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Abstract— Simultaneous Localization and Mapping (SLAM)
builds maps of a priori unknown environments. Whilst this
key mobile robotic competency continues to receive substantial
attention, less attention has been paid to assessing the quality
of the resulting maps. This paper proposes a way to quantify
the intrinsic quality of point-cloud maps built from a stream of
range bearing measurements. It does so by considering both the
temporal and spatial distribution of the points within the map.
One of the causes of unsatisfactory maps is the execution of un-
modelled or poorly sensed vehicle manoeuvres. In this paper we
show that by maximizing the quality of the map as a function of
a motion parameterization, the vehicle motion can be recovered
while correcting the map at the same time. In contrast to typical
scan matching techniques, we do not rely on segmentation of
the measurement stream into two separate “scans”; Instead we
treat the measurement sequence as a continuous signal. We
illustrate the efficacy of this approach by processing range data
from a 77GHz millimeter wave radar that completes 2 rotations
per second. We show that despite this acquisition speed being
commensurate with vehicle rotation rates, we are able to extract
the underlying vehicle motion and yield crisp, well aligned point
clouds.

I. INTRODUCTION

We are familiar with Simultaneous Localisation and Map-
ping (SLAM) algorithms as a technique that is commonly
used for building maps of a priori unknown environments.
Indeed SLAM has been, and continues to be, the focus of an
immense amount of research in the mobile robotics community
[11][12][15]. Fine progress has been made in understanding
the fundamentals of the problem and in building modest
implementations. There also exists prior work [14][13][9] on
modelling of the environment for learning maps as well as
assigning distinctiveness measure to various portions of the
map to aid tasks such as localization. However, relatively less
attention has been paid to actually measuring the quality of
these maps. This paper seeks, in part, to address this imbalance
and proposes a quality metric which can be applied to point-
cloud maps — one of two contributions this paper makes. A
good map can be measured by how well it conveys information
about the environment. Assuming the world is made of sharp
edges, normal incidence of the sensor’s beam should yield a
sharp representation of the environment. We define a good map
as one where the rendered point-cloud produces a well-defined
and unblurred ”image” of the environment. The quality metric
proposed scores low for crisp, well-formed maps and high

for blurred, confused renderings. The temporal distribution of
the constituent points in the point-cloud is introduced as a
contributing factor towards the quality metric along with the
spatial properties.

A common cause of unsatisfactory mapping is the execution
of un-modelled or poorly sensed vehicle manoeuvres. For
example a land-based vehicle may experience excessive wheel
slippage while turning or a marine vehicle may undergo un-
modelled lateral drift. The second contribution of this paper is
to take the map-quality metric and use it to annul the effects of
unknown or incorrect short-term vehicle motion by estimating
new or improved vehicle motion parameters. This is achieved
by first expressing the map quality metric as a function of
a parameterization of vehicle motion. Since the map quality
metric scores low for good maps, minimizing this metric will
maximizes the map quality. The vehicle motion parameter set
is then found by maximizing map quality.

The motivation for this work is an ongoing project to
utilize a 77-GHz millimeter wave radar sensor. The sensor
has an angular acquisition rate substantially below that of
the common-place SICK laser range finder. The combined
effect of measuring ranges up to 400m and swift vehicle
rotations make it hard to justify the adoption of a scan
matching technique[1]. To illustrate, if we were to chop the
radar measurement stream into ”scans” corresponding to one
complete sensor revolution, one would observe intra-scan
distortion (particularly at large distances) caused by the vehicle
motion during the scan. In this work we suggest an alternative
to scan matching in which the radar measurement stream is
considered as a whole and used to estimate vehicle motion
during various vehicle manoeuvres.

This paper is divided into the following sections. Back-
ground on mapping using radar is covered in section II. Section
III develops and describes the quality metric of maps we utilize
in this paper. Section IV describes the implementation and
evaluation of the technique as a motion estimator using data
gathered from a mobile robot equipped with a millimeter wave
radar.

II. BACKGROUND

Millimeter wave radars have been successfully used in the
area of outdoor autonomous navigation [7][6]. Radars are
long range sensors and hence are well suited for outdoor



applications and large scale mapping. They are also known
to be little affected by weather and lighting conditions[2].

Durrant-Whyte[7], [4], [5] implements the navigation of
an autonomous guided vehicle designed to transport standard
cargo containers in port environments using millimetre-wave
(MMW) radar sensors. The sensors are used to detect the range
and bearing of a number of fixed known beacons located in the
environment. Two radar units, at 77GHz, are mounted at the
front and rear of the vehicle. The navigation system works by
detecting the range and bearing to a set of beacons placed at
known, mapped locations about the environment. The beacons
are radar trihedrals, effectively internal corner reflectors. Clark
and Durrant-Whyte [4], [5] use the radar returns either for
location determination, or to build a terrain map in front of
the vehicle. Location determination is achieved by matching
and triangulating pre-placed beacons to a map of their known
co-ordinates. Polarisation information is used to distinguish
location beacons from terrain reflections.

Dissanayake et al[6] use MMW radar to implement the
simultaneous localization and mapping algorithm on a vehicle
operating in an outdoor environment. The radar returns the
range and bearing to a landmark. The number and location
of the landmarks is not known a priori. Landmark locations
need to be initialized and inferred from observations alone.
The radar receives reflections from many objects present in
the environment but only the observations resulting from
reflections of stationary point landmarks should be used in the
estimation process. In their implementation landmark quality
implicitly tests whether the landmark behaves as a stationary
point landmark. Range and bearing measurements which ex-
hibit this behavior are assigned a high quality measure and are
incorporated as a landmark. Those measurements that do not
are rejected.

Foessel-Bunting [10] uses the evidence grid approach for
three dimensional map building with a radar sensor model. The
evidence grid approach divides the space of interest, which can
be two-dimensional or three-dimensional, into regular cells.
Each cell stores the accumulated evidence of occupancy for
the corresponding area or volume as provided by the sensor
observations. The technique takes into account the uncertainty
of sensor data through a probabilistic sensor model.

The framework of evidence grid or occupancy grid[8] has
been used in the area of adaptive robotic exploration to
maximize map accuracy[3]. The spatial representation of the
environment is used to calculate the entropy of the map and
hence the accuracy. The disadvantage of this metric is that
the method is highly dependent on accurate estimation of the
robot’s location. Since the observations are taken in sensor
space which is relative to the robot’s absolute location, the
correct cells can be updated only when the correct location of
the robot is known.

III. QUALITY METRIC OF MAP

This paper proposes a quality metric or score ψ, for point
cloud maps. A cost function,ψ(·), is proposed such that ‘good
maps’ map to a lower value than ‘bad-maps’. What constitutes

Fig. 1. Figure illustrates the motion of the robot, the generation of (x, y)
points in the map set M and explains the selection of spatial-temporal nearest
neighbors. Given the initial position, xo and the motion parameter p of the
vehicle, the pose of the vehicle at time t can be calculated. Using the pose and
the observation data, the point mi can be generated in the World (W ) frame.
The magnified points are numbered according to the time stamp. Consider
point m4 taken at time stamp 4. Points m3, m13 and m14 are all spatially
close. However, we are not interested in point m3 as it is a return from the
very next measurement and hence too close temporally. Points m13 and m14

are important as they are sufficiently far away temporally yet spatially close.

a ‘good’ or ‘bad’ map is to a degree a subjective qualification.
We consider a crisp map with sharp, non-self-intersecting
object borders to be ‘good’ 1.

The score is calculated as the sum of squared weighted
distance between selected points in the map. The question that
arises is how to make this selection to obtain a score that
reflects our concept of map quality. We do this by considering
both the spatial and temporal property of the observation data.

We posit that spatially close sensor returns, that are not so
close temporally, are likely to be generated by spatially close
real world objects. The radar system rotates at the rate ωr

rad/sec and it can be assumed that the radar will see at least
some portions of the world again after a complete rotation.
Hence we might expect the minimum time difference between
points that represent the same portion of the world to be 1/ωr

seconds. Distance between points that are spatially close to a
query point but are temporally more than 1/ωr seconds away
should contribute the most to the score as it is these points that
most likely represent the same world objects. This is illustrated
in Fig[1]. Considering the time difference between points and
selecting only those that are temporally not too close, ensures
that points from consecutive radar returns do not contribute
much to the score.

We now describe the method to obtain the score of the map.
Consider a vehicle mounted with a radar scanning system. The
radar returns an observation set consisting of the time, t, at
which this observation was taken, the angle of the radar, θ,
and an array of return energies corresponding to the ranges,
E = {ei} where ei is the energy in the ith range bin, (ie) the
energy at i× dr m away where dr is the range resolution of

1Implicitly, for the radar sensor we discuss later, this assumes we will not
encounter strong grazing reflections whose range changes wildly with vehicle
roll and pitch



the radar. Let this observation set be called Z.

Z : z1, z2, .....zN = {θ1, E1, t1; ....
θN , EN , tN} (1)

Given the position of the vehicle, xo, at time, to, we parame-
terize the local motion (in the near future) of the vehicle as

x(t) = g(xo, t, p) (2)

where xo is the initial position of the vehicle, t is the time
and p is a vector of parameters that describe the motion of
the vehicle, for example the coefficients of a spline. This is
described in Fig[1].

A map M can now be generated as a set of N , (x, y) points
by composing x(t) with z(t) where z(t) is the array of all
returns in Z that have a time stamp of t.

M : m1,m2, ....mN = x(t)⊕ z(t) (3)

where mi is the ith (x, y) point (see Fig[1]).
The score is defined as the double sum of squared weighted

distances between each point in the map and its spatial-
temporal nearest neighbors.

ψ(Z, p) =
∑

i∈M

∑

j∈Mi
s

S2
ij (4)

where Sij is the weighted distance between points i and j.
The details of obtaining the set of points M i

s and then the
calculation of the weighted distance will be discussed shortly.

Consider a point i in the map. We are interested in finding
all the points that are spatially close to this point, but tem-
porally not too close, so that we can assign higher weights
to the distance between these points. Hence the first step is
the process of selecting the points whose distance from point
i contributes to the score and the next step is the process
of assigning weights to these distances based on the spatial-
temporal closeness.
M i

s is the set of all points that are spatially close to the query
point i. We define the operator, ρ, that returns the indices of the
set of points that are close (less than an acceptable distance,s)
to query point i in the map set M .

M i
s = ρ(M, i, s) (5)

Now for point i, we have a set of spatially close points in the
point set M i

s. Next, we define two functions, φs and φt that
return the distances and time differences respectively between
the query point i and the point set M i

s.

sij = φs(i,M i
s) (6)

tij = φt(i,M i
s) (7)

For every point j in M i
s, the distance and time difference is

calculated using the functions φs and φt. Hence, sij and tij are
the distance and time difference respectively between query
point i and the jth point in M i

s. Having found the spatial and
temporal distances between point i and the point set M i

s, we
define the spatial-temporal distance selector, κij . The spatial-
temporal distance selector κij has the following properties:

• low for points that are close in distance but less than 1/ωr

seconds away in time
• low for points that are very far in distance irrespective of

time
• high for points that are close in distance and at least 1/ωr

seconds away in time
We define this functionally in the following manner:

κij = e−(
sij−αs

βs
)2 × e−(

tij−αt
βt

)2 (8)

where sij and tij are the distance and time difference re-
spectively between point i and point j, αs is the mean point
separation that is considered best for a crisp map, αt is the
minimum time difference that is expected between points
(1/ωr), βs is the average point density and βt is average time
density.
κij now assigns highest value to points that are spatially

close and temporally more than 1/ωr seconds away. Hence
the points in the map set M i

s that have a high value of κij ,
above a threshold ξ, are selected and the weighting function
is centered around the point that has the highest value of κij .
To circumvent the inadvertent assigning of correspondence
between points, a set of points, instead of only one point,
is deliberately selected.

The Lorentzian Apodization function is used for weighting
the distances based on the spatial-temporal closeness of points.
This is a singly peaked function given by

L(sij) =
1
π

τ
2

(sij − so)2 + ( τ
2 )2

(9)

where so is the center around which the weighting is done and
τ is the parameter that specifies the width of tapering.

The distance between point i and the point corresponding
to the maximum value of κij needs to be assigned the highest
weight. The rest of the distances need to be weighted based
on their κij values and the weighting needs to be smooth.
Hence the Lorentzian Apodization function is a good choice.
The distance between point i and the point corresponding to
the maximum value of κij is assigned to so. Therefore, so is
given by the equation, so = arg maxsij

(κij). The weighting
is then calculated for all points with a value of κij greater
than threshold ξ, and this gives the weight vector L(sij).

The weighted distance, Sij can now be defined as

Sij = L(sij)× sij (10)

where sij is the distance between point i and point j, i ∈M ,
j ∈M i

s and L(sij) is the weight for the jth point. Sij is the
required weighted distance between query point i and the jth

point in map set M i
s.

The algorithm can be summarized in the following steps as
shown in algorithm [1].

The algorithm proposed gives the score for a map gener-
ated using the observations Z and the motion parameters, p.
Figs[2(a), (b), (c)] show three simulated maps. The score for
the relatively bad map is high while the score for the relatively
good map is low. Hence the subjective good map gets the least
score when scored by the algorithm proposed in this paper.



/* Algorithm to calculate the map
quality score of a map given the
observation data from the sensor */

input : Observation Data Z
output: Map Quality score

begin
/* Initial Position of vehicle, xo,
and Motion Parameters, p, are
selected */

{Initialize xo, p};
/* For a given time the vehicle
pose, x(t), is calculated and the map
set, M, generated using the
observation data */

x(t) = g(xo, t, p);
M = x(t)⊕ z(t);
/* Assume map set M has N points.
For each point in M, a sub-set M i

s

is generated as, all the points
close to current point less than s
distance away, using KD trees */

for i← 1 to N do
M i

s ← ρ(M, i, s)

/* Assuming M i
s has n points,

distance and time difference for
each point is calculated and using
this the spatial-temporal distance
selector, κij is calculated */

for j ← 1 to n do
sij = φs(i,M i

s);
tij = φt(i,M i

s);

κij = e−(
sij−αs

βs
)2 × e−(

tij−αt
βt

)2 ;
end

/* Select points that have a κij

value greater than threshold, ξ,
and calculate weight vector
centered around point with highest
κij value */

so = arg maxsij
(κij);

L(sij) = 1
π

τ
2

(sij−so)2+( τ
2 )2 ;

Sij = L(sij)× (sij);
end

/* Sij is weighted distance between
query point i and point j in map set
M i

s. The score is calculated for
every point i in map set, M */

ψ(Z, p) =
∑

i∈M

∑
j∈Mi

s
S2

ij ;
end

Algorithm 1: Map Quality Score

A case to note would be the algorithm scoring a perfect
map that has been generated, (ie) points are perfectly aligned
and separated in time. In this case, the score returned by
the algorithm would not be zero. This is because as stated
earlier, a set of distances are taken to avoid the correspondence
problem. Hence even if all the points are aligned correctly, the
neighboring points would contribute to the score. Hence this
algorithm never scores zero.

In this algorithm temporal information plays an important
role in scoring the map quality. This leads to the obvious
question of whether errors in the absolute sensor time will
affect the scoring. However, it should be noted that the
algorithm considers only the difference in time between points
and not the absolute temporal information.
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Fig. 2. Scores obtained for maps of various qualities (a) Bad Map - scores
1650.2 (b) Better Map - scores 1300 (c) Good Map - scores 1125.5 and (d)
The ATRV-JR robot with Radar system on top.

Noting the generation of the map is dependent on the
observations Z and the motion parameters, p (refer Eq[3]),
it can be concluded that the score of the map is indirectly
dependent on these as well. Hence maximizing the quality of
the map as a function of a motion parameterization, the actual
vehicle motion can be recovered while correcting the map at
the same time. This is discussed in the next section.

IV. MOTION ESTIMATION FROM MAP QUALITY

The map quality is a function of the observations, Z and the
motion parameters, p. We can now pose the problem of motion
estimation as one of maximizing map quality by a judicious
choice,p̂, of p.

p̂ = arg min
p

(ψ(Z, p)) (11)



As stated earlier, the score obtained from the algorithm in
the previous section is low when the quality of the map is
good. Hence minimizing the score using the motion parameters
of the vehicle as the variable, will maximize the quality of the
map. We now go on to show the estimation of the robot’s
motion parameters using the map quality score on real radar
data.

The experiment was performed on a ATRV-JR mobile robot
from iRobot, Inc. On this was mounted a 77GHz millimetre
wave radar scanner from NavTech Electronics as shown in the
Fig[2(d)]. The radar system has a maximum range of 400m
with a range resolution of 0.25m. It produces returns at every
0.5o and has a complete rotation of 360o. The radar returns
the azimuth, an array of energies corresponding to the ranges
at which returns have been spotted and the time at which the
observation was taken. The odometry information was also
logged.

Data was gathered in a realistic outdoor urban environment.
The robot’s motion parameters, p, are defined as the set, veloc-
ity v and steering rate ω. Motion parameters are poorly sensed
when vehicle manoeuvres have large rotational components.
Hence data was gathered for high values of ω.

Three cases were considered. Case 1, having v = 0m/s
and ω = −0.3840rad/sec; Case 2, having v = 0.1m/s and
ω = 0.2967rad/sec and Case 3, having v = 1m/s and
ω = −0.1920rad/sec. The observation set, Z in each case
was given as input to the minimization function proposed in
Eq[11]. An exhaustive search was then performed over the
entire parameter space to obtain the minimum score. The
vehicle’s motion parameters obtained from this minimization
are shown in Table[I]. It is seen that the motion parameters
obtained are close to the actual motion parameters of the
vehicle.

Fig[3] shows the maps drawn before any motion parameter
correction is applied and after the correction suggested by the
minimization is applied. It is seen that the map quality was
significantly better after the correction was applied.

V. CONCLUSION

Two contributions are made in this paper. First a method
to quantify the quality of point-cloud maps is proposed. The
map built from a continuous stream of range measurements
from a radar is given a score based on how crisp it is, with
crisp maps getting a lower score. One of the key ideas in
calculating the score is the selection of weights for points
contributing to the score. This is done by considering temporal
and spatial distribution of the points in the map. The second
contribution is the estimation of motion parameters of the
vehicle using this map-quality metric. The actual vehicle
motion is recovered by maximizing the quality of the map.
The effectiveness of the approach is illustrated using data
obtained from a millimeter wave radar. The results show that
the vehicle motion parameters obtained using the approach is
comparable to the actual parameters and the maps drawn with
these obtained parameters are crisp.

TABLE I

TABLE SHOWS THE ACTUAL MOTION PARAMETERS OF THE VEHICLE AND

THE PARAMETERS OBTAINED BY MINIMIZING THE SCORE FUNCTION OF

THE MAP QUALITY. THE VEHICLE’S MOTION PARAMETERS, p, ARE

DEFINED AS THE SET, VELOCITY v AND STEERING RATE ω.

Velocity (m/sec) Steering Rate(rad/sec)

Case Actual Obtained Actual Obtained

1 0 0 −0.3840 −0.3665

2 0.1 0.1 0.2967 0.3194

3 1 0.9 −0.1920 −0.1833
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Fig. 3. Figures on the left are maps drawn before any motion parameter correction is applied. Figures on the right are maps drawn after the minimization
function yields a motion parameter and that is then applied to the map drawing. The 3 cases that have been considered all have a high steering rate
(ω = −0.3840rad/sec; 0.2967rad/sec;−0.1920rad/sec) with different values of velocity (v = 0m/s; 0.1m/sec; 1m/s)


