle incomplete data in a principled
probabilistic fashion. Examples of such approaches
include [11, 12, 13]. While these approaches differ
in their choice of (non-stationary) covariance function
and GP sparsification method, they all adopt the same
parameterisation of the problem — that is they model
a well defined function f : R2 → R which associates a
single elevation value z with any given position (x, y)
in 3D Euclidean space. While this mapping is effective
for terrain modelling it precludes an application in
the full 3D mapping case where commonly encoun-
tered vertical structures such as walls require a non-
functional relation representation. Our work remedies
this shortcoming by using what we argue is a more
natural parameterisation of the surface reconstruction
problem.

While we share the common goal of faithful 3D
surface reconstruction with the works discussed so
far, the work bearing closest relation to the approach
presented here is that of [14] and [1]. Gaussian Beam
Processes [14] model laser data on a per-scan basis
using a GP model to regress range on bearing, then
applies this model to estimate 3DOF pose given a map.
However, in this work we adopt the parameterisation
proposed in [1] where the entire workspace of a
moving laser scanner is expressed as a function of
range, time and scan-angle (Section III). In doing so
we gain the ability to represent vertical structures by
way of a non-functional relation between range and
position of a reflectance datum. The contribution of
this paper consists of the exploration of the poten-
tial benefits of combining this parameterisation with
appearance-based information from scene images. In
particular, we develop an approach which employs
image segmentation to select the support set of each
one of an ensemble of GPs to allow the environment
representation to scale to arbitrary point cloud sizes.



This approach naturally extends to the exploitation of
semantic workspace classes to limit the extent and size
of the support sets.

III. NON-FUNCTIONAL SURFACE
REPRESENTATIONS VIA BEAM-SPACE

PARAMETERISATION

Our aim is to form an implicit representation of
workspace surfaces by processing data gathered from
a laser sensor being moved through space at an
arbitrary orientation. In particular, we are interested
in answering range queries along arbitrary rays ema-
nating from the sensor at any point along the sensor’s
trajectory. To this end we adopt the formulation intro-
duced in [1] which is summarised in the following.
Let a beam from the laser be parameterised as a point
q ∈ S × R where q = [θ, t]T . θ denotes the angular
position of the laser beam and t denotes time. q is a
point in beam space Q as shown in Figure 2 and refer
to it as a particular configuration of the laser sensor.

Figure 2: An illustration of beam space Q. Every point
q on this manifold is parametrized by time t and the
angular position of the laser beam θ.

Beam space provides a more natural domain for
range regression since it is more closely related to the
actual parameters of the laser sensor itself than the
more commonly used 3D Euclidean space. Due to a
laser sensor being unable to penetrate surfaces, the
mapping from beam space to range is necessarily a
well formed function — only a single range can be
associated with any point in Q. These considerations
therefore lead to a functional mapping from a given
time and angle to a scalar range r such that

G : S× R→ R,q 7→ r. (1)

Consider now a mapping from beam space to the 3D
Euclidean workspace W

E′(q) = E(V (q), G(q)) (2)

where:

V : S× R→ S3 × R3,q 7→ p (3)
E : (S3 × R3)× R→ R3, (p, r) 7→ x (4)

Here, for every point q in beam space V (q) provides
the 6DOF pose of the sensor p ∈ S3 × R3 —
represented as roll, pitch, yaw and position — and
E(p, r) associates a sensor pose p and a scalar range

measurement r to a point x in Euclidean space W .
Crucially, Equation 2 permits the functional mapping
in Equation 1 to model the non functional relation
between elevation z and (x, y) location (as indicated
in Figure 1). As a consequence the beam-space param-
eterisation enables the modelling of vertical structures
such as walls in Euclidean space.

In addition to this one-to-many correspondence in
Euclidean space, we require that the mapping G(q)
provides confidence bounds on the range r, which
can also be transformed through Equations 3 and 4
into 3D Euclidean space. Gaussian Process regression
is chosen to provide G(q) such that for a given set
of measurements D = {(qi, ri)}Ni=1 and any query
point in beam space q∗ we obtain the predictive
distribution p(r∗|q∗,D). In the following we present
a brief summary of how this distribution is obtained.

A. Gaussian Process Regression

A Gaussian Process (GP) provides for non-
parametric probabilistic regression. They assume that
all measurements of the underlying latent functions
are jointly normal distributed. In our particular case
this latent function is the mapping G(q). Thus, given
known training ranges r from different configurations
q and a query point q∗ with corresponding target
range r∗ we can write[

r
r∗

]
∼ N (m(q),K(q,q∗)), (5)

where K is a matrix of functions dependent, in the
stationary case, only on a suitably chosen distance
metric d = ‖q − q′‖ between two points q and q′

in beam space, and m(q) is the mean function. The
derivation of the predictive distribution p(r∗|q∗,D)
for mean and covariances are standard and can be
found, for example, in [2]. Importantly, this formu-
lation is able to explicitly account for noise in the
training observations r in terms of an additive white
noise process of strength σn.

The workspaces in which we operate have het-
erogeneous geometric properties that are sampled at
varying densities by the laser scanner. In addition, the
quantities of data we consider render the application of
a single monolithic GP infeasible — time complexity
of a naïve implementation of GP regression is cubic in
the number of training cases. In this work we therefore
adopt a local approximation technique whereby a bank
of GPs with stationary covariance functions and local
support is used to provide a piecewise approximation
to a single global non-stationary covariance func-
tion [15]. Our selection criteria for the local support
sets is outlined in Section III-B.

Throughout this work we use a member of the
Matérn class of covariance functions as advocated
in [16]. This class of covariance functions provides



a shape parameter, ν, which regulates the smoothness
of the interpolation and subsumes the more standard
squared exponential covariance function as a special
case when ν = 1

2 . As suggested in [2] we explored
several common choices of ν =

{
1
2 ,

3
2 ,

5
2 ,∞

}
over

a number of workspaces varying in complexity. We
found that ν = 3

2 consistently produced accurate
surface reconstructions for a given support set size and
density. Although the smoother covariance functions
ν =

{
5
2 ,∞

}
performed well for simple workspaces,

they seemed over constrained in complex scenarios,
and vice versa for the rough covariance function
ν = 1

2 . Thus

K(q,q′) = σ2
p(1 +

d
√
3

l
) exp(−d

√
3

l
), (6)

where l is the length scale, σpis the process noise, and
d = ‖q−q′‖Q denotes the geodesic distance between
q and q′ in beam space. In order to estimate the
hyperparameters φ = l, σn, σp we adopt the standard
approach of maximising the logarithm of the marginal
data likelihood [2].

B. Generating Support Sets

The unfavourable scaling of full GP inference
as cubic in the number of training data has given
rise to a plethora of approximation methods [17].
A common approach is based on a mixture-of-GP-
experts [18, 19], which partitions the data domain
into independent subsets of local support sets. These
support sets are by design significantly smaller than
the original training domain so that inference time
is decreased. An additional advantage is provided
since local regressors can learn local properties and so
provide a more faithful representation of the overall
data. The split of the input data can be performed
according to various criteria. For example, [12] use a
regular tiling of models while [20] perform clustering
in the input space.

In accordance with the mixture-of-GP-experts
paradigm we also split our range data into several
support sets. In addition to a regular tiling in Q-
space we compare against a segmentation scheme
that leverages another sensor modality: vision, which
densely samples the workspace. Our reason for em-
ploying an additional vision sensor is two-fold. Firstly,
it paves the way towards semantics-guided sampling
of workspace regions. Workspace classes of interest
can be explicitly included in or excluded from the
surface representation, and can be provided by the
user, or automatically by systems such as [21]. Sec-
ondly, we wish to exploit the common intuition that
discontinuities in range are indicated by edges in an
image. By using the dense sampling found in images
we can more accurately delineate surfaces than if
we applied segmentation directly on the laser data.

(a) (b)

Figure 3: A typical scene from the New College data
set and the corresponding image segmentation using
[24] that gave the lowest RMS error in our framework.

This allows our segments to have more homogeneous
surface properties which aids surface reconstruction,
and will greatly aid the performance of sparsification
techniques (see [2]) in future work.

IV. RESULTS

In this section we describe experimental results
obtained using the New College data set [22]. Data
were gathered using a Segway RMP 200 platform
along a 2.2 km track spanning campus and parkland
environments. The laser sensors used were LMS291-
S14 mounted in vertical alignment on the sides of the
vehicle. Image data were gathered using a PointGray
Ladybug. Pose estimates were obtained using visual
odometry from a forward facing stereoscopic cam-
era [23].

A. Support set selection: a comparative analysis

This section establishes that support set selection
via a segmentation in appearance space yields compa-
rable reconstruction accuracy to the more conventional
selection with regular tiling. To this end an arbitrary
image from the New College data set was chosen
(Figure 3a) together with the corresponding laser data
from a window of time around the image timestamp.
Calibrations between laser and vision cameras were
made by hand, and refined based on resulting laser
projections into images. We use a graph based [24]
image segmentation algorithm due to the low number
of required parameters, although other segmentations
could equally be provided (Figure 3b). For a fair
comparison, we performed a grid search to find pa-
rameters that produced the lowest root-mean-square
(RMS) reconstruction error against a hold-out set for
both segmentation strategies.

Given each segmentation, we used standard log-
likelihood optimization (Section III-A) to find the best



Error Metric Regular Tiled Appearance
Segmentation

RMS 0.25 0.27
Median abs. error 6.77 ×10−3 8.75 ×10−3

L∞ 5.58 4.65

Table I: Comparison of reconstruction error for both
regular tiling and appearance based segmentation for
the dataset shown in Fig. 3a.

hyperparameters for each segment using the average of
all r in the segment as m(q) (Equation 5) . Resulting
error statistics were recorded and compiled into Table
I. In addition to RMS error the median absolute error
and the L∞-norm are stated to provide a comparison
with a more robust measure with respect to outliers
as well as a measure of worst case performance. We
note that the performance of the appearance based
reconstruction method is slightly worse compared to
the regular tiling when measured in RMS and median
absolute error. The appearance based method has a
slightly lower L∞-norm. This is an intuitive result
since by design the image segmentation selects sup-
port sets that form visually and by correspondence,
geometrically homogeneous regions. These are gener-
ally more amenable to stationary GP regression and
may explain the lower worst case error. We note that
although these results help highlight the robustness of
our framework, errors may further be improved with
a more precise calibration between laser and imagery.

Illustrations of both the regular tiled and the
appearance-based approaches are provided in Figures
4 and 5 for the optimal (as found above) grid cell area
and segmentation parameters, respectively. Depicted
in both cases is the Q-space representation of the
segmentations as well as the projection of the cor-
responding laser data into 3D Euclidean space. The
image segmentation giving rise to this transformation
is shown in Figure 3b. We notice that in terms of ge-
ometrically uniform regions our framework naturally
has a preference for over segmentation to ensure that
each segment is as uniform as possible, as mirrored
in the lowest overall RMS error.

To obtain a statistically more meaningful compari-
son between the two approaches and to validate that
over-segmentation in the images is not a concern, the
optimal segmentation parameters and grid cell area
were fixed and the reconstruction errors were obtained
for 100 randomly selected images in the dataset. The
results are presented in Table II. Inspection of means
and corresponding standard deviations suggest that we
are not incurring any significant penalty in terms of
error in using one segmentation over the other.

B. Semantics-guided Resampling

We have shown that we have not adversely affected
the surface reconstruction performance by introducing

image based segmentation into our framework. We
now present an initial application where semantic
information from another sub-system is used to cue
our actions.

We consider an oracle as given, such as [21] or
hand-labelled segments of an image belonging to ei-
ther one of the classes ’bush’, ’wall’, ’floor’ or ’other’.
Members of the class ’other’ are removed from the
data. Consider the scene depicted in Figure 6a. It was
segmented using the optimal parameter set determined
above. The mixture of GP regressors was trained
accordingly. Having obtained a continuous workspace
representation we are now able to use our GP frame-
work to sample laser range data at arbitrary locations.
Consider an application where the goal is to build
an efficient mesh representation of the environment.
Intuitively, a low sampling density of polygon vertices
suffices in homogeneous regions - ’wall’ and ’floor’ -
while geometrically heterogeneous regions - ’bush’ -
will benefit from a more dense sampling. As illustrated
in Figure 6b, this is readily achievable with the method
proposed here.

V. CONCLUSION

This paper introduces a non-parametric piecewise
continuous representation of large 3D laser point
clouds. Our approach is based on a novel param-
eterisation of a well defined function which allows
a non-functional relation between positions on the
ground plane and elevation values — thus enabling
our approach to represent vertical structures, whilst
employing a powerful Gaussian Processes regression
framework. We use a mixture of GPs to ensure com-
putational tractability. Although other segmentations
are equally valid, in this paper we determine the local
support sets for each GP through both a naive gridding
in input space and a segmentation in appearance space.

The proposed method is applied to a publicly
available outdoor, urban data set. An empirical in-
vestigation suggests that reconstruction performance
as measured by RMS error, median of absolute error
and L∞-norm are comparable for both segmentations,
even under crude hand calibration of laser and vision
modalities. A full statistically significant analysis is
part of our future work.

We then illustrate how our approach also has
the ability to be integrated into a larger system.
In our example semantically significant objects in
the workspace were resampled at a higher density
than background objects to allow efficient meshing
algorithms, but one can imagine many other uses,
such as model selection, data filtering, CAD model
generation and point cloud compression algorithms.
Future work will build on this framework where the
application of GP sparsification techniques could be
particularly attractive due to their ability to select



(a) (b) (c)

Figure 4: Support sets selected by regular tiling in Q. (a) Beam space Q. (b) Corresponding Q (unwrapped)
with t and θ of Q space along the horizontal axes and laser range measurements up the vertical. (c) Laser
range image of (b) projected into 3D Euclidean space via the robot trajectory (indicated by the coloured axes
across the bottom of the image). Both (a) and (c) are coloured according to the support regions the predictions
are formed from. For a fair comparison with the image based segmentation, only laser points (depicted in
colour) that projected into the image (Figure 3a) were used. It is recommended to view this figure in colour.

(a) (b) (c)

Figure 5: Support sets selected by appearance-based image segmentation in Q. (a) Beam space Q. (b)
Corresponding Q (unwrapped) with t horizontal, θ vertical. White sections in the image are as a result from
segmenting in the image space and projecting into Q. (c) 3D Euclidean plot of the laser data projected through
the robot trajectory, with segmentation colouring. Only the laser data (depicted in colour) that projected into
the image (Figure 3a) were used in the analysis. It is recommended to view this figure in colour.



Error Metric Regular Tiled Appearance Segmentation
Mean Min Max Std. Dev. Mean Min Max Std. Dev.

RMS 0.36 64.46 ×10−3 0.90 0.17 0.39 41.67 ×10−3 0.89 0.19
Median abs. error 12.94×10−3 4.59×10−3 0.51×10−1 8.1×10−3 11.57×10−3 4.34×10−3 48.08×10−3 6.89×10−3

L∞ 6.55 1.27 21.46 3.84 7.47 1.71 21.09 4.23

Table II: Comparison of reconstruction error for both regular tiling and appearance based segmentation for a
100 images from the New College data set [22].

(a) (b)

Figure 6: Illustration of semantics-guided resampling. a) Input image to our processing pipeline. Image
segmentation was performed using [24] with the parameters values found in Section IV-A. Resulting segments
were then hand labelled ’bush’, ’wall’, ’floor’ or ’other’. b) Using our GP framework we could then sample
geometrically homogeneous regions such as ’wall’ and ’floor’ sparsely, while geometrically complex regions
such as ’bush’ are sampled densely.

only the most pertinent data points to represent the
underlying workspace surfaces. This could provide
substantial data compression which is increasingly
required for the vast amounts of data present in today’s
point clouds. Results so far, have provided inticing
evidence to suggest that our image based segmentation
shares the same preference for homogeneous surfaces
(and therefore easily compressible segments) as that
of sparsification techniques. Further work will also be
to increase the accuracy of our system by optimising
the laser-vision calibrations, and incorporating more
complex mean and (non-stationary) covariance func-
tions.
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