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_Abstract— This paper describes a probabilistic bail-out con-  based on concentration inequalities [8]. Unlike the SPRT,
dItIOIH for r_nultlhypothe3|s testing baseq on Be_nnett’s inequality.  this approach is straight-forward to apply even when there
We investigate the use of the test for increasing the speed of an 5. multiple hypotheses and the observations are not gquall

appearance-only SLAM system where locations are recognised . . . ) .
on the basis of their sensory appearance. The bail-out condition informative. We have noted related ideas in other fields [9],

yields speed increases between 25x-50x on real data, with only however we believe our approach is novel in this context.
slight degradation in accuracy. We demonstrate the system

performing real-time loop closure detection on a mobile robot I[l. APPEARANCEONLY SLAM

over multiple-kilometre paths in initially unknown outdoor . . . .

environmerF:ts. P y Our appearance-only SLAM system is described in detall
l. INTRODUCTION in [1], [2]. Briefly, at time¢ the robot's map consists of;

_ ) _ ) discrete locations, each locatidn having an associated ap-
This paper is concerned with speed improvements 10 &fbarance model. Our representation of appearance isedspir

appearance-only SLAM system. We show that by employingy the bag-of-words image retrieval systems developedein th
a prob{:\blllstlc bail-out test in the core Ilkellhgod calkation, _computer vision community [10]. Sensory data is converted
speed improvements of between 25 and 50 times are possiQig, a pag-of-words format; a place appearance model is
with only slight accuracy penalty. Typical filter update & 5 gistribution over appearance words. We extend the basic
are on the order of 150ms for maps which contain severghy.of-words approach by learning a generative model for
thousand locations. This enables real-time loop closure dg,q sensory data, in the form of a Chow-Liu tree [11]. This
tection on a mobile robot for loops tens of kilometers inyenerative model captures the fact that certain combingtio
length. of appearance words tend to co-occur, because they are
Our core appearance-only SLAM system has been préenerated by common objects in the environment, and yields
ously described in [1], [2]. In appearance-only systems, thy sjgnificant improvement in navigation performance.
robot’'s map consists of a set of locations, each of which has\yhen the robot collects a new observatin we compute
an associated appearance model. When the robot collects @, 7,) the probability distribution over locations given the

new observation, its location can be determined by decidingyservation. This can be cast as a recursive Bayes filtering
which location in the map was most likely to have generategromem:

the observation. This approach has recently shown success
in large scale global localization [3] and online loop clasu p(Li| 21) = p(Zi|Li, 21 V)p(Lg 2'71) 1)
detection [1], both difficult problems in more typical metri ! p(Zy|Zt1)

SLAM frgm_gworks. . where Z! is the set of all observations up to timg
The limiting computational cost of appearance-only

SLAM is computing the observation likelihood for eachp(Zt|Li’Zt_l) s the likelihood of the observation given the

i , i ot —1 Jzt—1
location in the map. Typically, only a small number Of!ocatlonLl and the previous observations ™, p(Li|2")

A - o . is our prior belief about our location, angd(Z;|Zt1)
these places will yield non-negligible probability of hagi . o o
. L7 normalizes the distribution. The normalization term can be
generated the current observation. The main idea of this. ;
. . L Wwritten as a summation
paper is that by evaluating the appearance likelihoods In
parallel, these unlikely hypotheses can be identified and
discarded V\_/hilg the likelihood c_;alculation is onI;_/ panygl p(Z| 271 = Z P(Ze|Lo)p(Lm| 2870 (2)
complete, yielding large speed increases. Very similaasde meM
have been described elsewhere in computer vision, notably i1
in the context of efficient RANSAC algorithms [4], [5]. + z;p(zt‘L“)p(LMZ )
Matas and Chum showed that for RANSAC, the sequential ueM
probability ratio test (SPRT) yields the optimal solution.over the set of mapped placég and the unmapped places
The SPRT approach was originally designed for testing/. This summation can be approximated by sampling,
two hypotheses under a sequence of identical and equallshere the “unmapped places” are drawn from a set of
informative observations [6]. Extensions exist for the multraining data. This yields a probability that the obsexwati
tihypothesis case [7]. However, stopping boundaries fer thcame from a place not in the map. Using the resulting
SPRT are not easy to derive when the observations are mRIDF over location, we can make a data association decision
equally informative. We describe an alternative approachnd either add a new location to our map, or update the




appearance model of an existing place. Essentially this is a
SLAM algorithm in the space of appearance.

The core of the PDF calculation is computing the obser-
vation likelihood p(Z;|L;, Z!=') for each location in the
map and each sample in the training set. The following
section describes an approach to increasing the speed of
this likelihood calculation. By identifying locations thaill
have insignificant likelihood before the calculation islyul
complete, many locations can be excluded quickly and large
speed increases can be realized.

Log-Likelihood

IIl. PROBABILISTIC BAIL-OUT USING BENNETT'S
INEQUALITY

Let H = {H',..,HX }be a set ofK hypotheses and

— ; ot Fig. 1. Conceptual illustration of the bail-out test. Afwnsidering the
let Z {#1,....z2v} be an observation consisting of first 5 features, the difference in log-likelihoods between twdtheses

features. The likelihood of the observation under theittfe s A. Given some statistics about the remaining features, it isiplesto

hypothesis is given by compute a bound on the probability that the evaluation of #raaining
features will cause one hypothesis to overtake the othéhidfprobability
is sufficiently small, the trailing hypothesis can be diseakd

Number of Features Considered

p(Z|H") = p(z1)|22, ..., 2n, HY)..p(zn_1|2n, H)p(zn | H)

3)
Define the log-likelihood of the firstfeatures under the!" If after evaluatingn features, the log-likelihood of some
hypothesis as hypothesis isA less than the current best hypothesis, then
the probability of failing to locateH* if we discard this
. i N hypothesis is given by(S, > A). Thus, knowing the
Dy = Zdj (4)  distribution of S, allows the creation of a probabilistic
J=1 bail-out test for discarding hypotheses subject to an error
where constraint. Calculating an explicit distribution &k is infea-
df = In(p(zi|zit1, s 2, Hi)) (5) sible, however concentration inequalities — which bourel th

. o " " probability that a function of random variables will dewat

is the log-likelihood of the:"" feature under theé:™ hy-  from jts mean value — can be applied to yield bounds on
pothesis. We would like to determine, as rapidly as posslbI5(5n > A)
the hypothesisi™ for \f’h'(_:h the total log-likelihoodDY is A large variety of concentration inequalities exist, many
maximized. FindingH* with certainty requires a complete j¢ \\hich apply under very general conditions, including

evaluation of the likelihood of each hypothesis, which may,qes where the component distributions are not identicall
be too slow for applications of interest. Consequently, W§istripyted, not independent, and are combined using arbi-
consider the problem of finding a hypothedi*, subject 4y functions. For an overview see [8]. Typically, the mor
to the cor_ls_tralnt tha;b_(H# # H*) < ¢, wheree is some information available about the component distributions
user-specified probability. the tighter the bound. Our bail-out test applies the Bennett

In overview, our approach is to calculate the likelihoodsyeqyality for sums of symmetric random variables [12].Thi

of all hypotheses in parallel, and terminate the IikeIihoo%equath is specified in terms of two parameters M- a
calculation for hypotheses that have fallen too far behived t |5 ,nd on the maximum value of any componant andw

current leader. “Too far” can be quantified using concentra; ,ound on the sum of the variances of the compon&hts
tion inequalities, which yield a bound on the probabilitath Formally, |et{Xi}f\Ln+1 be a collection of independent

a hypothesis will overtake the leader, given their curréht d oo ;00 random variables with symmetric distributions
ference in likelihoods and some statistics about the ptigzer (corresponding to the log-likelihood changes due to those

of the features which remain to be evaluated. features not yet considered), and satisfying the condition
Consider two hypothesed®, HY € H and let

the difference in the log-likelihood of featuteinder hypoth- iv: B [X_g] < ©)
esisH® and HY. X; can be considered as a random variable Bl v
before its value has been calculated. This is useful because B
we can calculate some key statistics abaytmore cheaply and let N
than we can determine its exact value. Now define g Z X, (10)
N 1=n+1
Sn = Z Xi (7) -

et 1 then the Bennett inequality states that



Application of Bennett's Inegquality

v , AM To apply Bennett's inequality, we must calculaieand
p(S > A) <exp (M? cosh(f(A)) =1 - v ﬂA)) M, the parameters in Equation 11 which depend on the
(11) component random variableX;. In our appearance-only
where SLAM system

AM X; = di —df (14)
) (12) = In(p(2i|2pi; Le)) — ln(p(zi|zpi>Ly))

Note that as the calculation of the hypothesis likelihoodwhere, recalling our notation from Section I, denotes
progresses, the number of unconsidered features (and heackcation (hypothesis), and and y are random variables
the number ofX; variables) decreases, s and v will  which specify which locations in the map are being consid-
change. As a result the bail-out threshold changes thraitghared. Now, given that the values ef and z,, are known,
the calculation. p(zi|2pi, L) depends only on the number of times feature
z; has previously been observed at locatibp (details in
[1], [2]). Thus X; attains its maximum value whenandy
correspond to the locations where featuhas been observed
most and fewest times respectively. Keeping track of these
We now turn our attention to applying this bail-out condi-statistics allows us to easily calculaté.
tion to our appearance-only SLAM system. Firstly, we must cajculatingv, which bounds the sum of the variances of
define an order in which to consider the features. While th@]e X, variables, requires some information about the distri-
bail-out test applies to any ordering, it is natural to rankytion of the index random variablesandy. We assume that
the features by information gain. That way, the hypothesgfiese have uniform distribution, which effectively amaunt
W|” ConVerge most rapldly tOWard their final |Og-|lkellhd0 to assuming that a” Of our hypotheses have equa' a_priori
values and poor hypotheses can most quickly be identifiggtopability:. Given this assumption, the distribution &F is
(see Figure 2). fully specified and can be calculated directly by considgrin
Each of our features; is a binary variable indicating 47 — ¢¥ for all index pairsz,y. We observe thaX; has

whether or not theé*" word of the vocabulary was present ina multinomial distribution which must be mean-zero and
the current observation. The occurrence of these visualsvorsymmetrié.

is not independent — certain combinations of words tend t0 Tg evaluatev we must calculate the variance of this

occur together because they are generated by some undegitribution. In practice, this calculation can be fastr Fo
ing object in the environment. To capture this structure wexample, in our appearance-only SLAM system, when the
learn a Chow Liu tree model [11] which approximates thgohot is first exploring the environment almost all place
true distribution over the observations. Under this mOdeI'node|S have on|y one observation associated with them,
each featurez; is conditionally dependent on one othersg ¢ can take on only a small number of distinct values.
feature z,;. If we observez; = s; and z,; = s, (With  Keeping track of the possible discrete values df and

s € {0,1}), then the information gain associated with thisheir relative proportion allows for rapid calculation dfet
observation under our model is variance ofX;. As exploration continues, the possible values
of d7 become larger, and the calculation becomes more
expensive. At some point it may be beneficial to switch from
Typically observations of rare words are the highest rankesltjjlsr:]r;g1 ch%Tc];it;tsra:EggLilr?(!;yu;cl)ityH?hezafidrler:lqgusi'rg]selﬁr?:\/lxl/tl)éd[;ﬁ
features, though., perhaps surpris.ingly, faiIure_ o ol:gse&v of the maximum value of eacll;. Hoeffding's inequality
\évggqslae n i??\,r\?oesvrg?;sa;g QI?r\]/gs?Izglt/]v;r;?l)rgig?\?egig]getgorives a Weal_<er bound, but this is compensated_ for by the fact
then faiIL,Jre to observe one while observing the other is nat by the time the variance becomes expensive to compute,
. . . Phe place models themselves are more differentiated, and so
informative observation.

e . their likelihoods will diverge faster.
Note that because the probabilities in Equation 13 come L :
One remaining issue is that our appearance-only SLAM

from the training data on which we learnt the model of OU[System requires a PDF over hypotheses, whereas our discus-

visual words, we are calculating the information gain with ion s0 far has concerned locating only the best hypothesis.

. e ) i
respect to the places in the training data. Strictly we Sﬁougomputing a PDF requires a simple modification to the bail-

consider the the information gain with respect to the S%ut scheme. Consider that instead of locating only the best

Of. places in our C“Tre”t map — for example, some featgr ypothesisH *, we would like to locate all hypotheses whose
might be very rare in the training set but very common in

the map. In prgctlce we observe that .the .d!fference betweenlIf the assumption is far from the truth, then Hoeffding’s inaflity can
the two vqlg_es is usually small, so maintaining a separdte $& applied in place of Bennett's. See below.
of probabilities is unnecessary. 2)f X; = ¢ for some choice of indices, y, then X; = —c for y, x.

f(A) =sinh™! (

v

IV. APPLICATION TOAPPEARANCEONLY SLAM

Ranking Features

I=—Inp(z = silzpi = Spi) (13)



log-likelihood is at most”' less than that off*. C' is a user-
specified constant chosen so that hypotheses less likaly tha
this can be considered to have zero probability with minimal
error. Simply increasing our bail-out distance®@will retain

all those hypotheses whose final likelihood may be within
this likelihood range, thus giving us a close approximation
to the PDF over hypotheses.

A final note — Bennett’s inequality requires that the vari-
ables X; are independent. Our Chow Liu model captures
much but not all of the conditional dependence between
features. Thus the variable§; may have weak dependence.
Our experiments would appear to indicate that this is not a
problem in practice.

V. RESULTS

We tested the system on data collected by a mobile robot.

The robot collected Images to the left and ”ght of it ig. 3. Appearance-only matching results (using the acateldralgorithm)

trajectory approximately every 1.5m. Each collected imagg; e city Centre dataset overiaid on an aerial photograpte robot
is processed by our algorithm and is used either to inializtravels twice around a loop with total path length 2km, cdifeg 2,474
a new place, o, f loop closure is detected, to update dffeges £a o s mages b deteines o be s & e e
existing place model. Results are presented for three@tatas cyiected an image are marked with a yellow dot. Two images treaew
The first dataset — labeled City Centre — is 2km in length angbsigned a probability > 0.99 of having come from the same location are
was chosen to test matching ability in the presence of sceffig’ked in red and joined with a green line. There are no incomatches
. .that meet this probability threshold.

change. It was collected along public roads near the city
centre, and features many dynamic objects such as traffic and 1 ‘ . . : : : :
pedestrians. The second dataset — New College — is 1.9km ngst
in length and was chosen to test the system’s robustness to ol |
perceptual aliasing. It features several large areas ohgtr
visual repetition, including a medieval cloister with idieal
repeating archways and a garden area with a long stretch
of uniform stone wall and bushes. The third dataset — Parks
Road — features a typical suburban environment. The robot’s
appearance model was built from a fourth dataset collected
in a different region of the city, the area of which did not
overlap with the test sets.

Navigation results for these datasets were generated using “hor 02 e Reuéall 05 06 07 o8
both the original SLAM system and the accelerated SLAM
system incorporating the bail-out test. All datasets werEig. 4. Precision-Recall curves for the City Centre dataskebwing the
processed using the same visual vocabulary and aIgoritI—LI:)r'{ likelihood calculation. (red) and the accelerated oédtion using the

. ail-out test (green). Notice the scale.

parameters. The bail-out boundary was set so that the prob-
ability of incorrectly discarding the best hypothesis ay an
step was< 10~5. This value can be varied to trade off speecprobability threshold. Figures 6 and 7 show some examples
against accuracy. of place recognition performance, highlighting matching

Results are summarized in the figures below. Figure 2 ikbility in the presence of scene change and robustness to
lustrates the bail-out calculation on some real data. Bi@ti  perceptual aliasing. The robustness to perceptual ajjasin
recall curves for the full and accelerated algorithms on thgarticularly noteworthy. Of course, had the examples shown
City Centre dataset are shown in Figure 4. The curves weie Figure 7 been genuine loop closures they might also have
generated by varying the probability at which a loop closureaceived low probability of having come from the same place.
was accepted. Recall rates are quoted in terms of image-i¥e would argue that this is correct behaviour, modulo the
image matches. As a typical loop closure is composed @dct that the probabilities in (a) and (b) are too low. Theyver
multiple images, even a recall rate of 35% is sufficient tdow probabilities in (a) and (b) are due to the fact that thetbe
detect almost all loop closures. The relative performarfce anatches for the query images are found in the sampling set,
the two algorithms on the other datasets is summarized in Teapturing almost all the probability mass. This is lessljike
ble I. Figure 3 visualizes the performance of the acceldratén the case of a true but ambiguous loop closure, partigularl
algorithm on the City Centre dataset. The system correctlyecause in the case of a true loop closure the ambiguity can
identifies a large proportion of possible loop closures witlbe resolved by temporal information via the prior term in
high confidence. There are no false positives that meet tluation 1.

Precision
o) m | m o m

=
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Full Calculation Fast Bail-Out
[ Dataset Recall | Mean Time | Recall | Mean Time | Speed-Up]

City Centre | 37% 5015ms 35% 141ms 355

New College| 46% 4818 ms 42% 178 ms 27.0

Parks Road | 44% 4267 ms 40% 79ms 53.6
TABLE |

COMPARISON OF THE PERFORMANCE OF THSLAM SYSTEM USING FULL AND ACCELERATED LIKELIHOOD CALCULATIONS. THE RECALL RATES
QUOTED ARE AT 100%PRECISION TIMING RESULTS ARE FOR THE FILTER UPDATEON A 3GHz PENTIUM IV. FEATURE GENERATION ADDS AN
EXTRA 330MS ON AVERAGE. UPDATE TIME FOR THE ACCELERATED CALCULATION IS DATA DEPENDEN AND VARIES FROM OBSERVATION TO
OBSERVATION. TIME QUOTED IS THE AVERAGE OVER THE DATASET
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(a) Features Ordered by Information Gain (b) Random Feature Order

Fig. 2. Bail-out test on real data. Here the blue lines shoev Itg-likelihoods of each place versus number of featuresidered. Typically there

are thousands of places - here only a few are shown for clartg black line is the bail-out threshold. Once the liketiioof a place hypothesis falls
below the bail-out threshold, its likelihood calculatioancbe terminated (the remainder of the likelihood calculaioshown above for illustration). In

(a), observations are ordered of information gain; in (bythee ordered randomly. Note that ordering the features byrimdition gain results in much
faster convergence toward final likelihood values, and eemenuch more effective bail-out test. The bail-out threshalesdnot converge to the leading
hypothesis because of the offset constant C.

o

(a) p=0.996

Fig. 6. Some examples of images that were assigned high pritpathihaving come from the same place, despite scene changeltR&ere generated
using the accelerated likelihood calculation. Words comnmhdth images are shown in green, others in red. The prohatiiit the two images come
from the same place is indicated between the pairs.
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(b) p=3x10—°

Fig. 7. Some examples of remarkably similar-looking images frifferént parts of the workspace that were correctly assigoes probability of having
come from the same place. Results were generated using thieratee likelihood calculation. We emphasize that thesengkas are not outliers, but
represent typical system performance. This result is plesbicause most of the probability mass is captured by locatiothe sampling set — effectively
the system has learned that images like these are common inuinerenent. Words present in both images are shown in greeerth red. (Common
words are shown in blue in (b) for better contrast). The pbdltg that the two images come from the same place is indicagtdiden the pairs.

5000 T T T T . . . .
. second filter update times. Investigating system perfoo@an
& 40m on this scale will be a focus of future work.
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