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Abstract
This paper concerns the creation of efficient surface representations from laser point clouds created by a push broom
laser system. We produce a continuous, implicit, non-parametric and non-stationary representation with an update time
that is constant. This allows us to form predictions of the underlying workspace surfaces at arbitrary locations and
densities. The algorithm places no restriction on the complexity of the surfaces and automatically prunes redundant data
via an information theoretic criterion. This criterion makes the use of Gaussian Process Regression a natural choice. We
adopt a formulation which handles the typical non-functional relation between XY location and elevation allowing us
to map arbitrary environments. Results are presented that use real and synthetic data to analyse the trade-off between
compression rate and reconstruction error. We attain decimation factors in excess of two orders of magnitude without
significant degradation in fidelity.

Keywords
3D mapping, range sensing, Gaussian Process, mobile robotics, online representation, non-stationary

1. Introduction and motivation

Three-dimensional (3D) point clouds gathered from out-
door scenes are now ubiquitous. Whilst visually appealing
when rendered, they have limitations, two of which are
addressed in this paper. First, they are discrete samples
and do not readily admit access to the continuous nature
of the workspace’s surfaces. Second, they are inefficient in
the sense of containing samples which, given neighbour-
ing samples and reasonable smoothness assumptions, are
redundant and convey little additional information about the
underlying scene geometry.

Our motivation lies in the value of obtaining richer
workspace descriptions generated by a mobile robot. We
restrict our attention to point clouds generated from the
simplest and cheapest of 3D data acquisition systems: the
push broom laser. Here, as shown in Figure 1, a single
2D laser scanner is pushed through the workspace and
a point cloud is formed by aggregation. We describe a
non-parametric method which simultaneously generates a
continuous representation of the workspace from discrete
laser samples and decimates the dataset, retaining only
locally salient samples. Our method attains decimation
factors in excess of two orders of magnitude without
significant degradation in fidelity.

At the heart of our method is the application of a Gaus-
sian process (GP) to select support from a finite, time
varying region. This GP is used to generate a predictive
distribution of individual range measurements in constant
time regardless of the quantity of the collected laser data.
By evaluating the similarity between the distribution of the
measurement (using a sensor model) and its corresponding
GP-predicted distribution, we arrive at a criterion for keep-
ing or dropping individual samples. Here we draw inspi-
ration from work in sparse GPs (Csató and Opper 2002;
Seeger et al. 2003; Quiñonero-Candela and Rasmussen
2005). We refer to this process as active sampling: the GP
framework actively guides us in deciding which of many
input measurements should be retained and used later for
surface reconstructions. To reduce algorithm complexity
our approach reuses computations whenever possible.

Our approach admits the representation of every (x, y, z)
point that lies on a sampled workspace surface. A particu-
lar advantage of our formulation is the ability to represent
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Fig. 1. The geometry of a push broom laser. A single 2D sensor is
pushed through the environment, sweeping out a sensed volume.

common structures such as walls, which require multiple
elevation values to be associated with the same position on
the x–y plane (Figure 2). Technically, this multivalued rela-
tion is non-functional, and we use this term to distinguish it
from that of a single-valued, well-formed function.

Above and beyond our previous work (Smith et al.
2010a), this paper also explores a non-stationary variant
of our original approach, based on Bayesian Monte Carlo.
Here a bank of stationary GP regressors are combined with
complexity linear in the size of the bank.

2. Overview

In this section we provide a map of how the various com-
ponents of our algorithm fit together. The task at hand is
the processing of a stream of noisy laser measurements,
taken from a planar scanner, to produce a continuous sur-
face representation of a 3D workspace. We emphasize that
our surface representation is implicit rather than explicit.
We shall arrive at a method which allows us to generate
point samples of underlying workspace surfaces at arbitrary
locations and densities. The management and propagation
of uncertainty is at the heart of this work. It enters our sys-
tem as measurement noise and is reflected ultimately in the
implicit surfaces constructed.

Specifically, we pose the problem as that of regression
using a GP. Consider a 2D laser scanner being dragged
through space along a known curve which is parameter-
ized by time, and a beam parameterized by a single angle.
Using these parameters we define, in Section 4, a sensor
configuration space. We use a GP to predict range mea-
surements for arbitrary sensor configurations based (‘con-
ditioned”) on real laser measurements. These predictions
can also be transformed into a more traditional Euclidean
x, y, z representation using the machinery in Equations (3)
and (4). This parameterization also means that we can per-
form our regression independently of the task of trajectory
estimation.

We detail our framework in Section 5 starting with a sum-
mary of the aspects of the GP literature that are used in our
approach. GPs afford non-parametric, probabilistic regres-
sion that we use to provide range predictions via Equation
(8) and uncertainties via Equation (9). However, a well-
known drawback of GPs is that they scale as O(N3) in the
number of observations used to condition the predictions.
This motivates Section 5.1 where we adopt an active win-
dow approach whereby our regression uses only a subset
of measurements that are in the vicinity of our current pre-
dictions. This allows our algorithm to have constant com-
plexity with respect to the total number of observations in
the dataset. Another property of GPs is that in areas bereft
of data, predictions tend towards the GP’s mean function.
It is important that we do not use the common adopted
‘zero mean function’ as we need to make predictions at
the boundary of the laser scanner’s field of view, and also
in places where laser measurements are very sparse. We
have found that polynomial fitting with only a few terms
works effectively for our problem. We allow our regression
to remain non-parametric by wrapping the fitting into the
overall GP regression in Section (5.2).

A boon of our approach is that we achieve a compact rep-
resentation of the underlying workspace surfaces with only
a fraction of the laser measurements. For this we use an
information theoretic criterion in Section (5.3) to determine
which measurements can be predicted from neighbouring
measurements in our active window. These measurements
are therefore redundant and are not used in our approach.
To account for the uncertainty in our predictions as well
as the range estimate we take the Kullback–Leibler (KL)
divergence (Equation (18)) between the predictive distribu-
tion and the distribution provided by a sensor measurement
model. The threshold κ , that we place on the KL divergence
is used to set the resulting trade off between the accuracy
of the representation versus the number of retained laser
measurements. Its value is therefore entirely at the user’s
discretion.

To form our active window we exploit the time sequen-
tial nature of push broom laser systems in a fashion which
allows our approach to be used online. When a new mea-
surement needs to be added to the active window we update
our beliefs using the measurement rather than recomputing
from all measurements in the active window. This approach
is general in that it can be applied to any stationary GP, that
is, a GP with a covariance function that does not change
across the dataset. We also introduce the notion of intro-
spection in Section (5.3) whereby we allow post hoc condi-
tioning from laser measurements previously thought to be
uninformative. We show how this approach of reconsider-
ing earlier decisions is important in the vicinity of abrupt
range discontinuities.

Finally in Section 9, we demonstrate how our approach
can be extended to use a non-stationary GP. In essence
we combine multiple instantiations of our stationary
GPs by weighting each of their predictions according to
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how well each regressor fits the current data. Predictions
are therefore automatically highly weighted by GPs that
perform well for rough surfaces, in rough areas of the
dataset; and by GPs aimed at smooth surfaces, in smoother
areas of the dataset. Data fit is determined by two alter-
native approximations of predictive Bayesian quadrature.
These approximations produce an algorithm that scales
linearly with the number of GP instantiations and is trivial
to parallelize. To exploit the increased model flexibility we
also make simple modifications to the covariance function
of Section 5, and other possible modifications are discussed
in Section 9.1. On comparing stationary results (Section
8) with non-stationary results (Section 10) we find, for
a given number of retained laser measurements, that the
non-stationary extension provides marginally better surface
prediction accuracy. The non-stationary extension also
provides an indication of surface properties which could be
useful for other processes.

3. Related work

Within the robotics community, 3D surface reconstruction
from sparsely sampled environments is commonly moti-
vated by the need to model an unknown terrain or to provide
an accurate reconstruction of the workspace across scales.
The latter is commonly achieved by meshing techniques
(see, for example, Früh and Zakhor (2003) or Hoppe et al.
(1993)) whereby every datum of a point cloud forms the
vertex of a polygon. Often such techniques are augmented
by a mesh decimation step which aims to obtain a good
representation of the environment, while at the same time
reducing the amount of data to be stored. Commonly, mesh
creation as well as the reduction in the number of vertices
is based on sensor and environment dependent heuristics.
Problems are encountered when the data arise from a non-
homogeneous sampling of the workspace and/or coverage
is incomplete: both are frequently the case in our problem
domain.

An alternative approach considers a parametric represen-
tation based on geometric primitives (Hähnel et al. 2003;
Triebel et al. 2005). Planar representations are a popular
choice since planes are pervasive in man-made environ-
ments. However, the reliance on geometric primitives places
strong assumptions on the workspaces which are rarely
justified in complex outdoor environments.

The requirement of robots to operate in ever larger envi-
ronments provides ample incentive for research into suit-
able models of the terrain encountered. Consequently, much
recent work in 3D reconstruction techniques trace their
origin to this domain. Common approaches include dis-
crete 2D, 2.5D and 3D methods such as those of Martin
and Moravec (1996), Bares et al. (1989), Pfaff and Bur-
gard (2005), and Triebel et al. (2006), which represent
the world as a regular grid of cells or voxels. Each cell
stores the probability of it being occupied. As new sensor
measurements arrive these probabilities are continuously

updated. These representations are dependent on grid res-
olution and suffer from the necessity to strike a trade-off
between resolution (i.e. memory requirements) and volume
covered.

In recent years there has been a further trend in the ter-
rain modelling community to employ non-parametric con-
tinuous models of surfaces. In this context, GP models
are particularly favoured for their ability to handle incom-
plete data in a principled probabilistic fashion. Examples
of such approaches include Lang et al. (2007), Plagemann
et al. (2008), Vasudevan et al. (2009), and Hadsell et al.
(2010), although they were first introduced to the geostatis-
tics field under the name kriging many years previously by
Matheron (1973) amongst others. While these approaches
differ in their choice of (non-stationary) covariance func-
tion and GP sparsification method, they adopt the same
parameterization of the problem. They model a function
f : R

2 → R which associates a single elevation value
z with any given position (x, y) in 3D Euclidean space.
Hadsell et al. (2010) exploit this limitation by constrain-
ing their surface regression with visibility information of
the sensor. While this well-formed functional mapping is
effective for terrain modelling it precludes application in
the full 3D mapping case (Figure 2). Our work aims to
overcome this limitation by introducing a more natural
parameterization of the surface reconstruction problem, as
well as providing a principled method to sub-sample the
data.

There has been much research into sparsification for GP
regression. An overview is provided in Quiñonero-Candela
and Rasmussen (2005). Within this field, active subsam-
pling strategies have been used to select information-rich
data through use of information theoretic criteria (Seeger
et al. 2003; Krause et al. 2008; Deisenroth et al. 2009).
Our stationary work is particularly similar to Seeger et al.
(2003). However, we exploit the time-sequential nature of
laser data (see Section 5.3) to form an exact and inex-
pensive predictive distribution for use in our decision
criterion.

While we share the common goal of accurate 3D sur-
face reconstruction with the literature discussed so far, our
work bears closest relation to that of Gaussian beam pro-
cesses (Plagemann et al. 2007). The authors model laser
data on a per-scan basis using a GP model to regress range
on bearing. However, while our model also regresses on
range, we achieve an implicit model of the entire workspace
through a sliding window approach and active data selec-
tion. This provides significant advantages above and beyond
a mere extension of Gaussian Beam Processes to the 3D
case.

For the non-stationary extensions of our approach we
chose to marginalize over unknown hyperparameters as
opposed to relying on expert knowledge as in Plagemann
et al. (2008). Guided by the marginal likelihood of the data
we produce a general framework that is not restricted in the
type of model hyperparameters.

 at Oxford University Libraries on June 27, 2011ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


Smith et al. 917

Fig. 2. We wish to map scenes with multiple elevations for a given x, y point (right), rather than being restricted to a trivial case (left).

4. Non-functional surface representation
via sensor configuration space
parameterization

Our aim is to form an implicit representation of workspace
surfaces by processing data gathered from a laser sensor
being moved through space along an arbitrary path. In
particular, we pose queries of points in (x, y, z) on the
workspace’s surface as range queries along arbitrary rays
emanating from the sensor at a point along the sensor’s
trajectory. Let a beam from the laser be parameterized as a
point q ∈ S × R where q = [θ , t]T. Here θ denotes the 1D
angular position of the laser beam (not the whole sensor
unit) and t denotes the timestamp of the laser scan.

We describe q as a point in sensor configuration space
Q, as illustrated in Figure 3, and refer to it as a particu-
lar configuration of the laser sensor. Sensor configuration
space provides a natural domain for range regression since
it is closely related to the state of the laser and not that of
the rest of the robotic system. The mapping from sensor
configuration space to range is necessarily a well-formed
function: a laser sensor associates a single range r with any
point in Q such that

G : S × R → R, q �→ r. (1)

Consider now a mapping from Q to the Euclidean
workspace W

E′(q) = E(V (q) , G(q) ) (2)

where

V : S × R → S
3 × R

3, q �→ p (3)

E : (S3 × R
3) ×R → R

3, (p, r) �→ x (4)

For every point q in Q, V (q) provides the six-degree-of-
freedom (6-DOF) pose of the sensor’s laser beam p ∈

S
3 × R

3 at the time a measurement is taken, represented
as roll, pitch, yaw and position. Here E(p, r) maps a 6-DOF
laser beam pose p and a scalar range measurement r to a
single point x in 3D Euclidean space. This parameterization
naturally eschews the non-functional relation between ele-
vation z and (x, y) location that is commonly encountered in
terrain mapping formulations (Figure 2). By keeping each
operation distinct, we also decouple robot trajectory esti-
mation V (q), from that of the regression of the laser data
G(q).1 This permits independent relaxation of the sensor
trajectory (which, for example, could be in response to loop
closure events).

To form an estimate of G(q) at any arbitrary position
in Q we turn to GP regression. Given a model specified
through hyperparameters ξ and a set of measurements D =
{(qi, ri) }N

i=1 we can obtain a distribution p(r∗|q∗, ξ ,D) for
a range prediction r∗ at a query point q∗. In the following
section we present a brief summary of how this predictive
distribution is obtained from a sliding window in sensor
configuration space.

5. Sliding-window Gaussian process
regression

GPs provide for non-parametric probabilistic regression
over Q. They allow us to marginalize over model param-
eters ζ that are embodied by the GP, leaving only hyperpa-
rameters ξ to specify the general shape of the regression.

p(r∗|q∗, ξ ,D) =
∫

p(r∗|ζ , q∗, ξ ,D) p(ζ |q∗, ξ ,D) dζ . (5)

We assume a likelihood model p(r∗|ζ , q∗, ξ ,D) with
additive Gaussian noise to account for sensor inaccura-
cies. The GP prior p(ζ |q∗, ξ ,D) describes a distribution
over latent functions underlying our observation model that
we marginalize to form our posterior predictive distribu-
tion p(r∗|q∗, ξ ,D). A GP is embodied by a collection of
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(i) (ii) (iii) (iv)

Fig. 3. Parameterization used in this work. (i) A wide-angle camera image used to provide the visual context for this example. The
image is captured at the same time as the laser data plots in (ii) to (iv), which forms the central part of test case (d) in Figure 6
(see Section 8). (ii) Visualization of sensor configuration space Q. Every point q on this manifold is parameterized by time t and the
angular position of the laser beam θ . (iii) Laser range image. Here Q is unwrapped with t and θ along the horizontal axes and output
of the mapping G(q) (range measurement r) along the vertical. (iv) 3D Euclidean space. Ranges r and vehicle poses p are mapped
through E(p, r) to points in 3D. The robot trajectory is shown as coloured frames across the bottom. A coloured tiling is used to the aid
understanding of the mapping between sensor configuration space and Euclidean space.

jointly Gaussian distributed random variables that is fully
specified by mean μ(q) and covariance k(q, q′) functions. In
our application we are concerned with estimating the map-
ping G(q) that corresponds to these latent functions. Given
known training observations r = {ri}N

i=1 and Q = {qi}N
i=1,

and known q∗ with corresponding unknown target r∗, we
can write[

r
r∗

]
∼ N

(
μ(Q)
μ(q∗)

,

[
Kr k(Q, q∗)

k(Q, q∗)T k(q∗, q∗) +σ 2
m

])
,

(6)

where
Kr = K(Q, Q) +σ 2

mI . (7)

Each element of K is, in the stationary case, a suitably
chosen distance metric d = ‖q − q′‖ between two corre-
sponding points q and q′ in Q. In Equations (6) and (7) we
explicitly account for the measurement noise of our like-
lihood model through an additive white noise process of
strength σm along the diagonal entries of K (see Section 8.5
for an investigation into the effect of σm). The derivation
of the mean E[r∗] and covariance V[r∗] of p(r∗|q∗, ξ ,D)
(Equation (5)) for a deterministic μ(q) = 0 (as is commonly
used Vasudevan et al. (2009)) are standard and can be found,
for example, in Rasmussen and Williams (2006):

E[r∗] = k(Q, q∗)T K−1
r r (8)

V[r∗] = k(q∗, q∗) +σ 2
m −

k(Q, q∗)T K−1
r k(Q, q∗) . (9)

Throughout this work we use a member of the Matérn class
of covariance functions as advocated in Stein (1999). We
note, however, that many others, including non-stationary

covariance functions (Lang et al. 2007), could be adapted
and substituted in its place. The Matérn class of func-
tions is dependent on a shape parameter ν which regu-
lates the smoothness of the interpolation. It equates to the
more standard exponential covariance function as a spe-
cial case when ν = 1

2 , and the squared exponential as
ν → ∞. As suggested by Rasmussen and Williams (2006),
we explored several common choices of ν = {

1
2 , 3

2 , 5
2 , ∞}

over a number of workspaces varying in complexity. We
found that ν = 3

2 consistently produced accurate surface
reconstructions. Although the smoother covariance func-
tions ν = {

5
2 , ∞}

performed well for simple workspaces,
they seemed over constrained in complex scenarios,
and vice-versa for the rough covariance function ν = 1

2 .
Thus

k(q, q′)matern ν= 3
2
= σ 2

p (1 + d
√

3

l
) exp

(
−d

√
3

l

)
, (10)

where σ 2
p is the process noise and d = ‖q − q′‖Q denotes

the geodesic distance between q and q′ in Q. For this sen-
sor configuration d is the �2 norm, and we use a single
length scale l to capture the covariance of our regression
domain.2 The result is an isotropic covariance that we use
in the stationary version of this algorithm (see Section 8).

5.1. Sliding window approach

The quantities of data we consider render the application
of a single monolithic GP infeasible: time complexity of
a naïve implementation of GP regression is cubic in N , the
size of the dataset D. Instead, for each prediction we enforce
a predictive support window D̃ of fixed size n, formed
from the closest (in terms of the �1 norm from t to t∗)
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laser measurements that have been actively accepted by our
algorithm. This guarantees a constant time algorithm. The
time-sequential nature of laser data ensures that this support
window slides across Q as the robot progresses along its
trajectory. The span η of D̃ is defined as the index of
the newest measurement to have been considered, minus
the index of the oldest measurement in D̃. Although n is
fixed, our algorithm will allow η to vary significantly in
accordance with workspace complexity (see Figure 17).

5.2. Stochastic mean function

We affect a stochastic non-zero mean function μ(q) through
the use of explicit basis functions (Rasmussen and Williams
2006), h(q) with weightings β ∼ N (b, B). Common
examples include polynomials {1, x, x2, . . .} and sinusoids
{1, sin(x) , cos(x) , sin(2x) , . . .}. These are superimposed
with the zero-mean GP Z(q) ∼ GP(0, k(q, q′) ) of Section 5

G(q) = Z(q) +h(q)T β. (11)

In the absence of data, predictions using G(q) =
p(r∗|q∗, ξ , D̃) tend to the surface estimates of the explicit
basis functions, rather than that of the zero mean GP. One
may view this formulation as the GP modelling the residu-
als between the implicit surface generated by h(q)T β, and
D̃. It has been used successfully in robotics applications
such as Nguyen-Tuong and Peters (2010) and is particularly
beneficial when predicting near the boundary of our active
window. It is the key to our compression rate (Section 5.3).

We take the limiting case as the prior on the weightings
tends towards a uniform distribution (B−1 → 0). Follow-
ing O’Hagan and Kingman (1978) we arrive at a predictive
distribution that is independent of b:

μG(q∗)= EG[r∗] =EZ[r∗] + uTβ̄, (12)


G(q∗)= VG[r∗] =VZ[r∗] + uTA−1u, (13)

where EZ[r∗] and VZ[r∗] are given by Equations (8) and (9),
respectively, and

β̄ = A−1HK−1
r r, (14)

u = h(q∗) −HK−1
r k(Q, q∗) , (15)

A = HK−1
r HT, (16)

H = [h(q1) , h(q2) , . . . , h(qn) ]. (17)

This formulation affords us the benefit of explicit basis
functions without requiring additional parameters, and
maintains the desirable predictive properties of GPs. Like
Equations (8) and (9) an inverse must be calculated, A−1,
but its dimension is that of the number of explicit basis
functions chosen for the application, and not the support
set size, n. We choose the polynomial set of basis functions
h = [1, θ , θ2, θ3, t, t2, θ t, θ t2, θ2t, θ2t2]T and have found
cross terms above second order to have marginal overall
impact on predictions.

Fig. 4. Active sampling of a 1D data series. Each node, connected
by the chained lines, represents a measurement. Black indicates
data accepted by the forward pass of the active sampling algo-
rithm while the white have been rejected and the blue are yet
to be observed. Green nodes are predictions made by our algo-
rithm and red are measurements accepted through introspection.
Progressing downwards, each subplot represents the algorithm at
successive points in time. (Top) The algorithm forms a prediction
that has a KL divergence from the measurement that is greater
than κ , hence it is adopted into the active support set (2nd row).
(3rd row) The algorithm makes a back prediction which, where it
was previously in agreement with the measurement, now has a sig-
nificant error, that is greater than κ . (Bottom) The measurement,
which was previously rejected, is therefore accepted into the active
region.

5.3. Active sampling through KL divergence

In this section we describe our method for adaptive laser
measurement selection. We decide if our prediction of a
single prediction p(r∗|q∗, D̃) = N (μG, σ 2

G) (Equations (12)
and (13)) differs significantly from a measurement rm ∼
N (μm, σ 2

m) at q∗. We use the KL divergence between the
two distributions to ascertain whether the average additional
information required to specify rm as a result of using r∗

(instead of the true rm) is greater than a threshold κ . This
threshold, naturally modulated by terrain complexity, deter-
mines a decimation factor |D|/|D′| where D′ is the actively
selected subset of the dataset D. Thorough analysis on the
choice of all model parameters can be found in Sections
8 and 10. The KL divergence between two 1D Gaussian
distributions has a closed form solution:
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DKL(Nm||NG) = 1

2

[
loge

σ 2
G

σ 2
m

+ μ2
G + μ2

m − 2μGμm + σ 2
m

σ 2
G

−1

]
.

(18)

On adoption of any new laser measurement into the
active support set we introspectively analyse the closest (�1

norm in Q) rm that had previously been deemed redundant
to determine whether our belief has changed given the new
information. On adoption of this measurement, introspec-
tion is repeated for the next closest redundant rm until there
are no further adoptions. This approach is demonstrated in
Figure 4. Introspection allows both sides of discontinuities
to be analysed given the final sampling of the opposite side
of the discontinuity. Figure 5 demonstrates the results of this
reverse sweeping, and the typical D′ that is stored and used
for subsequent predictions instead of D. In the worst case,
where there are truly complex regions of the workspace,
our algorithm performs as well as a naïve implementation
by using all available D in that section, while maintain-
ing the ability to automatically subsample simple scenes.
We note that the resulting subsampling may also provide
an information rich subset of D. This may boost perfor-
mance of other applications especially registration, where
careful selection of laser points can increase accuracy and
robustness (Rusinkiewicz and Levoy 2001).

6. Implementation considerations

We seek to maximize the support set size for a given compu-
tational capacity. This provides more fully conditioned pre-
dictions, over a greater prediction window size, both while
D′ is constructed online and for subsequent surface query-
ing. To this end we use Cholesky decomposition and rank
one Cholesky updates to implicitly perform the expensive
inversion of Kr = CT

r Cr (Equation (7)), as is common in the
GP literature (Scholkopf and Smola 2002; Osborne et al.
2008; Seeger 2008). We also exploit the upper triangular
structure of Cr where possible and ensure that recurring cal-
culations are performed once. For example, we update C−T

r r
in Equations (8), (14), (35), (36) and (37) by using back-
wards substitution rather than recalculate it from scratch.
We also make the following considerations to the practical
construction of our algorithm.

6.1. Polynomial basis function conditioning

Although we use the Cholesky decomposition of A
(Equation (16)) and use only low-order polynomial basis
functions, the conditioning of A can become prohibitive
when this algorithm is applied to very large datasets. For-
tunately, the only non-stationary element of our stochastic
GP (Section 5.2) is the set of polynomial basis functions h.
This means that we can shift Q for the construction of H to
reduce the conditioning of A whilst leaving the rest of our

algorithm unchanged. Specifically we use H ′ to replace H
in all equations:

H ′(Q) = H(Q − Q̄) , (19)

where

Q̄ = [θ̄ , t̄]T. (20)

Here θ̄ and t̄ are the means of the current active set in each
dimension of Q. When computational savings are required,
Q̄ can be updated only when the conditioning of A becomes
poor. Between updates of Q̄, we recycle elements of H as
long as the corresponding measurements remain within D̃.
The worst performing ξi (see Section 9) required the update
of Q̄ once in each of our test cases for the results presented
in Section 10.

6.2. Marginalization and expansion

Each time we accept a new measurement into our active
set we first marginalize the most stale measurement (at the
back of the active window), then expand the active set to
include the new measurement. We perform both operations
as an atomic unit allowing us to perform them in place,
rather than expanding and shrinking the matrix Cr. Overall
this reduces the dominant complexity of our algorithm from
O(n3) to O(n2), where n is the size of our active window D̃.

6.2.1. Marginalization Given a positive definite matrix
K, and its upper triangular Cholesky factor C such that
CTC = K

K =
⎡⎣ K1,1 k1,2 K1,3

kT
1,2 k2,2 k2,3

KT
1,3 kT

2,3 K3,3

⎤⎦ , C =
⎡⎣ C1,1 c1,2 C1,3

0 c2,2 c2,3

0 0 C3,3

⎤⎦
we can remove the central row and column by marginalizing
C to [

C1,1 C1,3

0 ϒ(CT
3,3C3,3 + cT

2,3c2,3)

]
, (21)

where ϒ is the Cholesky update of Dongara et al. (1979)
which exploits the special structure of cT

2,3c2,3, and is
of complexity O(n2). An efficient implementation can be
found in, for example, cholupdate of MATLAB®.

6.2.2. Expansion Given positive definite K and its corre-
sponding upper triangular Cholesky factor R,

K =
[

K1,1 K1,3

KT
1,3 K3,3

]
R =

[
R1,1 R1,3

0 R3,3

]
we wish to expand to C (above) through insertion of a
central row and column:⎡⎢⎣ R1,1 RT

1,1 \ k1,2 R1,3

0
√

k2,2 − cT
1,2c1,2

k2,3−cT
1,2C1,3

c2,2

0 0 ϒ(RT
3,3R3,3 − cT

2,3c2,3)

⎤⎥⎦ ,

(22)
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Fig. 5. Result from using active sampling within our sensor configuration space formulation. (Left) CAD model used to generate
synthetic data based on the wall section (7 m × 3 m × 1.5 m) of test case (a) (see Figure 6) with added objects. (Right) Plot of
synthetic data as a laser scanner is dragged from left to right in front of the scene. Blue indicates all laser measurements, black denotes
measurements selected on the forward pass of the algorithm, and red are measurements that have been chosen introspectively. We have
used κ = 0.8 nats as in other examples (see Figures 6 and 11). Note that the floating cube in the centre of the scene generates a large (1
m) discontinuity which is automatically highly sampled on both sides. For a plot indicating the effect of varying κ see Figure 8.

where we have used \ to indicate where backwards sub-
stitution is used in the solution of c1,2 for the equation
RT

1,1c1,2 = k1,2.

6.3. Forming predictions

In addition to predictions that are made as part of active
sampling at the front of D̃ we can form predictions at arbi-
trary locations within Q. In Sections 8 and 10 we present
results that use predictions formed by D̃ as the subset
is established. In this online formulation each prediction
r∗ ∼ N (μG, σ 2

G) is made as the mean time t̄ of the active
window Q passes the corresponding t∗ in Q. This ensures
that predictions are made away from the front edge of the
active subset, where the predictive surface undergoes fre-
quent modification as part of the sampling process. Pre-
dictions are made after each round of introspection so that
we capture both sides of any discontinuities as explained
in Section 5.3. On occasions when the span of the active
window η collapses (for example, on transition from planar
surfaces to a highly complex workspace such as foliage),
we are forced to make predictions before an introspective
pass has finished. This ensures predictions remain within
the extent of the active subset. In particular, we check to see
whether the αth measurement from the back of the active
set is older than the last t∗, to ensure that all predictions are
made with sufficient support.

For offline prediction of r∗ the active subset surrounding
q∗ can be constructed from the closest measurements (in
terms of the �1 norm from t to t∗), as noted in Section
5.1. Offline predictions are guaranteed to be made after all

introspections, and the active patch can be reused for any
further predictions r∗ in the vicinity.

7. Experimental setup

Our aim is to analyse how changing the KL divergence
threshold κ affects the compression rate of point clouds col-
lected in a commonplace urban environment. Real-world
examples (Figure 6) are from the New College dataset
(Smith et al. 2009). Data were gathered from a two-wheeled
Segway RMP~200 platform with two vertically aligned
SICK LMS291-S14 laser sensors mounted on the side of
the vehicle. Although the vehicle trajectory is not used
in our algorithm, it allows us to project our results into
Euclidean space for plotting, as per Equation (4). Pose esti-
mates were obtained using visual odometry from a forward-
facing stereoscopic camera (Newman et al. 2009). We have
also used synthetic data, which we have generated from two
CAD models and a sensor model of a laser scanner. Test
case (e) is a simplification of test case (a) in Figure 6, where
we represent the wall and floor by vertical and horizontal
planes of the same proportions, and approximate the laser
scanners trajectory as a single straight line. A more com-
plex model is used for test case (f) (Figure 5), based on that
used for test case (e) but with added objects in the scene.

Our success metrics are the reconstruction error (in
metres) and compression rate |D′|/|D| %. Error is defined
as the �1 norm in range between a hold out set of laser
measurements and predictions, made online as D′ is estab-
lished (as per Section 6.3). Compression rate is defined
as the percentage of the laser measurements that are used
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(a) (b) (c) (d)

Fig. 6. Real-world test cases (column-wise). (Top) Images were captured at the same time as the laser data in blue (bottom). Note that
the field of view of each sensor does not match and there is considerable distortion in the images due to the use of a wide-angle lens.
This is most evident in test case (a) where the window in the image is not present in the laser data. (Bottom) Blue measurements indicate
the original laser measurements D and black the actively sampled measurement D′ in Euclidean space for κ = 0.8 nats as detailed in
Section 8. One can clearly observe that intersections of planes, a person, bushes and other complicated regions of W are more heavily
sampled than simple regions.

in our representation over the total number of laser mea-
surements. Therefore, a high decimation factor |D|/|D′|
(and a high compression) achieves a low compression rate.
We show that as KL divergence threshold κ increases,
that the average error increases and the compression rate
decreases.

We have used an active window size n = 200 and α = 5
in all of our experiments. These parameters were found
empirically to produce consistently accurate surface rep-
resentations for a given compression rate, as discussed in
Sections 5 and 6.3.

8. Stationary Gaussian process results

In addition to the model parameters discussed in Section 7
we use the Matérn class of covariance function and choose
measurement variance σ 2

m = 0.01m2 and hyperparameter
values ξ = {l, σ 2

p } with length scale l = 8 units and process
variance σ 2

p = 0.05 m2. We first analyse how compression
rate and reconstruction error (Sections 8.2 and 8.1) then
computation time (Section 8.3) vary with our prediction
threshold κ . For completeness we also include a sensitivity
analysis of our choice of hyperparameter values in Section

8.4, and in Section 8.5 explore the effect of varying the
likelihood model.

8.1. Compression rate

Figure 7 depicts typical subsampling results as κ is var-
ied. For aggressive compression rate |D′|/|D| % of 0.1% we
achieve a mean error of 0.3 m. For mean errors comparable
with measurement precision of 0.015 m we can achieve a
decimation factor of 6.

In Figure 8 results are collated across a range of κ for
the six test cases. Intuitively, as the threshold is increased,
lower compression rates |D′|/|D| % are produced. Lower
compression rates are accompanied by an increase in error
as depicted by the box plots in Figure 9. As can be dis-
cerned from the images and CAD models, the relative posi-
tions of the curves correspond to the scene complexity: the
more complex the scene, the higher the compression rate.
Scenes (b) and (d) are the most complex, with noisy foliage,
measurements of ceilings behind window panes and discon-
tinuities as great as 5 m, compared with that of the 1 m
discontinuity that the person in (c) presents. In all cases,
these complex regions have been sampled most heavily: the
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Fig. 7. Laser measurement subsample plots for various values of our KL divergence threshold κ for test case (c) of Figure 6, plotted
in Euclidean x, y, z space. Each row corresponds to κ = {0.3, 1.26, 3.18} nats working downwards. (Left) The original 28,892 mea-
surements are in blue and measurements selected by our active sampling algorithm are in black. (Right) Surface representation using
only the measurements selected by our algorithm. The surface is constructed from the mean of the predictions from our algorithm in
a regular grid online, as discussed in Section 6.3. These predictions are projected into Euclidean space via the trajectory of the laser
scanner (represented by the coloured frames across the bottom of each plot). (Top) 4,543 laser measurements are used to produce pre-
dictions resulting in a mean error of 0.014 m while; (middle) 323 measurements are used with a 0.177 m average error; (bottom) only
28 measurements have been selected, providing an average error of 0.32 m.

outline of the person can be recognized in the Euclidean
plot of (c) in Figure 6.

8.2. Surface error

Box plots indicate surface error distributions for each of
the test cases in Figure 9. As compression rate decreases,
measurement prediction errors typically migrate from being

that of a tightly bunched distribution comparable to the
measurement noise, to one with an increased mean and a
significant tail, into the metre range in the worst case. A
profile view of test case (a) is used to highlight how errors
change with κ in Figure 10.

To demonstrate the spatial distribution of error we
provide the surface predictions of test cases (a) and (b)
coloured according to error in Figure 11. For test case (b)
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Fig. 8. Compression rate versus κ for a variety of urban and
synthetic environments. Compression rate, measured as the per-
centage of D selected by our algorithm (|D′|/|D| %), is plotted
against κ at each of the configurations denoted by markers. A
lower compression rate results from higher thresholds and scenes
that are less complex. See Section 7 for a discussion of the test
cases.

we observe that the worst errors occur at discontinuities
and for very noisy surfaces such as foliage. In these areas
the performance is that of a naïve implementation that uses
the entire dataset D, as discussed in Section 5.3.

8.3. Timing considerations

We also analysed the effect of varying KL divergence
threshold κ on the time taken to compute our surface
representation. Each of our examples (Figure 6) cover
roughly 9 seconds (120,000 measurements) of laser data
of which we uniformly sample to use a quarter as input to
our algorithm. In Figure 12 the solid blue line represents
the time taken to process all laser measurements in each
example for a given prediction threshold κ . The lower,
dashed red line indicates when no introspection is per-
mitted. The system was implemented with unoptimized
MATLAB® code on using one core of an AMD Opteron
8378 processor. While we ensured that updating the active
window is order O(n2) in the size of the active window,
rather than that of O(n3) of a naïve implementation, it
is the most expensive operation in our algorithm. It is
therefore an intuitive result that as κ increases the time
taken decreases because the number of measurements used
in our representation decreases. When introspection is
permitted, there is a clear spike around κ = 1 nat. Here the
algorithm stops adopting all measurements into the active
window, and hence introspection can begin to be applied.
Introspection involves forming predictions of previously
discarded measurements whenever new measurements are
adopted into the active window. This potentially causes a
large overhead in time. This behaviour could be mitigated
somewhat by employing an intelligent introspection policy,
whereby introspection terminates before reaching the back

of the active window. Alternatively introspection could
only be used around discontinuities, indicated by large KL
divergences.

8.4. Choosing hyperparameters

Our hyperparameters ξ consist of length scale l and pro-
cess variance σ 2

p . To chose values for these we performed
a sensitivity analysis over both length scale and process
variance for a variety of prediction thresholds κ and dif-
ferent sections of the New College dataset. The cost func-
tion used for our optimization aimed to minimize both
mean error and compression rate. This sensitivity anal-
ysis indicated that our algorithm is relatively insensitive
to the choice of hyperparameter values, so long as both
length scale and process noise were greater than roughly
4 units and 0.04 m2, respectively. Mean error gradually
increased past a length scale of roughly 6 units and a pro-
cess variance of 0.3 m2. To allow comparison across all
examples we chose length scale l = 8 units and process
variance σ 2

p = 0.05 m2 as they provided consistently accu-
rate surface representations with aggressive compression
rates.

8.5. Varying the likelihood model

We now turn our attention to the dependence of our results
to our likelihood model p(r∗|ζ , q∗, ξ ,D) (see Equation (5))
which is constructed using measurement variance σ 2

m. For a
given κ one would expect that, as σ 2

m decreases, the com-
pression rate |D′|/|D| % would increase. The KL diver-
gence (Equation (18)) between two distributions with given
means is greater for smaller variances. Hence more mea-
surements are adopted into the active set which is demon-
strated in Figure 13 with the migration of the curves to the
right as σ 2

m decreases. We include Figure 14 with σ 2
m =

1 × 10−4 m2 rather than σ 2
m = 1 × 10−2 m2 that is used

in previous sections, to allow comparison of the resulting
errors.

9. Non-stationarity though a Gaussian
mixture model

Thus far our approach has considered the use of a sta-
tionary GP. While we have shown that this approach can
produce aggressive compression rates for a relatively small
loss in accuracy, we would like to increase the surface pre-
diction accuracy for an even lower set of retained mea-
surements D′. We achieve this by allowing our algorithm
to be non-stationary by automatically selecting hyperpa-
rameter ξ values in accordance with the local complexity
of the workspace. To illustrate the importance of this con-
sider increasing the length scale l in a region of sensor
configuration space Q. In this region a laser measurement
will influence predictions from a greater distance in Q.
This creates a smoother predictive surface which is more
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Fig. 9. Error versus prediction threshold κ for test cases (a)–(d) as detailed in Section 7. Box plots denote median and interquartile
range for each of the logarithmically spaced κ indicated by markers in Figure 8. Whiskers are plotted that extend a maximum of one
and a half times the interquartile range. As κ increases both the width and the median of the distribution of the error increases. The
extent of the migration follows roughly with the scene complexity, which can be seen in the images of Figure 6. Scenes with a high
complexity, such as test case (b) start with a significantly higher median error because of the extremely high-frequency oscillations
in range measurements r that are not fully captured by our predictive surfaces. These oscillations are due to, for example, alternating
measurements from foreground leaves and background walls.

applicable in regions of low complexity than those surfaces
generated from shorter length scales. As each measure-
ment has more effect on predictions, fewer measurements
are required per square area of Q to support predictions
and the span of the active patch η increases. We can there-
fore use fewer measurements in our representation of the
region.

To capture the fact that the workspace complexity in Q
is generally non-isotropic we choose to update the covari-
ance function k(q, q′) of Section 5. We then introduce the
full non-stationary extension, which is based on a Bayesian
quadrature approach. We suggest two alternative approxi-
mations that remove the prohibitive computational cost of
the full approach whilst retaining a coarse degree of auto-
matic control of the hyperparameters. Finally, the additional

quadrature distribution p(ξ ) is discussed and implementa-
tion detail is provided.

9.1. Modifications to k(q, q′)
We create our anisotropic Matérn k(q, q′) with hyperpa-
rameters ξ = {σ 2

p , lt, lθ } through the modification of our
distance metric d in Equation (10). Our distance metric
becomes that of a Mahalanobis distance through the inclu-
sion of the length scales {lθ ,lt} (as commonly found in the
GP literature (Rasmussen and Williams 2006)):

d = ‖q − q′‖Q =
√

(q − q′)T

[
l2
θ 0
0 l2

t

]−1

(q − q′)

k(q, q′)matern ν = 3
2

= σ 2
p (1 + d

√
3) exp(−d

√
3) . (23)
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κ = 0.32 nats κ = 0.8 nats κ = 2 nats

Fig. 10. Profile view of a short section of wall and ground plane
from test case (a) (Figures 6 and 11), with κ = {0.32, 0.8, 2} nats
from left to right. Here D is shown in black, while predictions
conditioned on D̃ are collated into the surfaces. Larger thresholds
create smaller compression rates, hence smoother surfaces that are
in greater error.

We use this simple augmentation to allow comparison
with the results obtained using the stationary approach
(Section 8). However, unlike other approaches such as
that of Plagemann et al. (2008), there are no restrictions
on the type of hyperparameters that can be used in this
framework, so long as the covariance function is stationary.
For example, we might boost the regression performance
for this dataset (Smith et al. 2009) through the addition of
a sinusoidal covariance term (with amplitude and period
included in ξ ). This term would capture the cyclical artifact
in some sections of Q that is due to the rocking motion of
the balancing platform used for data capture.

9.2. Bayesian approach to non-stationarity

We aim to achieve the automatic control of hyperparame-
ters ξ . Rather than dealing with ξ directly we marginalize
this unknown variable to form our predictive distribution
p(r∗|q∗, D̃) in the same way as we did with parameters ζ

in Equation (5). To achieve this model averaging we rear-
range the joint probability of the predictions r∗, data D̃ and
hyperparameters ξ , and marginalize over ξ to arrive at

p(r∗|q∗, D̃) =
∫

p(r∗|q∗, ξ , D̃) p(D̃|ξ ) p(ξ ) dξ∫
p(D̃|ξ ) p(ξ ) dξ

, (24)

where p(r∗|q∗, ξ , D̃) is our stationary GP prediction given
in Equation (5). The marginal likelihood of the data given
hyperparameters ξ , p(D̃|ξ ) can be readily calculated (see
the Appendix). Like all Bayesian techniques, we explic-
itly account for workspace knowledge in the prior p(ξ ).
Unlike in Equation (5), we do not have an analytic solution
to either of the marginalizations in Equation (24). Instead
we turn to quadrature techniques and approximate the inte-
grals by drawing hyperparameter samples ξi from each of
the distributions over hyperparameters p(r∗|q∗, ξ , D̃) and
p(D̃|ξ ).

To approximate our integral we extend our Bayesian
approach through the use of Bayesian Monte Carlo
(O’Hagan 1991; Rasmussen and Ghahramani 2003;
Osborne 2010). This technique provides a sampling method
that, unlike classical Monte Carlo (MacKay 2003), accounts
for both the sample values and their position through
the use of uncertainty as advocated in O’Hagan (1987).
Uncertainty arises in the integration since the integrand
is expensive and cannot be evaluated at every location.
Therefore, a prior is placed over the integrand and the
unknown quantity of interest (in this case the poste-
rior predictive distribution p(r∗|q∗, D̃) in Equation (24))
is treated as a random variable. The prior is combined
with observations of the integrand to produce a poste-
rior distribution. A GP is used to provide a convenient
way of putting a prior over functions as we have seen
in Equation (5). For Equation (24) this requires placing
two GP priors X and Y over p(r∗|q∗, ξ , D̃) and p(D̃|ξ ),
respectively.

Osborne (2010) notes the correlations induced by p(D̃|ξ )
appearing in both the numerator and the denominator
in Equation (24) imply that Bayesian quadrature must
be performed on the equation as a whole and he called
the resulting technique predictive Bayesian quadrature.
Gaussian priors were mainly used although discussion and
derivations for other priors were also provided. The sequen-
tial form of the algorithm additionally exploits a maximum
a posteriori approximation of Y to permit a computation-
ally tractable solution. The overall predictive distribution
is affected by each GP regressor (associated with each
hyperparameter sample ξi) p(r∗|q∗, ξi, D̃) = N (μGi , 
Gi )
according to a Gaussian mixture model (GMM):

p(r∗|q∗, D̃) =
∑

i

ρiN (μGi , 
Gi ) , (25)

where the weightings ρ are subject to the constraint
∑

i ρi =
1. The mean and covariance of this summation of condition-
ally independent Gaussians are easily extracted:

μGMM =
∑

i

ρiμGi , (26)


GMM =
∑

i

ρi(
Gi + μGiμ
T
Gi

) −μGMMμT
GMM. (27)

Each of the weightings ρi are dependent on p(D̃|ξi),
assumed knowledge p(ξ ) and, importantly, the form of the
predictive surfaces of both p(r∗|q∗, ξ , D̃) and p(D̃|ξ ), as
approximated by X and Y .

A strong feature of this approach is that the marginal
likelihood p(D̃|ξi) automatically assigns a high weighting
to the GP regressors that explain the current active sub-
set of measurements comparatively well, without the need
for expert knowledge. As the active window moves across
the workspace, the weightings of p(r∗|q∗, ξi, D̃) freely adapt
according to the changing workspace environment. Fur-
ther, by ensuring that individual ξi are than recalculate
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Max error: 2.15 mMax error: 0.26 m

Fig. 11. Error in surface predictions conditioned on the actively selected predictive support window D̃ as the active window progressed
across sensor configuration space Q (as per Section 6.3). Colouring is provided by the �1 norm in range from original measurements (in
black) and the predicted surface, using κ = 0.8 nats. Colour scaling is different for each plot, but both use a jet colour map with high
errors in red and low errors in blue. (Left) and (right) illustrate simple and complex regions from test case (a) and (b) from Figure 6. A
profile view of a short section of (left) is also plotted in Figure 10. In the left part, where there is an absence of large discontinuities,
we note that the smallest errors are near D′ (dark blue areas). In the right part, there is a much more peaky distribution of error with
significant errors appearing only where there are noisy surfaces and large discontinuities. In these regions there is automatically no data
pruning and the accuracy of the surface is limited by that of a naïve implementation as discussed in Section 5.3.

each of the corresponding stationary GPs independently
(Section 6.2), whilst producing an overall non-stationary
regressor.

9.3. Approximate Gaussian mixture model

Although the additional quadrature parameters
{p(ξ ) , X , Y } can be estimated via a variety of opti-
mization techniques as suggested in Osborne (2010), we
offer two approximations that afford us large computational
savings whilst maintaining an overall GMM approach. We
argue that although it is essential to properly marginalize
parameters ζ to ensure a flexible model, the hyperparame-
ters ξ are far more forgiving in terms of the sensitivity of
the resulting surface regression accuracy. The expensive
calculation of Equation (24) can therefore be avoided by
choosing to model average p(r∗|q∗, ξ , D̃) through the use
of p(D̃|ξ ) directly (without X and Y ), and by embodying
the equivalent of p(ξ ) implicitly through the positioning
of ξi (see Section 9.4). The resulting computational cost
is linear in the number of ξi. The algorithm is also trivial
to parallelize as an independent GP regressor can be
maintained for each ξi. We return to the application of
full predictive Bayesian quadrature of Osborne (2010),
discussing necessary considerations to manage the com-
putational complexity without degradation of predictor
performance, as future work (Section 12).

Concretely, we approximate the output of the GMM as
a normal distribution which we use as input for our active
sampling strategy (Section 5.3).

p(r∗|q∗, D̃) ≈ N (μGMM, 
GMM) . (28)

To form this prediction we maintain a bank of GP regressors
with each element of the bank corresponding to a three-
dimensional hyperparameter sample (ξi = {σ 2

pi
, lti , lθi}).

Every time a new laser measurement is accepted into the
active subset we update all GP regressors according to Sec-
tion 6.2. Each prediction p(r∗|q∗, ξi, D̃) = N (μGi , 
Gi ) is
combined into our overall predictive distribution through
weighting with ρi (following Equation (25)) according to
two alternative approximations.

9.3.1. Weighting via normalized marginal likelihood

ρi = p( D̃|ξi)

max p(D̃|ξi)
. (29)

9.3.2. Maximum marginal likelihood estimate For com-
parison purposes we also choose the single hyperparameter
sample ξML that is the maximum marginal likelihood for the
current predictive support window D̃:

p(r∗|q∗, D̃) = p(r∗|q∗, ξML, D̃) , (30)

ξML = ξi, (31)

where

i = argmax
i

p(D̃|ξi) . (32)
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Fig. 12. Computation time versus prediction threshold κ for each of the test cases (a) to (d) (see Figure 6) using unoptimized MAT-
LAB® code. Reported times exclude time spent predicting hold out measurements (which are only used only for the production of
error metrics) using introspection (solid blue lines) and without using introspection (dashed red lines). Time taken follows roughly
in accordance with scene complexity and decreases as κ increases. This is because the dominant computation in our algorithm is the
updating of state on adoption of new laser measurements. This occurs more frequently with more complex scenes and lower κ . There
is also a spike around κ = 1 nat for the blue line as around this value introspection begins to occur as not all laser measurements are
adopted into the active subset.

9.4. Choosing the quadrature prior p(ξ )

Each of our approximations remove the dependency on the
explicit prior term p(ξ ) in Equation (24). Instead we emu-
late this distribution through the positioning of ξi in our
GMM. To demonstrate our approach, we use an uninforma-
tive p(ξ ), that of a bounded uniform prior. This is embodied
through a regular grid of ξi. In addition to modifying ρ

directly, expert knowledge can also be inserted by placing
more ξi in regions where we require a greater weighting
in the GMM. This knowledge may be available, for exam-
ple, when the sinusoidal term of Section 9.1 is included
in k(q, q′) and the typical range of vehicle periodicity is
known. In the Bayesian quadrature framework of Osborne
(2010) a variety of techniques to move individual ξi online

according to the current fit of the regressor to the data are
also suggested.

We aim to produce a high model flexibility by using a
broad range of hyperparameter samples ξi. With each addi-
tional dimension of our hyperparameter sample, however,
the curse of dimensionality becomes more apparent. We
therefore use only a few ξi in each dimension to allow com-
putations to remain manageable. In addition, for any GP
regression there is a practical limit for the acceptable range
of hyperparameter values to ensure that the resulting pre-
dictive surface does not overfit the training data. In our
approach this restricts the choice of hyperparameter sam-
ples because ρ is dependent on a measure of the fit of our
predictions to the training data (p(D̃|ξi)). Figure 15 demon-
strates the outcome when very low length scales and high
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Fig. 13. Compression rate versus κ for test case (c) (see Figure 6)
for varying measurement variance σ 2

m. Each line corresponds to
a different measurement variance σ 2

m, which is used in our mea-
surement model to form our likelihood p(r∗|ζ , q∗, ξ ,D) (Equa-
tion (5)). As measurement variance increases the curves move to
the left. This is an intuitive result as the KL divergence between
two distributions increases as the variance of each distribution
decreases (see Equation (18)). For comparison of associated error,
see the box plots in Figures 9 and 14, where σ 2

m = 0.01 m2 and
σ 2

m = 1×10−4 m2, respectively. From Sections 9 onwards we use
σ 2

m = 1 × 10−4m2.

process variance are included in our set of hyperparameter
samples {ξi}.

9.5. Calculation of variance

As with the stationary GP approach in Section 5, in practice
we are only ever interested in the variance of range pre-
dictions and not their covariance. Equations (26) and (27)
therefore collapse to

μGMM = ρTμG, (33)

σ 2
GMM = ρT(σ 2

G + μ2
G) −μ2

GMM, (34)

where μG and σ 2
G are vectors with each element corre-

sponding to a prediction from each GP regressor with

hyperparameter sample ξi.

10. Non-stationary results

For ease of comparison with the results in Section 8 we
use the same experimental setup as detailed in Section

7. We also use σ 2
m = 1x10−4m2, and starting from the

choice of stationary GP hyperparameter values ξ = {l =
8 units, σ 2

p = 0.05 m2}, we choose three, four and four

values in each of the σ 2
p = {0.04 . . . 0.15} m2, lt =

{7 . . . 40} units, and lθ = {7 . . . 40} units hyperparameters,
respectively, creating 48 hyperparameter samples ξi in total.

10.1. Comparing approximate GMMs

Figure 16 shows compression rate |D′|/|D| % across all test
cases for our approximate GMM models.

Although the decrease in compression rate between the
stationary (Figure 14) and non-stationary (Figure 16) model
is stark, we must also take into account the resulting error
for a fair comparison. In Table 1 we collate an exemplar of
roughly equivalent compression rate for each test case from
Figures 14 and 16. We see that results are similar across
all regression models. As we saw in Figure 11 the main
regions of error for the stationary model were around large
discontinuities. Given that discontinuities occur relatively
infrequently in our test cases it is reasonable that the change
in algorithm performance is small. That said, the increase
in performance when using the non-stationary approach
is significant, even when the stationary model uses more
measurements (test case (b)). The difference between the
non-stationary regression models are far smaller. For a
given κ the GMM approximation ( ρi = p(D̃|ξi) ) that uses
all hyperparameter samples ξi tends to use slightly more
measurements, with only a slight increase in accuracy.

To understand the source of the increase in perfor-
mance of the non-stationary models, we look at the
active subset span η as the window moves across sen-
sor configuration space Q. In Figure 17 we plot η for
both the stationary and the GMM model ρi = p(D̃|ξi)
approximation (the maximum marginal likelihood ξML

approximation is very similar). We also depict the hyperpa-
rameter samples that correspond to ξML, which indicate the
changing workspace complexity for each example. We see
that the non-stationary η undulates more freely in response
to changing workspace conditions, than the stationary one.
For test case (d) the non-stationary model is able to grow
a larger η for the measurement IDs surrounding 1 × 104

(where the scene is less complex, as indicated by the longer
length scales) than in the stationary case. In regions where
the workspace complexity is changing dramatically (around
measurement ID 2 × 104 in test case (a) and in the vicin-
ity of 2.5 × 104 in test case (d)) we see that the non-
stationary approach responds more fully by accepting more
measurements into the active subset.

The final row of plots in Figure 17 indicate the number of
significant GMM weights ρ for each prediction. We see that
for test case (d) there is seldom a region where more than
one hyperparameter sample ξi is relevant to predictions.
This provides an insight to why both non-stationary models
achieve similar levels of surface reconstruction accuracy. In
the following section we examine the spatial distribution of
the errors to illustrate the effects where multiple ξi become
relevant.

10.2. Comparing surface error

We can view the distribution of surface error in 3D
Euclidean space to understand the correlation of error with
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Fig. 14. Summary plots of the test cases in Figure 6 demonstrating the effect of varying κ for a measurement variance σ 2
m = 1 ×

10−4 m2. These plots are provided for comparison with Figures 8 and 9 where σ 2
m = 0.01 m2. (Left) Compression rate |D′|/|D| %

versus κ . As the prediction threshold κ increases, compression rate decreases. By comparing with Figure 8 we note that when using
a greater measurement variance for test case (b) that a lower compression rate is produced. There is a significant quantity of foliage
in test case (b), which produces high-frequency oscillations in r, as measurements in these regions tend to alternate between leaves
and the walls behind them. A high σ 2

m will produce a smoother surface, which may on average fit training data more effectively,
and hence achieve a lower compression rate in Figure 8. Box plots (right) denote median and interquartile range for each of the κ

indicated by markers in the plot on the left. Whiskers are plotted that extend a maximum of one and a half times the interquartile
range.

local workspace complexity as we did in Figure 11 of Sec-
tion 8.2. Of particular interest, in terms of illustrative power,
is the drain pipe, two thirds along the wall of test case (a)
which we plot for each of our approximations in Figure 18.
This corresponds to a dip in the active window span η in the
vicinity of measurement ID 2 × 104 and a decrease in the
time length scale lt as shown in Figure 17. Overall, the error
in Figure 18 progressively decreases between plots from the
left to the right.

11. Conclusions

In this paper we present a detailed account and an in-depth
analysis of the adaptive 3D point-cloud compression algo-
rithm first proposed by Smith et al. (2010a). The employed
GP framework provides for a continuous representation of
the implicit surfaces underlying the data, while at the same
time enables a principled subsampling of the point cloud via
an information theoretic data selection criterion. The result-
ing algorithm decimates point clouds of simple workspaces
by factors in excess of two orders of magnitude without
significant degradation in fidelity. The computational com-
plexity of the algorithm proposed is reduced by adopting

a sliding window approach and by managing variables that
are used throughout the active sampling process. The final
complexity is squared in the size if of the active window,
which is constant, rather than cubic in the size of the dataset.

The analysis presented in this paper indicates that the
use of a stationary covariance function, as advocated in
Smith et al. (2010a), results in almost no data compression
in areas that include highly complex structures. Above and
beyond the approach of Smith et al. (2010a), in this work
we have investigated this property by enhancing our model
through the use of non-stationary regressors. These are
obtained by allowing the weighting on GP regressors with
fixed hyperparameters to vary automatically according
to the data. This allows the active window to adapt to
workspace complexity and achieves a significant increase
in performance over the stationary model. To enable this
non-stationary behaviour, we extend the treatment of the
regression problem in Smith et al. (2010a) by marginalizing
over both model parameters and hyperparameters. Bayesian
quadrature (O’Hagan 1991; Rasmussen and Ghahramani
2003; Osborne 2010) is used to approximate the intractable
integrals. Two alternative approximations are also pro-
vided that further reduce computation requirements by
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Table 1. Exemplars of results presented in Figures 14 and 16 of test cases (a) to (d) (see Figure 6). We select one exemplar for each test
case and compare across all three regression models presented in this work. Exemplars are chosen so that compression rate |D′|/|D| %
is roughly comparable. The three metrics are produced using the �1 norm in range between a hold out set of laser measurements
and predictions that are made online as the actively sampled subset of laser measurements D′ is established (as per Section 6.3).
When compared with the stationary model, both non-stationary models provide a clear increase in accuracy, even when the stationary
model uses more measurements (test case (b)). Accounting for the slight increase in compression rate for the GMM ρi = p(D̃|ξi)
approximation, the two non-stationary models are very similar.

Stationary

Test case κ(nats) |D′|/|D| % Median (m) Mean (m) Standard deviation (m2)

(a) 2.399 6.88 0.00624 0.00818 0.00721
(b) 3.927 36.69 0.0714 0.119 0.144
(c) 3.069 4.17 0.0474 0.0946 0.126
(d) 3.927 18.3 0.0406 0.0959 0.209

ξML approximation ρi = p(D̃|ξi) approximation

|D′|/|D| % Median (m) Mean (m) Standard |D′|/|D| % Median (m) Mean (m) Standard
deviation deviation

Test Case κ (nats) (m2) (m2)

(a) 1.145 7.53 0.00585 0.00734 0.00621 7.58 0.00587 0.00728 0.00597
(b) 3.069 35.3 0.0271 0.0653 0.112 35.3 0.0271 0.0653 0.112
(c) 3.069 4.68 0.0321 0.117 0.188 4.70 0.0309 0.108 0.169
(d) 3.069 18.3 0.0235 0.0779 0.206 18.4 0.0239 0.0768 0.205

Fig. 15. Demonstration of the sensitivity of this approach to the
range of hyperparameters samples ξi. Box plots denote median
and interquartile range of error for a selection of logarithmically
spaced thresholds κ for test case (d) (see Figure 6). Whiskers
are plotted that extend a maximum of one and a half times the
interquartile range. By allowing our set of hyperparameter sam-
ples {ξi} to include very small length scales {lt, lθ } = {0.1, 0.1}
units and a very high process variance σ 2

p = 0.7 m2 we produce
measurement predictions that are highly overfitted. The result-
ing error statistics are poor compared to, for example, Figures 14
and 16.

exploiting the low sensitivity of our approach with respect
to hyperparameter values. This allows the consideration

of a large range of hyperparameters with a manageable
computational cost. The resulting non-stationary algorithm
is linear in com- plexity with the number of hyperparameter
samples and is trivial to parallelize.

12. Future work

We wish to investigate further means to increase the com-
pression of laser point clouds whilst also increasing the
accuracy of surface predictions that are made using these
compressed clouds. Bayesian quadrature techniques such
as Osborne (2010) may provide significant improvements
when used with a dense sampling in hyperparameter space.
Alternatively the repositioning of individual hyperparame-
ter samples according to changing workspace complexity,
as per Osborne (2010), could place them so that more are
relevant to each prediction. We can also employ derivative
observations (Osborne 2010) to mitigate most condition-
ing issues associated with the additional quadrature param-
eters that are required in the resulting Bayesian quadra-
ture approach. However, to ensure that the shape of the
marginalization integrals are properly captured, and to guar-
antee that conditioning is never problematic, online assess-
ment of the quadrature parameters may be required. A num-
ber of techniques are suggested in Osborne (2010) that are
capable of managing this task.

Further gains in accuracy may arise from investigating
the explicit basis functions used in our stochastic model.
The use of a mixture of GPs, whereby each GP delineates
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Fig. 16. Summary plots of results using our non-stationary regression models for the test cases (a)–(d) (see Figure 6). On the left
are results for the maximum marginal likelihood ξML approximation and, on the right, the GMM model ρi = p(D̃|ξi). (Top row)
Compression rate |D′|/|D| % versus κ . For a given κ , compression rate is far lower for both these approximations than in the stationary
model (Figure 14). On comparing our approximations we see that they produce very similar results. Box plots (middle and bottom
row) denote median and interquartile range for each of the κ indicated by markers in the compression rate plots (top row). Whiskers
are plotted that extend a maximum of one and a half times the interquartile range. Again both approximations are very similar. To
understand these results in more detail we therefore collate a small set of exemplars in Table 1.

a region of homogeneous workspace complexity, may also
provide marked increases in accuracy surrounding large
discontinuities. Unlike segmentation techniques that rely
on expert knowledge (Smith et al. 2010b) we could use
our measurement predictions to determine GP boundaries
in a principled manner. This could afford outlier detec-
tion which so far has not been considered. Alternatively,
increases in performance could arise from filtering outliers
before they enter our GP framework.

As mentioned in Section 9.1, our approach permits the
use of many combinations of stationary covariance func-
tions. Other processes could use the hyperparameter sample
weightings that are as a result of our approach, to refine

their inference in for example vehicle trajectory estimation.
Bayesian quadrature could be used to boost performance of
this inference as it permits an a posteriori prediction of the
most likely hyperparameters, rather than the discrete values
that are produced by this current algorithm.

In workspaces where the same regions are repeatedly
mapped, one can appreciate that tiny compression rates
could be achieved if we re-used only the set of retained
measurements that was selected on the first iteration. To do
this, one would require a method to map between different
sections of our sensor configuration space parameteriza-
tion. This mapping could also provide a means to detect
dynamic objects in the scene. We are also interested in
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Fig. 17. Visualization of the active window as it moved across the sensor configuration space Q. These plots correspond to the exem-
plars of test cases (a) and (d) in Table 1. Along the horizontal axes are the measurements as they are encountered by the active window
as it progressed across Q. We unwrap the two-dimensional Q surface in order to aid the comparison of measurement IDs across
each of the plots below. Some of the jitter in all of the plots is associated with this unwrapping procedure. (Top row) Active window
span η using the GMM ρi = p(D̃|ξi) approximation in blue (with prediction threshold κ = 3.069 nats and κ = 1.145 nats from
left to right). In red are the corresponding η for the stationary model (κ = {3.927, 2.399} nats). Vertical lines along the horizontal
axis indicate where measurements have been adopted into the active set D̃ as a result of introspection for the GMM approximation
(see Section 5.3). (Middle three rows) Hyperparameters {σ 2

p , lt, lθ } that are used in the maximum marginal likelihood ξML approx-
imation are provided to indicate how the workspace complexity changed across the test cases. (Bottom row) Plot of the number of
hyperparameter samples with weightings ρi = p(D̃|ξi) that are significant compared to ξML. The green line indicates the number
of hyperparameter samples that have a relative weighting greater than e−15 = 3.1 × 10−7, blue e−10 = 4.5 × 10−5, and black
e−2 = 1.3 × 10−1. First, we note that for the majority of each test case only a few hyperparameter samples ξi are relevant to pre-
dictions. This provides an indication as to why both non-stationary approximations achieve very similar results in Table 1. Second, by
comparing the top four rows we see that the changes in η are highly correlated to the changes in the most highly weighted hyperpa-
rameter sample. We believe this is the reason for the relative performance of the non-stationary models compared with the stationary
model.

online assessment of the size of the active set to reduce
computational load where a small set will suffice.

Notes

1 Note that the regression will always be dependent on the
ground-truth trajectory of the vehicle but that no knowledge
of this trajectory is required in our algorithm.

2 To convert this length scale into a value that is meaningful in
terms of time and θ one must multiply by the resolution of the
laser scanner ( 1

75 seconds and 0.5◦, respectively).
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Fig. 18. Error in surface predictions conditioned on the actively selected predictive support window D̃ for each of our regression
models. Predictions are made online as discussed in Section 6.3 and projected into Euclidean x, y, z space via the trajectory of the
sensor. Plots use prediction threshold κ = {2.399, 1.145, 1.145} nats from left to right, corresponding to the exemplar for test case
(a) in Table 1. For clarity only a short section of test case (a) that contains a drain pipe is shown in the figures. Colouring is provided
by the �1 norm in range from hold out measurements and the predicted surface. Colour scaling is the same for each plot to allow
ease of comparison with black denoting high error and white, low. For the stationary model (left) we clearly see a change in colouring
along the drain pipe. Colours are more evenly spread for our non-stationary models, indicating that these models have more accurately
captured the relief around the pipe. When comparing non-stationary models one must take into account that the number of retained
laser measurements D′ is slightly larger when using the ρi = p(D̃|ξi) approximation, as detailed in Table 1. The decrease in maximum
error when using the ρi = p(D̃|ξi) approximation are however significantly less, and the distribution is slightly more even.
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Appendix: Marginal likelihood over function
values
To weight each of the stationary GP regressors in our non-
stationary GMM, we use a measure of the efficacy of each GP
in predicting the current active set of observations r. Following
the Bayesian framework we turn to the marginal likelihood with
respect to r, which for Z(q) ∼ GP(0, k(q, q′) ) of Section 5 is
simply

log p (D̃|ξ )Z =−1

2

[
rTK−1

r r − n log 2π

− log |Kr| ] . (35)

The calculation the marginal likelihood for the stochastic mean
GP of Section 5.2 is also standard as shown in Ansley and Kohn
(1985)

log p (D̃|ξ )G =−1

2

[
rTK−1

r r−(n−m) log 2π

− log |Kr| − log |A| + S ] , (36)

where
S = rTK−1

r HTA−1HK−1
r r (37)

and m is the rank of H .
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