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Abstract
We describe a new formulation of appearance-only SLAM suitable for very large scale place recognition. The system
navigates in the space of appearance, assigning each new observation to either a new or a previously visited location,
without reference to metric position. The system is demonstrated performing reliable online appearance mapping and
loop-closure detection over a 1000 km trajectory, with mean filter update times of 14 ms. The scalability of the system is
achieved by defining a sparse approximation to the FAB-MAP model suitable for implementation using an inverted index.
Our formulation of the problem is fully probabilistic and naturally incorporates robustness against perceptual aliasing. We
also demonstrate that the approach substantially outperforms the standard term-frequency inverse-document-frequency
(tf-idf) ranking measure. The 1000 km data set comprising almost a terabyte of omni-directional and stereo imagery is
available for use, and we hope that it will serve as a benchmark for future systems.

Keywords
Robotics, SLAM, appearance-based navigation, FAB-MAP

1. Introduction
This paper is concerned with the problem of appearance-
based place recognition at very large scales. We refer to
the problem as ‘appearance-only SLAM’ because we aim
to address more than localization. Our approach can also
determine when an observation comes from a location that
has not previously been seen. Thus the system can incre-
mentally construct a map, and so is a SLAM technique.
However, our formulation of the problem is quite different
to typical SLAM algorithms. We make no attempt to keep
track of the vehicle or of landmarks in metric co-ordinates.
Instead we parameterize the world as a set of discrete loca-
tions, and estimate their positions in an appearance space.
Because distinctive places can be recognized even after
unknown vehicle motion, appearance-only SLAM tech-
niques provide a natural solution to the problems of loop-
closure detection, multi-session mapping and kidnapped
robot problems. The approach is thus complementary to
metric SLAM methods that are typically challenged by
these scenarios.

In prior work we have considered systems suitable for
appearance-only SLAM at the scale of a few kilometers
(Cummins and Newman 2008b), and approximate infer-
ence techniques which extend applicability to a few tens
of kilometers (Cummins and Newman 2008a). This paper
builds on the probabilistic framework introduced in those

papers, but modifies the structure of the model to sup-
port efficient inference over maps several orders of mag-
nitude larger than those previously considered. In seeking
such a model, there are some compromises to be made
between the fully Bayesian approach of our prior work,
and a system which meets the efficiency needs of large
scale applications. We describe a formulation which pre-
serves almost all the key features of our earlier model, but
allows for the exploitation of the sparsity of visual word
data to achieve large reductions in computation and mem-
ory requirements. We validate the work on a 1000 km data
set; to date this is the largest experiment conducted with
systems of this kind by a considerable margin. The data set,
including omni-directional imagery, 20 Hz stereo imagery
and 5 Hz GPS, is available for use by other researchers
and is intended to serve as a benchmark for future systems.
The paper concludes with an extensive performance evalu-
ation for the new system, including an analysis of a mod-
ified visual vocabulary learning stage which is shown to
increase performance, and a comparison to the commonly
used term-frequency inverse-document-frequency (tf-idf)
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Fig. 1. Segments of the 1000 km evaluation trajectory (ground
truth).

ranking measure, which is considerably out-performed by
our new approach. The material was first presented in
Cummins and Newman (2009); here we expand the pre-
sentation with a more detailed treatment and additional
results.

2. Related work
While appearance-based navigation has a long history
within robotics (Dudek and Jugessur 2000; Ulrich and
Nourbakhsh 2000), there has been considerable devel-
opment in the field in the last five years. Appearance-
based navigation and loop-closure detection systems oper-
ating on trajectories on the order of a few kilome-
ters in length are now commonplace (Angeli et al. 2008;
Fraundorfer et al. 2007; Callmer et al. 2008; Zhu et al.
2007; Magnusson et al. 2009). Indeed, place recognition
systems similar in character to the one described here are
now used even in single-camera SLAM systems designed
for small-scale applications (Eade and Drummond 2008;
Williams et al. 2008).

Use of these systems on the scale of tens of kilome-
ters or more has also begun to be feasible. In the largest
appearance-based navigation experiment we are aware of
(Milford and Wyeth 2008), a set of biologically inspired
approaches is employed. The system achieved successful
loop-closure detection and mapping in a collection of more
than 12,000 images from a 66 km trajectory, with process-
ing time of less than 100 ms per image. The appearance-
recognition component of the system is based on direct
template matching, so scales linearly with the size of the
environment. Operating at a similar scale, Bosse and Zlot
(2008a) describe a place recognition system based on dis-
tinctive keypoints extracted from 2D lidar data, and demon-
strate good precision–recall performance over an 18 km
suburban data set. Related results, although based on a less
scalable correlation-based submap matching method, were
also described in Bosse and Zlot (2008b).

Another recent research direction is the development of
integrated systems which combine appearance and met-
ric information. Olson (2008) described an approach to
increasing the robustness of general loop-closure detection
systems by using both appearance and relative metric infor-
mation to select a single consistent set of loop closures from
a larger number of candidates. The method was evaluated
over several kilometers of urban data and shown to recover
high-precision loop closures even with the use of artificially
poor image features. Blanco et al. (2008) described a sys-
tem where metric and topological position information is
considered jointly in the estimator. More loosely coupled
systems were also described in Konolige et al. (2009) and
Newman et al. (2009).

Considerable relevant work also exists on the more
restricted problem of global localization. For example,
Schindler et al. (2007) describe a city-scale location recog-
nition system based on the vocabulary tree approach of
Nistér and Stewenius (2006). The system was demonstrated
on a 30,000 image data set from 20 km of urban streets,
with retrieval times below 200 ms. Also of direct rele-
vance is the research on content-based image retrieval
systems in the computer vision community, where sys-
tems have been described that deal with more than a
million images (Philbin et al. 2007; Chum et al. 2007;
Nistér and Stewenius 2006; Jégou et al. 2008). However,
the problem of retrieval from a fixed index is consider-
ably easier than the full loop-closure problem, because it
is possible to tune the system directly on the images to be
recognized, and the difficult issue of new place detection
does not arise. We believe the results presented in this paper
represent the largest scale system that fully addresses these
issues of incrementality and perceptual aliasing.

3. Probabilistic model
The probabilistic model employed in this paper is based
directly on the scheme outlined in Cummins and Newman
(2008b) and Cummins (2009). For completeness, we recap
it briefly here.

The basic data representation used is the bag-of-words
approach developed in the computer vision community
(Sivic and Zisserman 2003). Features are detected in raw
sensory data, and these features are then quantized with
respect to a vocabulary, yielding visual words. The vocab-
ulary is learned by clustering all feature vectors from a
set of training data. The Voronoi regions of the cluster
centers then define the set of feature vectors that corre-
spond to a particular visual word. The continuous space
of feature vectors is thus mapped into the discrete space
of visual words, which enables the use of efficient infer-
ence and retrieval techniques. In this paper, the raw sensor
data of interest is imagery, processed with the SURF fea-
ture detector (Bay et al. 2006), although in principle the
approach is applicable to any sensor or combination of
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sensors, and we have explored multi-sensory applications
elsewhere (Posner et al. 2008).

FAB-MAP, our appearance-only SLAM system, defines
a probabilistic model over the bag-of-words representation.
An observation of local scene appearance captured at time
k is denoted Zk =

{
z1, . . . , z|v|

}
, where |v| is the number

of words in the visual vocabulary. The binary variable zq,
which we refer to as an observation component, takes the
value 1 when the qth word of the vocabulary is present in the
observation. Zk is used to denote the set of all observations
up to time k.

At time k, our map of the environment is a collection of
nk discrete and disjoint locations Lk =

{
L1, . . . , Lnk

}
. Each

of these locations has an associated appearance model,
which we parameterize in terms of unobservable ‘scene ele-
ments’, eq. A detector, D, yields visual word observations
which are noisy measurements of the existence of the under-
lying scene element eq. The appearance model of a location
in the map is our belief about the existence of each scene
element at that location:

Li :
{
p( e1 = 1 | Li) , . . . , p( e|v| = 1 | Li)

}
(1)

where each of the scene elements eq are generated inde-
pendently by the location. A detector model relates scene
elements eq to feature detection zq. The detector is specified
by

D :
{

p( zq = 1 | eq = 0) , false positive probability,
p( zq = 0 | eq = 1) , false negative probability.

(2)

A further salient aspect of the data is that visual words
do not occur independently – indeed, word occurrence
tends to be highly correlated. For example, words asso-
ciated with car wheels and car doors are likely to be
observed simultaneously. We capture these dependencies
by learning a tree-structured Bayesian network using the
Chow Liu algorithm (Chow and Liu 1968), which yields the
optimal approximation to the joint distribution over word
occurrence within the space of tree-structured networks.
Importantly, tree-structured networks also permit efficient
learning and inference even for very large visual vocabu-
lary sizes. The graphical model of the system is shown in
Figure 2.

Given our probabilistic appearance model, localization
and mapping can be cast as a recursive Bayes estima-
tion problem, closely analogous to metric SLAM. A pdf
over location given the set of observations up to time k is
given by

p( Li | Zk) = p( Zk | Li,Zk−1) p( Li | Zk−1)
p( Zk | Zk−1)

. (3)

Here p( Li | Zk−1) is our prior belief about our location,
p( Zk | Li,Zk−1) is the observation likelihood, and p( Zk |

Fig. 2. Graphical model of the system. Locations Li indepen-
dently generate scene elements eq. Visual word detections zq are
conditioned on scene elements eq via the detector model, and on
each other via the Chow Liu tree.

Zk−1) is a normalizing term. We briefly discuss the evalua-
tion of each of these terms below. For a more detailed treat-
ment we refer readers to Cummins and Newman (2008b)
and Cummins (2009).

Observation likelihood To evaluate the observation like-
lihood, we assume independence between the current and
past observations conditioned on the location, and make use
of the Chow Liu model of the joint distribution, yielding

p( Zk | Li) =p( zr | Li)
|v|∏

q=2

p( zq | zpq , Li) (4)

where zr is the root of the Chow Liu tree and zpq is the
parent of zq in the tree. After further manipulation (see
Cummins and Newman (2008b)), each term in the product
can be further expanded as

p( zq | zpq , Li) =
∑

seq ∈{0,1}
p( zq | eq = seq , zpq ) p( eq = seq | Li)

(5)
which can be evaluated explicitly.

In some configurations of the system we find that these
likelihoods can be too peaked, so we introduce an optional
smoothing step:

p( Zk | Li) −→ σp( Zk | Li) + ( 1 − σ )
nk

(6)

where nk is the number of places in the map and σ is the
smoothing parameter, which we typically set to be slightly
less than 1. This smoothing is helpful because our model
inevitably captures only some of the dependencies between
visual words – as some dependencies are not captured,
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individual visual words seem more informative than they
actually are, and so loop-closure probabilities have a ten-
dency to be over-confident. See Cummins (2009) for further
discussion.

Location prior The location prior p( Li | Zk−1) is obtained
by transforming the previous position estimate via a sim-
ple motion model. The model assumes that if the vehicle is
at location i at time k − 1, it is likely to be at one of the
topologically adjacent locations at time k.

Normalization In contrast to a localization system, a
SLAM system requires an explicit evaluation of the nor-
malizing term p( Zk | Zk−1). The normalizing term converts
the appearance likelihood into a probability of loop closure,
by accounting for the possibility that the current observa-
tion comes from a location not currently in the robot’s map.
Intuitively p( Zk | Zk−1) is a measure of the distinctiveness
of an observation, and thus directly related to the problem
of perceptual aliasing.

To calculate p( Zk | Zk−1), we divide the world into
the set of places in our current map, Lk , and the set of
unmapped places Lk , so that

p( Zk | Zk−1) =
∑

m∈Lk

p( Zk | Lm) p( Lm | Zk−1) (7)

+
∑

u∈Lk

p( Zk | Lu) p( Lu | Zk−1) .

The second summation cannot be evaluated directly
because it involves all possible unknown locations. How-
ever, if we have a large set of randomly collected location
models Lu (readily available from previous runs of the robot
or other suitable data sources such as, for our application,
Google Street View), we can approximate the summation
by Monte Carlo sampling. Assuming a uniform prior over
the samples, this yields

p( Zk | Zk−1) ≈
∑

m∈Lk

p( Zk | Lm) p( Lm | Zk−1) (8)

+p( Lnew | Zk−1)
ns∑

u=1

p( Zk | Lu)
ns

where ns is the number of samples used, and p( Lnew | Zk−1)
is our prior probability of being at a new location.

Data association Once the pdf over locations is com-
puted, a data association decision is made. The obser-
vation Zk is used either to initialize a new location, or
update the appearance model of an existing location. Recall
that an appearance model consists of a set of beliefs
about the existence of scene elements at the location,

{
p( e1 = 1 | Li) , . . . , p( e|v| = 1 | Li)

}
. Each component of

the appearance model can be updated according to

p( ei = 1 | Lj,Zk) =
p( Zk | ei = 1, Lj) p( ei = 1 | Lj,Zk−1)

p( Zk | Lj)
.

(9)

In the case of new locations, the values p( ei = 1 | L)
are first initialized to the marginal probability p( ei = 1)
derived from training data, and then the update is applied.

4. A model for scalable navigation
We now discuss the development of a system suitable for
appearance-based navigation in environments where the
map may contain hundreds of thousands of places or more.
The probabilistic model employed in the new system builds
directly on the one outlined in Section 3. For a highly scal-
able system, we modify the model so that it is suitable for
implementation using an inverted index architecture. We
begin by introducing the inverted index.

4.1. Inverted indices

An inverted index is a simple data structure used throughout
information retrieval, which enables efficient search of large
document collections (Manning et al. 2008). If a document
is considered as a list of word identifiers, then an inverted
index maintains the inverse mapping from words to docu-
ments. That is, for each word in the vocabulary, a list of
the documents in which that word appears is maintained.
Finding all documents that contain a word or set of words
is then a very cheap operation. In computational terms, the
inverted index approach scales to document collections that
are arbitrarily large (Brin and Page 1998).

4.2. FAB-MAP 2.0 – an approximation to the
FAB-MAP model

We would like to find a probabilistic model that can take
advantage of the scalability of inverted index techniques.
Our FAB-MAP model is not directly implementable using
an inverted index, because the appearance likelihood p( Zk |
Li) requires evaluation of Equation 4,

∏|v|
q=2 p( zq | zpq , Li).

Every observation component contributes to the appearance
likelihood, including negative observations – those where
zq = 0 (words not detected in the current image). As
such, it does not have the sparsity structure that enables
inverted index approaches to scale. The computation pat-
tern is illustrated in Figure 3. Perhaps surprisingly, we have
found that simply ignoring the negative observations has a
detrimental impact on place recognition performance. Thus
we seek a formulation that will enable efficient implemen-
tation, but preserve the information inherent in the negative
observations.

To enable an inverted index implementation, we mod-
ify the probabilistic model in two ways. Firstly, we place
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Fig. 3. Illustration of the amount of computation performed by the different FAB-MAP models. The shaded region of each block
represents the appearance likelihood terms p( zq | zpq , Li) which must be evaluated to compute p( Zk | Li). In (a), FAB-MAP 1.0
(Cummins and Newman 2008b), each time a new observation is collected the likelihood must be computed for all words in all locations
in the map. In (b), FAB-MAP 1.0 with bail out strategy, the pattern is shown from the approximate inference procedure defined in
Cummins and Newman (2008a), where a ‘bail out’ strategy discards locations during the course of the computation. Many locations are
quickly excluded, so the number of appearance likelihood terms which must be calculated is greatly reduced. In (c), FAB-MAP 2.0 (this
paper), the fully sparse evaluation in FAB-MAP 2.0 is shown, which further reduces computation requirements.

some restrictions on the probabilities in the location mod-
els. Recalling Equation 1, location models are parametrized
as

{
p( e1 = 1 | Li) , . . . , p( e|v| = 1 | Li)

}
, that is, by a set

of beliefs about the existence of scene elements that give
rise to observations of the words in the vocabulary. Let
p( eq | Li)

∣∣
{0} denote one of these beliefs, where the sub-

script {0} indicates the history of observations that have
been associated with the location. Thus {0} denotes one
associated observation with zq = 0, and {0, 0, 1} denotes
three associated observations, with zq = 1 in one of those
observations. Further, let p( eq | Li)

∣∣
0 indicate that, in all

observations associated with the location, zq =0.
In the FAB-MAP 1.0 model described in Section 3,

p( eq | Li)
∣∣
0 can take on a range of values – for example,

p( eq | Li)
∣∣
{0} $= p( eq | Li)

∣∣
{0,0}, as the belief in the non-

existence of the scene elements increases as more support-
ing observations become available. While this is in some
sense the correct model, a consequence is that the appear-
ance likelihood due to a negative observation is just as
expensive to calculate as that due a positive observation.
Negative observations greatly outnumber positive ones, and
are also generally less informative. In FAB-MAP 2.0, we
restrict the model in such a way that the negative observa-
tions can be evaluated much more efficiently, at the cost of a
partial loss of information content. The model is a compro-
mise between a correct Bayesian approach as in FAB-MAP
1.0, and a system suitable for large scale applications. Con-
cretely, in FAB-MAP 2.0, the model is restricted so that
p( eq | Li)

∣∣
0 must take the same value for all locations; it is

clamped at the value p( eq | Li)
∣∣
{0}. This restriction enables

an efficient likelihood calculation, illustrated in Figure 4.
Note that when a location in the map has been observed
only once, this new model is identical to FAB-MAP 1.0. It is
only when we have multiple observations of a location that
some descriptive power is lost (because terms of the form
p( eq | Li)

∣∣
{0,0} remain clamped at the value p( eq | Li)

∣∣
{0}).

However, the effect of this change is negligible in practice

because the location model built from a single observation
is typically already sufficient to enable the location to be
recognized.

To understand why the restricted model enables an effi-
cient implementation, consider the calculation of one term
of the observation likelihood, as per Equation 5, across all
locations in the map. That is, we wish to compute the term
p( zq | zpq , Li) for some visual word q, for all Li in the map.
Recalling Section 3, the term is given by

p( zq | zpq , Li) =
∑

seq ∈{0,1}
p( zq | eq = seq , zpq ) p( eq = seq | Li) .

In the unrestricted model, this will involve computing
one term for each location, as illustrated in Figure 4(a).

In the restricted model, Figure 4(b), the term takes a
single common value for all locations where word q was
not previous observed (in those locations, the word exists
with probabilityp( eq | Li)

∣∣
0, which determines the value of

Equation 5. We denote this value by p( zq | zpq,L)
∣∣
0

).
Working with log-likelihoods, and given that the dis-

tribution will later be normalized, the calculation can be
reorganized so that it has a sparse structure (Figure 4(c)).

This allows for efficient implementation using an
inverted index. The terms shown in Figure 4(c) can be
thought of as the weights of the votes a word casts for a
location.

We emphasize the fact that the restriction we have placed
on the model is slight, and most of the power of the origi-
nal model is retained. During the exploration phase, when
only one observation is associated with each location, the
two schemes are identical1. The ‘fixed’ terms p( eq | Li)

∣∣
0

can (and do) vary with q (word ID), and in principle
also with time. Treatment of correlations between words,
of perceptual aliasing, and of the detector model remains
unaffected.

The second change we make to the model concerns data
association. Previously, data association was carried out via
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Fig. 4. Illustration of the calculation of one term of Equation
4, i.e. the observation likelihood due to a particular word in the
vocabulary. This example shows a map with four locations. The
total observation likelihood for a given location, p( Z | L), is calcu-
lated by evaluating the illustrated terms for all words in the vocab-
ulary. In (a), the model is unrestricted, and the likelihood term can
take a different value for each location. In (b), the restricted model,
the likelihood term in all locations where the currently considered
word was not previously observed is constrained to take the same
value. The calculation can now be organized so that it has a sparse
structure, as shown in (c) for the sparse likelihood update to the
restricted model.

Equation 9, updating the beliefs p( eq | Li). Effectively this
amounts to capturing the average appearance of a loca-
tion. For example, if a location has a multi-modal distri-
bution over word occurrence, such as a door that may be
either open or shut, then the location appearance model will
approach the mean of this distribution. In FAB-MAP 1.0,
when computation time increased swiftly with the number
of appearance models to be evaluated, this was a reasonable
design choice. For FAB-MAP 2.0 we switch to representing
locations in a sample-based fashion, which better handles
these multi-modal appearance effects. Locations now con-
sist of a set of appearance models as defined in Equation
1, with each new observation associated with the location
defining a new such model.

Concretely, a location Li now consists of a set of samples{
l1, l2, ..., lηk

}
i where ηk is the number of samples associated

with the location at time k. Each sample l is a FAB-MAP
1.0 ‘location model’ as defined in Section 3. Previously,
each location Li consisted of a single one of these mod-
els whose mean appearance was updated via Equation 9. In
the sample-based representation we simply associate mul-
tiple such models with a location, one for each observa-
tion collected from the location. The ‘samples’ are initial-
ized via Equation 9, but never subsequently updated. When
evaluating the observation likelihood during inference, we
compute the expectation over the samples:

p( Zk | Li) = 1
ηk

ηk∑

r=1

p( Zk | lr ∈ Li) . (10)

This change to a sample-based representation of the loca-
tions is actually required because of the restrictions placed
on scene element existence probabilities in our new archi-
tecture, but we expect it also to be largely beneficial.
In addition to improving our ability to deal with multi-
modal location appearance, it also makes data association
a reversible operation, and would make the implementation
of a scheme that maintains multiple hypotheses over data
association decisions (e.g. Ranganathan (2008)) very sim-
ple and efficient. While it means that inference time now
increases with every observation collected, the system is
sufficiently scalable so that this is not of immediate rele-
vance, and the greater ability to deal with variable location
appearance is preferred.

4.3. Implementation

Pseudocode for the main likelihood calculation required in
FAB-MAP is given in Algorithm 1. The complexity of this
implementation is O( #vocab), the number of words in the
visual vocabulary. This straightforward implementation is
in fact fast enough for practical use; however, it can be
improved by a caching scheme which yields an algorithm
with complexity effectively independent of vocabulary size.
The key observation is that, for a given word and a given
location, the log-likelihood increments (or ‘votes’) to be

calculated in Algorithm 1, log(
p(zq=sq|zpq =spq ,Li)

p(zq=sq|zpq =spq ,L)
∣∣∣
0

), have four

possible states:

Case 1 : ( sq = 1, spq = 1)

Case 2 : ( sq = 1, spq = 0)

Case 3 : ( sq = 0, spq = 1)

Case 4 : ( sq = 0, spq = 0) (11)

which depend on whether or not the word q and its parent
word pq are present in the current observation Zk . As obser-
vations are typically sparse, case 4, ( sq = 0, spq = 0), will
be by far the most common. We can exploit this fact by pre-
calculating the likelihood of a location Li as if all votes were
from case 4. This likelihood is calculated once, when the
location is added to the map, and cached. We refer to this as
the location’s ‘default likelihood’. When processing a new
observation, we need only adjust the default likelihood of a
location to take account of those words which actually lie
in cases 1 to 3 for the current observation. Calculating this
adjustment involves only those words that are present in the
current observation (cases 1, 2), or that are children of these
words in the Chow Liu tree (case 3). The number of words
present in a given observation is typically a small constant
independent of vocabulary size. The number of words that
relate to case 3 depends on the structure of the Chow Liu
tree, and in pathological cases could still be O( #vocab).
However, in practice we observe it to be a small multiple
of the number of observed words. Pseudocode for the algo-
rithm which exploits this sparsity is given in Algorithm 2.
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Algorithm 1 Calculation of p( Zk | Li) using the inverted index.
for q in vocabulary do:

//Get all locations where word q
//was observed
locations = inverted_index[q]
for Li in locations do:

//Update the log-likelihood
//of each of these locations
loglikelihood[Li] += log(

p(zq=sq|zpq =spq ,Li)

p(zq=sq|zpq =spq ,L)
∣∣∣
0

)

In our experiments using a 100,000 word vocabulary, we
observed an order of magnitude speed increase with this
approach.

5. Maintaining system performance at scale
This section discusses some issues relevant to maintaining
system performance when the map is very large. A geo-
metric verification stage is introduced which we found to
be almost essential in preserving precision on our largest
data sets. We also discuss scalable approaches to visual
vocabulary and Chow Liu tree learning.

5.1. Geometric verification

While a navigation system based entirely on the bag-of-
words likelihood is possible (e.g. Cummins and Newman
(2008b)), we have found in common with others
(Philbin et al. 2007) that a post-verification stage, which
checks that the matched images satisfy geometric con-
straints, considerably improves performance. The impact
is particularly noticeable as data set size increases – it is
helpful on our 70 km data set but almost essential on the
1000 km set.

We apply the geometric verification to a ‘shortlist’ of the
100 most likely locations (those which maximize p( Zk |
Li,Zk−1) p( Li | Zk−1)) and to the 100 most likely sam-
ples (the location models used to evaluate the normalizing
term p( Zk | Zk−1)). For each of these locations we check
geometric consistency with the current observation using
RANSAC (Fischler and Bolles 1981). Candidate interest
point correspondences are derived from the bag-of-words
assignment already computed. Because our aim is only
to verify approximate geometric consistency rather than
recover exact pose-to-pose transformations, we assume a
highly simplified model where the transformation between
poses is constrained to be a pure rotation about the vertical
axis. A single point correspondence then defines a trans-
formation. Due to this simplified model, and also because
our point correspondences typically have few outliers, the
geometric verification is very rapid. Only a few RANSAC
iterations are required – we assume 65% inliers and so only

13 RANSAC iterations are needed to recover a model with
an expected 10−6 error rate. The pure-rotation model is a
gross approximation but, given the constrained motion of
our vehicle mounted camera, it is good enough to give a
substantial boost to recognition performance, while impos-
ing very little computational overhead. We accommodate
some translation between poses by allowing large inlier
regions for point correspondences (up to 50 pixels in x and
y, and a factor of 4 in scale). Typical ‘consistent’ correspon-
dences are shown in Figure 5. Having recovered a set of
inliers using RANSAC we recompute the location’s likeli-
hood by setting zq = 0 for all those visual words that are
not part of the inlier set. A likelihood of zero is assigned
to all locations not subject to geometric verification. For
the 1000 km experiment, the mean time taken to geomet-
rically verify and re-rank all 200 shortlisted locations was
only 10 ms and the maximum time was 145 ms.

The post-verification step considerably boosts recogni-
tion performance; however, as a method of incorporating
geometric information it is not entirely satisfying. An inter-
esting alternative to post-verification would be to build
the geometric information directly into the core probabilis-
tic model which ranks locations. Some related work by
colleagues in our lab has recently explored this approach
(Paul and Newman 2010), although not yet in a formula-
tion which can be evaluated rapidly enough for the scales
considered in this paper.

5.2. Visual vocabulary learning at large scale

Clustering A number of challenges arise in learning visual
vocabularies at large scale. The number of SURF fea-
tures extracted from training images is typically very
large; our relatively small training set of 1921 images pro-
duces 2.5 million 128-dimensional SURF descriptors occu-
pying 3.2 GB. Even the most scalable clustering algorithms
such as k-means are too slow to be practical. Instead
we apply the fast approximate k-means algorithm dis-
cussed in Philbin et al. (2007), where, at the beginning
of each k-means iteration, a randomized forest of kd-
trees (Silpa-Anan and Hartley 2008; Muja and Lowe 2009)
is constructed over the cluster centers, which is then used
for fast (approximate) distance calculations. This procedure
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Algorithm 2 Log-likelihood update using the inverted index and exploiting observation sparsity.
Update, Part A (Default Likelihood):
//Each location’s likelihood is initialized
//to appropriate ‘default likelihood’
//which assumes an ‘null’ observation with zq = 0, ∀q
//This can be thought of as the sum of ‘default votes’ Dq

//for each observed word at the location
//Dq = log(

p(zq=0|zpq =0,Li)

p(zq=0|zpq =0,L)
∣∣∣
0

)

//Note that the default likelihood will be
//different for each location.
Initialize_Locations_To_Default_Likelihood()

Update, Part B (Observations such that zq = 1):
//Now, adjust the votes based on the content of the current observation.
for zq in Z, such that zq = 1 do:

//Get all locations where word q
//was observed
locations = inverted_index[q]
for Li in locations do:

//Update the log-likelihood
//of each of these locations
//by removing the default vote Dq

//and adding the appropriate vote.

loglikelihood[Li] += log(
p(zq=1|zpq =spq ,Li)

p(zq=1|zpq =spq ,L)
∣∣∣
0

) −Dq

Update, Part C (Observations such that zq = 0 and zpq = 1):
//Same as Part B, but for unobserved words that are
//children of observed words in the CL tree.
for zq in Z, such that zq = 0 and zpq = 1 do:

locations = inverted_index[q]
for Li in locations do:

loglikelihood[Li] += log(
p(zq=0|zpq =1,Li)

p(zq=0|zpq =1,L)
∣∣∣
0

) −Dq

has been shown to outperform alternatives such as hier-
archical k-means (Nistér and Stewenius 2006) in terms of
visual vocabulary retrieval performance.

As k-means clustering typically converges only to a local
minimum of its error metric, the quality of the visual vocab-
ulary is sensitive to the initial cluster locations supplied to
k-means. Nevertheless, random initial locations are com-
monly used. We have found that this leads to poor visual
vocabularies, because there are very large density varia-
tions in the feature space. In these conditions, randomly
chosen cluster centers tend to lie largely within the densest
region of the feature space, and the final clustering over-
segments the dense region, with poor clustering elsewhere.
For example, in our vehicle-collected data, huge numbers
of very similar features are generated by road markings,
whereas rarer objects (more useful for place recognition)
may only have a few instances in the training set. Randomly
initialized k-means yields a visual vocabulary where a large
fraction of the words correspond to road markings, with tiny

variations between words. Similar effects were observed
by Jurie and Triggs (2005). Examples are shown in
Figure 6.

To avoid these effects, we choose the initial cluster
centers for k-means using a fixed-radius incremental pre-
clustering, where the data points are inspected sequentially,
and a new cluster center is initialized for every data point
that lies further than a fixed threshold from all existing clus-
ters. This is similar to the furthest-first initialization tech-
nique (Dasgupta and Long 2005), but more computation-
ally tractable for large data sets. We also modify k-means
by adding a cluster merging heuristic. After each k-means
iteration, if any two cluster centers are closer than a fixed
threshold, one of the two cluster centers is re-initialized to
a random location.

The modified clustering gives a robust boost to system
performance (Figure 7). We have observed the effect on
multiple data sets and under various different system con-
figurations (with and without geometric verification, etc.).
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Fig. 5. A example of geometric verification, showing inliers identified by RANSAC. Note that we are not recovering an exact pose-to-
pose transformation; the correspondences are only approximately geometrically consistent.

Curiously, however, we do not see the effect when using tf-
idf ranking. We have no intuitive explanation for why tf-idf
does not benefit in a similar way to FAB-MAP.

Chow Liu tree learning Chow Liu tree learning is also
challenging at large scale. The standard algorithm for learn-
ing the Chow Liu tree involves computing a (temporary)
mutual information graph of size |v|2, so the computation
time is quadratic in the vocabulary size. For the 100,000
word vocabulary discussed in Section 7, the relevant graph
would require 80 GB of storage. Happily, there is an effi-
cient algorithm for learning Chow Liu trees when the data
of interest is sparse (Meilă 1999). Meilă’s algorithm has
complexity O( s2 log s), where s is a sparsity measure, equal
to the maximum number of visual words present in any
training image. Visual word data is typically very sparse,
with only a small fraction of the vocabulary present in any
given image. This allows efficient Chow Liu tree learning
even for large vocabulary sizes. For example, the tree of the
100,000 word vocabulary used in Section 7 was learned in
31 minutes on a 3 GHZ Pentium IV.

For both the clustering and Chow Liu learning, we use
external memory techniques to deal with the large quanti-
ties of data involved (Dementiev et al. 2008).

6. Data set
For a truly large scale evaluation of the system, the exper-
iments in this paper make use of a 1000 km data set. The
data was collected by a car-mounted sensor array (see Fig-
ure 8), and consists of omni-directional imagery from a
Point Grey Ladybug2, 20 Hz stereo imagery from a Point
Grey Bumblebee2, and 5 Hz GPS data. Omni-directional
image capture was triggered every 4 m on the basis of GPS.
The omni-directional images were captured at 1920 × 512
resolution, and the stereo images at 512 × 384.

The data set was collected over six days in Decem-
ber, with a total length of slightly less than 21 hours, and
includes a mixture of urban, rural and motorway environ-
ments. The total set comprises 803 GB of imagery (includ-
ing stereo) and 177 GB of extracted features. There are
103,256 omni-directional images, of which 49,493 are loop
closures. The median distance between image captures is
8.7 m – this is larger than the targeted 4 m because the
Ladybug2 could not provide the necessary frame rate dur-
ing faster portions of the route. The median time between
image captures is 0.48 s, which provides our benchmark for
real-time image retrieval performance.

Two supplemental data sets were also collected. A set
of 1921 omni-directional images collected 30 m apart was
used to train the visual vocabulary and Chow Liu tree, and
also served as the sampling set for the Monte Carlo inte-
gration required in Equation 8. The area where this train-
ing set was collected did not overlap with that of the test
data sets. A second data set of 70 km was also collected in
August, four months prior to the main 1000 km data set.
This serves as a smaller-scale test of the system. The data
sets are summarized in Table 1.

The 1000 km data set, collected in mid-December, pro-
vides an extremely challenging benchmark for place recog-
nition systems. Due to the time of year, the sun was
low on the horizon, so that scenes typically have high
dynamic range and quickly varying lighting conditions.
We developed custom auto-exposure controllers for the
cameras that largely ensured good image quality; how-
ever, there is unavoidable information loss in such con-
ditions. Additionally, large sections of the route feature
self-similar motorway environments, which provide a chal-
lenging test of the system’s ability to deal with perceptual
aliasing. The smaller data set collected during August fea-
tures more benign imaging conditions and will demonstrate
the performance that can be typically expected from the
system.
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Fig. 6. The 100 most common visual words in the vocabular-
ies used for the car-based experiments, showing one exemplar
per word. With random initialization, (b), k-means tends to over-
segment the densest regions of feature space, leading to a visual
vocabulary with many highly similar visual words (in this case,
many words corresponding to near-identical views of road mark-
ings). Using radius-based initialization and cluster merging, (a),
produces a visual vocabulary with words that are better separated
in feature space.

Finally, collecting a data set of this magnitude highlights
some practical challenges for any truly robust field robotics
deployment. We encountered significant difficulty in keep-
ing the camera lenses clean – in winter from accumulat-
ing moisture and particulate matter, in summer from fly

Fig. 7. Precision–recall curves showing the effect of k-means ini-
tialization on overall performance. Performance shown is for a
subset of the 1000 km data set, ranked according to the baseline
FAB-MAP 2.0 model (i.e. not including motion model or geomet-
ric check). Detector terms were tuned separately for each vocab-
ulary, so as to make the comparison fair. The performance dif-
ference persists after geometric re-ranking is added to the model.
Curiously, we do not observe the effect when using tf-idf ranking.

impacts. For this experiment we periodically cleaned the
cameras manually – a more robust solution seems a worthy
research topic.

The 70 km data set is available at http://www.robots.ox.
ac.uk/ mobile/EynshamDataset.html (Extension 1), and the
1000 km data set (Extension 2) is available upon request.

7. Results
We now present the system performance evaluation. Over-
all performance is outlined, the impact of the Chow Liu
tree is examined, and the system is benchmarked against
the common tf-idf weighting function.

7.1. Test conditions

The system was tested on the two data sets, 70 km and
1000 km. As input to the system, we used 128-dimensional
non-rotationally invariant SURF descriptors. These features
were quantized to visual words using a randomized for-
est of eight kd-trees. The visual vocabulary and Chow
Liu tree were trained using the system described in Sec-
tion 5.2 and the 1921 image training set described in Sec-
tion 6. In order to ensure an unbiased Chow Liu tree, the
images in the training set were collected 30 m apart, so
that as far as possible they do not overlap in the view-
point, and thus approximate independent samples from the
distribution over images.

We investigated two different visual vocabularies, of
10,000 and 100,000 words. The detector model (Equation
2), the main user-configurable parameter of our system, was
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Table 1. Data set summary.

Data set No of images No of loop closures Median distance Extracted features Environment
between images

1000 km 103,256 48,493 8.7 m 177 GB Motorways, urban, rural
70 km 9,575 4,757 6.7 m 16 GB Urban, rural

Fig. 8. Vehicle and sensor rig used to capture the 70 km and
1000 km data sets. The rig consists of a Ladybug2 omni-
directional camera and Bumblebee stereo camera, both from Point
Grey Research. The cameras were mounted approximately 3 m
above the road surface. GPS data was collected with a Seres unit
from CSI Wireless, mounted on the roof of the car.

determined by a grid search to maximize performance on a
set of training loop closures. The detector model primar-
ily captures the effects of variability in SURF interest point
detection and feature quantization error. For the 10,000
word vocabulary we set p( z = 1 | e = 1) = 0.39 and
p( z = 1 | e = 0) = 0.005. For the 100,000 word vocab-
ulary, the values were p( z = 1 | e = 1) = 0.2 and
p( z = 1 | e = 0) = 0.005. The likelihood smoothing
term σ introduced in Section 3 was set to 0.99, except in the

case where the geometric check was used, where we found
it to be unnecessary. This means that when the geometric
check was applied, the system could accept a loop closure
on the basis of a single image. Finally, we also investigated
the importance of learning the Chow Liu tree by comparing
against a Naive Bayes formulation which neglects the cor-
relations between words. We refer to these different system
configurations as ‘100k, CL’ and ‘100k, NB’, and similarly
for the 10k word vocabulary.

Performance of the system was measured against ground
truth loop closures determined from the GPS data. GPS
errors and dropouts were corrected manually. Any pair of
matched images that were separated by less than 40 m on
the basis of GPS was accepted as a correct correspondence.
Note that while 40 m may seem too distant for a correct cor-
respondence, on divided highways the minimum distance
between correct loop closing poses was sometimes as large
as this. Almost all loop closures detected by the system are
well below the 40 m limit: 89% were separated by less than
5 m, and 98% by less than 10 m (see Figure 9).

We report precision–recall metrics for the system. Pre-
cision is defined as the ratio of true positive loop-closure
detections to total detections. Recall is the ratio of true
positive loop-closure detections to the number of ground
truth loop closures. Note that images for which no loop clo-
sure exists cannot contribute to the true positive rate; how-
ever, they can generate false positives. Likewise true loop
closures which are incorrectly assigned to a ‘new place’
depress recall but do not impact our precision metric. These
metrics provide a good indication of how useful the sys-
tem would be for loop-closure detection as part of a metric
SLAM system – recall at 100% precision indicates the per-
centage of loop closures that can be detected without any
false positives that would cause filter divergence. Finally,
note that a typical loop closure consists of a sequence of
several images, so even a recall rate of 20% or 30% is suf-
ficient to detect most loop-closure events, provided that the
detections have uniform spatial distribution.

7.2. Overall performance

Overall, we found the system to have excellent performance
on the 70 km data set, while the 1000 km data set was more
challenging. Precision recall curves for the two data sets
are shown in Figure 10, and given numerically in Table 2. A
results video is available online in Extension 3. Loop clos-
ing performance is also visualized in the maps shown in
Figures 15 and 16. Loop closures are often detected even in
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Fig. 9. The typical displacement in meters between two images
identified as loop closures. While any pair separated by less than
40 m is accepted as a true positive, because the ground truth sepa-
ration can occasionally be this large, 89% of detected loop closures
are separated by less than 5 m, and 98% by less than 10 m.

the presence of large changes in appearance, typical exam-
ples are shown in Figures 17 and 18. It is worth noting
also that there are many examples of loop closures correctly
detected by FAB-MAP but not by GPS, particularly under
foliage and in city centers.

The performance contributions of the motion model and
the geometric verification step are analyzed in Figure 10
and presented numerically in Table 2. The geometric check
in particular is useful in maintaining recall at higher levels
of precision. The motion model is largely unnecessary on
the 70 km set. On this set we detect 44% of all pose-to-pose
correspondences at 100% precision, without using any tem-
poral information. These loop closures are detected on the
basis of a single image. At 99% precision, the recall rises
to 69.9%. On the 1000 km set, the motion model makes
a more noticeable contribution. Note, however, that the
motion model we use is very weak. Stronger motion con-
straints, for example from a visual odometry system, would
be expected to have a much larger impact. In combination
with such motion information, it seems that it should be
possible to achieve close to 100% recall on the 70 km set.

The effect of vocabulary size and the Chow Liu tree
on performance is shown in Figure 11 and Table 3. In
common with other authors (Nistér and Stewenius 2006;
Philbin et al. 2007), we find that performance increases
strongly with vocabulary size. The Chow Liu tree also
boosts performance on all data sets and at all vocabulary
sizes. The effect is weaker at the very highest levels of
precision. We discuss this in more detail in the next section.

The recall rate for the 70 km data set is 48.4% at 100%
precision, rising to 73.2% at 99% precision. The spatial

distribution of these loop closures is uniform over the tra-
jectory – thus essentially every pose will be either detected
as a loop closure, or a lie within a few meters of a loop clo-
sure. There are two short segments of the trajectory where
this is not the case: one in a forest with poor lighting condi-
tions, another in open fields with few visual landmarks. For
practical purposes this data set can be considered ‘solved’.

By contrast, the recall for the 1000 km data set at 100%
precision is only 3.1%. However, this figure requires careful
interpretation – the data set contains hundreds of kilome-
ters of motorways, where the environment is essentially
devoid of distinctive visual features (see Figure 21). It is
perhaps not reasonable to expect appearance-based loop-
closure detection in such conditions. To examine perfor-
mance more closely, we considered separately the results
for portions of the trajectory where the vehicle is travel-
ling below 50 km/h (mainly urban areas). We refer to this
evaluation as ‘1000 km Urban’ in Tables 2 and 3. For these
images (31% of the data set) the recall is 6.5% at 100%
precision, rising to 18.5% at 99% precision. Note that the
retrieval here is performed against the complete 1000 km
data set, the only salient difference being the distinctive-
ness of the query images. Given that the loop closures have
an even distribution over the trajectory (Figure 15), even a
recall rate of 6.5% is likely to be sufficient to support a good
metric SLAM system.

Both data sets exhibit a sharp drop in recall between 99%
and 100% precision. This drop is caused by particularly
challenging cases of perceptual aliasing, such as encoun-
tering rare-but-repetitive objects in the environment. Figure
19 shows the two highest confidence false positives from
the 1000 km set, typical of these difficult cases. The scenes
have high similarity in both a bag-of-words and geometric
sense; however, the primary reason that they are difficult to
identify as false positives is that the repetitive objects they
contain are relatively uncommon in the environment, and
so are not easily captured by the sampling set. By contrast,
the scenes shown in Figure 21 do not cause such problems,
despite high similarity, because the content of the image is
common in the environment. Given that the system’s sam-
pling set consists of less than 2000 images, these effects are
perhaps not surprising. If a second navigation experiment
were conducted using all of the 1000 km data for train-
ing, we may begin to develop robustness even to occasional
repeated features such as those in Figure 19. Other natural
methods to deal with these cases include relying more heav-
ily on temporal support, or perhaps some level of semantic
verification such as rejecting the loop closure in Figure 19b
because the matched object is a vehicle.

7.3. The effect of the Chow Liu tree near 100%
precision

It is a notable feature of Figure 11 that while the Chow Liu
tree clearly improves the precision–recall curve up to the
99% precision point, it does not seem to give a consistent
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Fig. 10. Precision–recall curves showing the effect of the different system components on performance: (a) 70 km set; (b) 1000 km
set. Note the scaling on the axes. Results shown are for the 100k vocabulary with Chow Liu tree. Relative performance in other
configurations is similar. ‘Baseline’ refers to the system without the geometric check and with a uniform position prior at each timestep.
‘Motion model’ includes the position prior p( Li|Zk−1), allowing loop closures to benefit from temporal support. ‘Geometric Check’
re-ranks the top 100 most likely locations by considering the geometric consistency of matched image interest points.

Table 2. Recall figures at specified precision showing the effect of different system components. A dash indicates that there is no
threshold that produces the specified precision level. The same information is presented as a precision–recall curve in Figure 10.
‘Baseline’ refers to the system without the geometric check and with a uniform position prior at each timestep. ‘Motion model’ includes
the position prior p( Li|Zk−1), allowing loop closures to benefit from temporal support. ‘Geometric check’ re-ranks the top 100 most
likely locations by considering the geometric consistency of matched image interest points.

Data set 70 km 1000 km 1000 km Urban

Precision 100% 99% 100% 99% 90% 100% 99%

Recall
Motion model and geometric check 48.5 73.2 3.1 8.3 14.3 6.5 18.5
Geometric check only 44.0 69.9 2.6 5.1 9.7 6.9 12.2
Motion model only 23.1 41.8 0.2 0.2 4.7 0.6 0.7
Baseline − − − − 0.5 − −

improvement at 100% precision. Performance at 100% pre-
cision is of most relevance to a metric SLAM system, which
typically cannot recover from a false data association deci-
sion. This raises the question of whether the Chow Liu tree
is actually of practical benefit in a loop-closure detection
system.

Firstly, we note that for some SLAM systems it may be
possible to make use of loop-closure signals which have less
than 100% precision, if some secondary step can be used to
increase the precision to 100%. For example, in the system
of Williams et al. (2008), when a putative loop closure is
identified, the system attempts to track in the relevant sec-
tion of the map. If the tracking fails, the loop closure is
not accepted. In combination with a secondary step of this
kind, the recall boost provided by the Chow Liu tree will be
beneficial.

However, it would obviously be preferable if we could
determine why the Chow Liu tree does not naturally lead to
higher recall at 100% precision. As noted in the previous
section, the main difficulty in moving from 99% to 100%
precision is overcoming a few very challenging examples
of perceptual aliasing, such as those illustrated in Figure
19. The Chow Liu tree does not particularly help in dealing
with false positives due to perceptual aliasing; its main pur-
pose is to improve the similarity measure between images,
allowing more difficult matches to be correctly identified
(as evidenced by higher recall along most of the preci-
sion curve). Rejection of false matches due to perceptual
aliasing is mainly achieved by the Monte Carlo integration
of the partition function described at the end of Section3.
This becomes the performance limiting factor at the top
end of the precision recall curve, particularly in large data

 at Oxford University Libraries on July 25, 2011ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


14 The International Journal of Robotics Research 00(000)

Fig. 11. Precision–recall curves showing the effect of the vocabulary size and the Chow Liu tree on performance: (a) 70 km set; (b)
1000 km set. Note the scaling on the axes. Performance shown includes motion model and geometric check. Performance increases
strongly with vocabulary size. The Chow Liu tree also increases performance, for all vocabulary sizes.

Table 3. Recall figures at specified precision for varying vocabulary size and with/without the Chow Liu tree. A dash indicates that there
is no threshold that produces the specified precision level. The same information is presented as a precision–recall curve in Figure 11.
Recall improves with increasing vocabulary size at all levels of precision. The Chow Liu tree also improves recall in all cases with the
exception of the 100k vocabulary at 100% precision. The 100% precision figure is sensitive to the probability assigned to all possible
false positives, so can be skewed by a single outlier with a high likelihood. So whereas the Chow Liu tree yields better probability
estimates in general, the effect is more robustly observable at lower levels of precision, where it cannot masked by a small number of
outliers.

Data set 70 km 1000 km 1000 km Urban

Precision 100% 99% 100% 99% 90% 100% 99%

Recall

100k CL 48.5 73.2 3.1 8.3 14.3 6.5 18.5
100k NB 49.1 70.0 3.7 7.9 13.5 7.5 17.9
10k CL 37.0 52.3 − 2.7 4.7 − 5.2
10k NB 30.1 51.5 − − 4.4 − −

sets such as those considered here. No matter how good a
similarity metric we learn (via the Chow Liu tree), recall
at 100% precision cannot improve until we have a way to
reject the (very visually similar) false positive matches that
arise.

We conclude that the Chow Liu is indeed performing
well; however, its impact is masked near 100% precision.
We would expect the tree to have a bigger impact if (a)
the perceptual aliasing is less severe (e.g. smaller envi-
ronments, cf our earlier results in Cummins and Newman
(2008b)), (b) the handling of perceptual aliasing was
improved, perhaps via Monte Carlo integration over a larger
sampling set, or via some other technique developed sub-
sequent to this paper, or (c) the data was such that the

performance-limiting factor was detecting difficult matches
rather than rejecting perceptual aliasing.

A secondary factor which may be relevant is that while
the Chow Liu tree will on average improve the likelihood
estimates assigned, some individual likelihoods may get
worse. The recall at 100% precision is determined by the
likelihood assigned to the very last false positive to be
eliminated. While on average we expect the Chow Liu tree
to improve this likelihood estimate, the opposite may be
observed in some fraction of data sets. Below 100% pre-
cision the results are sensitive to the likelihood estimates
for a larger number of false positives, and so the improve-
ment due to the Chow Liu tree is more robustly observable.
However, we do not think that this is the dominant effect.

 at Oxford University Libraries on July 25, 2011ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


Cummins and Newman 15

Fig. 12. Comparison to tf-idf ranking: (a) 70 km set; (b) 1000 km set. FAB-MAP substantially outperforms this standard ranking metric,
particularly on the larger data set. To ensure the fairest possible comparison, these performance figures relate to a retrieval-only task
that excluded new place detection. See Section 7.4 for details.

Fig. 13. Bag-of-words generation time (per Ladybug2 panoramic image) for a representative sample of the 1000 km data set, using the
100k vocabulary. The time is dominated by SURF generation, (a), which takes 423 ms on average. Quantization using the randomized
kd-trees, (b), takes on average 60 ms.

7.4. Comparison to tf-idf

Term-frequency inverse-document-frequency (tf-idf) is a
standard ranking metric used in most existing visual search
engines (Sivic and Zisserman 2003; Philbin et al. 2007;
Jégou et al. 2008; Manning et al. 2008). To compare FAB-
MAP against this baseline in the most transparent way pos-
sible, we examined performance on a pure retrieval task.
For each image in our data sets where at least one valid
match exists, we computed the ranking according to the
tf-idf weighted cosine distance and also according to the
FAB-MAP likelihood p( Zk | Li)3. This ranking-only task is
intended to examine the likelihood function alone, so does
not involve new place detection, motion model effects or
geometric re-ranking. For the 1000 km data set there are
48,493 images that have at least one valid loop closure;
for the 70 km set there are 4757. Retrieval was performed

against the set of images collected up to the point of loop
closure. There are a variety of ways to perform the tf-idf
weighting – we have followed Jégou et al. (2008) and have
verified that our implementation gives results identical to
those reported there.

Precision–recall curves showing relative performance are
given in Figure 12. FAB-MAP substantially outperforms tf-
idf, the difference being particularly dramatic on the 1000
km data set.

The performance of tf-idf results could perhaps be
improved by applying various known tweaks to the mea-
sure – for example, by taking account of word bursti-
ness (Jégou et al. 2009) or using pivoted normalized doc-
ument lengths (Manning et al. 2008) among others. How-
ever, it seems to us that increasing performance in this way
essentially amounts to finding heuristics by trial-and-error.
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Fig. 14. Filter update times on the 1,000 km data set for the 100k vocabulary, (a). Mean filter update time is 14 ms and maximum
update time is 157 ms. The cost is dominated by the RANSAC geometric verication, which has O(1) complexity. The core ranking stage
excluding RANSAC, (b), exhibits linear complexity but with a very small constant - taking 25ms on average with 100,000 locations in
the map.

Indeed, to achieve the performance reported here already
required considerable experimentation with various aspects
of the tf-idf measure, such as whether to use L1 or L2 nor-
malization, whether to apply tf-idf weighting to query or
document vectors or both, how the tf counts should be nor-
malized, etc. Some of these choices, particularly the choice
of vector normalization, have a dramatic impact on rank-
ing performance, without any clear intuition as to why.
FAB-MAP by contrast is a natural generative framework
which provides a clear rationale for the structure of the
ranking function and offers paths to improved performance
via extensions to the generative model. It also substantially
out-performs tf-idf for our application of interest.

7.5. Timing

Timing performance is presented in Figure 14. Average
filter update time over the 1000 km data set, including
the geometric check, was 14 ms. The time quoted was
measured on a single core of a 2.40 GHZ Intel Core 2
processor. SURF feature extraction and kd-tree quantiza-
tion adds an overhead of 484 ms on average, with typical
variance illustrated in Figure 13. The cost is dominated
by 423 ms for SURF. Recent GPU-based implementations
can largely eliminate this overhead (Cornelis and Van Gool
2008). However, even including feature detection, our real-
time requirement of 480 ms could be achieved by simply
spreading the processing over two cores.

7.6. Comparison to original system

In comparison to the original system described in
Cummins and Newman (2008b), the inference times of the

system described here are on average 4400 times faster,
with comparable precision–recall performance. Equally
important, the sparse representation means that location
models now require only O( 1) memory, as opposed to
O( #vocabulary). For the 100k vocabulary, a typical sparse
location model requires 4 KB of memory as opposed to 400
KB previously. This enables the use of large vocabularies
which improve performance, and is crucial for scalability
because the size of the mappable area is effectively limited
by available RAM.

8. Summary
This paper has outlined a new, highly scalable architec-
ture for appearance-only SLAM. We have defined a new
model that permits efficient inverted index implementation,
while preserving the key benefits of our original Bayesian
approach to the problem. The framework is fully proba-
bilistic, and deals with challenging issues such as percep-
tual aliasing and new place detection. In addition to these
benefits, as a pure ranking function it has been shown to
considerably out-perform the baseline tf-idf approach. The
paper also discussed techniques necessary for visual vocab-
ulary generation and Chow Liu tree learning at large scale.
On the issue of vocabulary learning, we have demonstrated
the benefit of good cluster center initialization on overall
performance. Finally, we have evaluated the system on two
substantial data sets, of 70 km and 1000 km. Both experi-
ments are larger than any existing result we are aware of.
Our approach shows very strong performance on the 70 km
experiment, in conditions of challenging perceptual alias-
ing. For practical purposes this set can be considered solved,
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and moreover this performance can be achieved on the
basis of single images, without temporal information. The
1000 km experiment is more challenging, and we do not
consider it fully solved; nevertheless, our system’s perfor-
mance is already sufficient to provide a useful competency
for an autonomous vehicle operating at this scale. Our data
sets are available to the research community, and we hope
that they will serve as a benchmark for future systems.
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Notes

1. Assuming the detector model does not change with time.
2. Not used in these results.
3. Note that the tf-idf measure has access to word count (tf)

information which is not used by FAB-MAP.
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Appendix: Index to Multimedia Extensions
The multimedia extension page is found at http://www.
ijrr.org

Extension Type Description

1 Data 70 km data set, available at
http://www.robots.ox.ac.uk/ ~
mobile/EynshamDataset.html

2 Data 1000 km data set, available on
request

3 Video Results video for 70 km and
1000 km data sets
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Fig. 15. Loop-closure maps for the 1000 km data set. Best viewed in colour (online). Sections of the trajectory where loop closures
exist are shown in red. (a) The ground truth. (b) Loop closures detected by FAB-MAP (100k CL), showing 99.8% precision and 5.7%
recall. There are 2819 correct loop closures and six false positives. False positives are marked with a green line between poses; however,
the six present here are spatially close, so are not readily visible on the map. The long section on the right with no detected loop closures
is a motorway at dusk. The section on the bottom left with intermittent loop closures is also a motorway.

Fig. 16. Loop-closure maps for the 70 km data set. Best viewed in colour (online). Sections of the trajectory where loop closures exist
are shown in red. (a) The ground truth. (b) Detected loop closures using FAB-MAP (100k CL), at 100% precision. The recall rate is
48.4%. However, the system clearly detects loop closures in almost all parts of the trajectory. The recall rate reflects the fact that not
every possible image along the trajectory is matched. Two short sections of the trajectory generate fewer loop closures – one is in a
forest, where imaging conditions were poor, the other is in open fields, with few visual landmarks. A total of 2300 loop closures are
detected, with no false positives.
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Fig. 17. Some correct loop closures from the 1000 km data set. The system typically finds correct matches in the presence of consid-
erable scene change when the image content is distinctive. (a) At the confidence value of this match, the precision is 99.6%; (b) at the
confidence value of this match, the precision is 100%.
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Fig. 18. Some correct loop closures from the 70 km data set. These are not unusual matches. The system typically finds correct matches
in the presence of considerable scene change when the image content is distinctive. (a) At the confidence value of this match, the
precision is 100%; (b) at the confidence value of this match, the precision is 99.9%.
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Fig. 19. The two highest confidence false positives in the 1000 km data set. Both matches are assigned probabilities very close to 1.
In (a), we pass a similar-looking roundabout. The locations are 1 km apart. In (b), we encounter the same van twice. The locations are
9 km apart. Such rare-but-repetitive objects represent the most challenging class of perceptual aliasing.
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Fig. 20. Some examples of perceptual aliasing correctly handled by the system. In (a), the locations are 4 km apart. Their highly similar
appearance is typical of motorway driving. However, this similarity does not lead to a false positive loop-closure detection because this
repetitive aspect of the environment has been captured in the sampling set used to evaluate the partition function p( Zk | Zk−1) (see
Section 3). This allows the system to assign the newly collected image a ‘new place’ probability of 0.9997. A similar case from the
70 km set is shown in (b).  at Oxford University Libraries on July 25, 2011ijr.sagepub.comDownloaded from 
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Fig. 21. A typical false negative. Figures (a), first image captured at the location, and (b), image collected at loop closure, come from
the same location, but the loop closure is not detected by FAB-MAP. Figure (c) shows a second, unrelated location, with very similar
appearance, to illustrate the self-similar character of the route. The 1000 km sequence contains hundreds of kilometers of such motorway
scenes, so the system’s inability to correctly identify this loop closure is unsurprising. This effect depresses the recall in the 1000 km
results. However, the strong perceptual aliasing generates very few false positive detections. In the above case, the new observation is
assigned to a new place with probability 0.9994. This is possible because these common modes of perceptual aliasing are easily captured
by the sampling set.
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