
Using Incomplete Online Metric Maps for Topological Exploration with
the Gap Navigation Tree

Liz Murphy and Paul Newman, Oxford Mobile Robotics Research Group
{liz,pnewman}@robots.ox.ac.uk

Abstract— This paper presents a general, global approach to
the problem of robot exploration, utilizing a topological data
structure to guide an underlying Simultaneous Localization and
Mapping (SLAM) process. A Gap Navigation Tree (GNT) is
used to motivate global target selection and occluded regions
of the environment (called “gaps”) are tracked probabilistically.
The process of map construction and the motion of the vehicle
alters both the shape and location of these regions. The
use of online mapping is shown to reduce the difficulties in
implementing the GNT.

I. INTRODUCTION

The goal of this work is to facilitate the exploration of
an unknown environment by a single robot system under
uncertainty. Using an existing SLAM system as a basis,
we overlay a topological data structure which motivates
exploration by identifying occluded regions and seeking to
add them to the map. The location of these regions is tracked
probabilistically.

Exploration occurs when a robot is placed in an unknown
environment and is asked to construct a map, which can
be used for subsequent navigation, as it moves through the
world. The decision as to where to go next? is informed only
by data contained in the partially complete map. In this work
it is the presence of gaps in the robot’s field of view that
motivates exploration. The resulting robot trajectory covers
the local environment in a structured, deterministic manner.

To achieve this we take an algorithm that has been shown
to produce optimal navigation paths in unknown planar
environments and adapt it for real world implementation.
In [1] [2] [3] the use of a data structure called the Gap
Navigation Tree (GNT) enables locally optimal navigation
in terms of Euclidean distance travelled in the exploration of
a simple planar environment. Underpinning the algorithm is
the assumption of the availability of an abstract gap sensor,
able to track and uniquely identify discontinuities in the
depth of the range information at the robot’s current view-
point. These discontinuities are of interest as they correspond
to regions not yet visible to the robot.

This paper presents an extension to the GNT algorithm and
an implementation of the gap sensor. It directly addresses the
issue of exploration under uncertainty. We adapt the GNT
algorithm so that it is suitable for use in motivating next-
target selection in an exploratory SLAM system. Experimen-
tal results from simulations are presented, showing that this
approach results in coverage of indoor environments given a
robust implementation of a gap tracker based on data from a
2D Laser scanner - certainly not an ”ideal infinite resolution
sensor”.

II. RELATED WORK

Previous approaches to exploration within the context of
SLAM can be broadly characterized as grid based, fea-
ture/view based or topological.

Grid based methods provide a continuous metric represen-
tation of the environment in which each grid cell stores the
probability of a cell being occupied by an obstacle. Many
methods inherit from the original frontier based approach of
[4], where the robot is repeatedly directed toward the nearest
frontier between open explored space and unexplored space.
In contrast, the grid based approach in [5] [6] decomposes
the entropy of the SLAM posterior into two terms, one
representing the entropy in the pose posterior and the other
representing the expected entropy of the map averaged over
all paths. Possible control sequences are evaluated by adding
the two entropy terms and selecting the control that min-
imises the resulting entropy (or uncertainty). This algorithm
exhibits loop closing behaviour to improve the pose estimate,
as well as seeking to explore unmapped terrain.

Feature/View based methods use landmarks extracted from
the environment to guide exploration. In [7] the landmarks
generate goals for exploration which are then biased towards
enabling local exploration of sparse regions. A utility func-
tion is used in [8] to trade off between information gain, the
cost of moving to the next sensing location, and the utility of
localization based on the covariance matrix in selecting the
next pose. Information gain is also the motivating factor in
[9] where minimizing the trace of the covariance matrix and
hence the average uncertainty of the SLAM map is used as
the objective function for exploration. Possible next sensing
locations are drawn from a discretized grid and a maximally
informative trajectory is chosen by integrating observations
along the trajectory to a particular point.

Topological exploratory strategies [10] model the structure
of the environment using a graph. Although providing a
compact representation, the lack of metric information in a
strict topological representation makes localization extremely
difficult. Hence most topological approaches are hybrid
methods which also incorporate geometric maps [11].

All three approaches have significant disadvantages: fea-
ture based methods are reliant on the use of feature detection
to extract uniquely identifiable landmarks from the envi-
ronment during mapping. Such landmarks are not always
present. Grid based methods do not scale well to large
environments, and topological mapping hinders localization.
By combining the topological approach of the GNT with the

view-based SLAM system we seek to ameliorate some of
these problems.

Outside of SLAM but akin to the sensing strategy pre-
sented in this paper, Landa et al [12] [13] present a theoretical
approach to exploration focused on the use of point clouds
from a laser scanner to detect gaps in the environment. They
present an exploration strategy similar to Frontier Based
Navigation in support of the validity of their method.

III. GAP NAVIGATION TREE

We shall now briefly summarize the GNT of [1] [2] [3]
as it is central to our work. The algorithm constructs a
topological representation of the environment in the form
of a tree with the aid of an abstract gap sensor. The gap
sensor reports the cyclical order of depth discontinuities
of the boundary relative to the robot’s current position.
In [2] the authors suggest a number of possible physical
implementations of the sensor, including sonars, cameras, a
laser pointer used in conjunction with an omnidirectional
camera, and their own implementation using two laser range
finders. Each of the gaps returned by the sensor should
correspond to a region of free space that is occluded, and it is
assumed that the gap sensor is able to track and distinguish
between the gaps at all times, even when the robot moves
across a non-smooth part of the boundary and the location
of the gap jumps discontinuously. Importantly, no geometric
information is returned by the gap sensor, the gap sensor
output is simply an ordered list of unique identifiers assigned
to each gap.

The robot is equipped with a single motion primitive
which enables it to rotate itself toward the location of a gap
and approach the gap at a constant speed. This is referred
to as chasing the gap. The chase gap operation can only
terminate when the gap disappears from the gap sensor.

Construction of the GNT begins with the addition of n
nodes as children of the root of a tree, where n is the number
of gaps returned by the gap sensor in its initial observation of
the environment - one node for each gap. As the robot moves
through the environment, changes to the tree are triggered by
the occurrence of gap critical events. These events occur
when the robot crosses either a generalized inflection or
a generalized bitangent of the environment boundary. As
illustrated in Figure 1, the appear and disappear events are
associated with crossing a line of inflection, and crossing
a bitangent line will trigger a split or merge of two gaps,
depending on the direction of crossing. Each event requires
updating of the GNT:

Appear A node g is added as a child of the root node,
its neighbouring nodes are those that it currently
neighbours in the gap sensor.

Disappear By definition any disappearing gap must be
represented by a leaf node. The node is removed
from the tree.

Split If the gap g which has split into gaps g1 and
g2 is a leaf node, then two new vertices are added
to the tree in place of g. Otherwise, they must

(a) Appearance/Disappearance

(b) Splitting/Merging

Fig. 1. Gap Visual Events: The red dotted lines in both (a) and (b) extend
from the point(s) of inflection on the environment boundary. When the robot
(triangular marker) crosses this line gaps appear or disappear depending on
the direction of travel. The green dotted lines in (b) project the line of sight
to observable gaps. The marked dash on the circle surrounding the robot
indicates the direction of the observed gap.

already exist in the tree as children of g and become
children of the root node upon the removal of g.

Merge When gaps g1 and g2 merge into gap g, g
is added to the tree as a child of the root node,
preserving the order of the gap sensor. The existing
nodes g1 and g2 become children of g.

These four operations are sufficient to represent all fea-
sible changes to the environment. Although more complex
tritangents may exist, both [2] and [14] argue that tritangents
would not survive even a small deformation of the envi-
ronment whereas the bitangent or inflectional tangent would
merely change position. In [14] generic curves and surfaces
are defined as not being affected by small deformations, and
it is stated that the boundaries of all real objects are generic.

At any time τ , the children of the root of the GNT reflect
the gaps currently visible to the gap sensor. Any other gaps
in the tree were visible at some time t < τ but are now
obscured due to merging.

Nodes in the tree are only used to represent gaps, and
gaps fall into two categories. Non-primitive nodes are used
to motivate exploration, they correspond to unexplored oc-
cluded regions and arise as a result of appearing in the
gap sensor’s initial observation, or from the splitting of one
of the initial nodes or its non-primitive children. Primitive
nodes are added to the tree as a result of a previously
visible area becoming occluded and hence causing a gap
to reappear. Chasing a primitive gap will only result in
revisiting previously covered territory.

A complete GNT encodes a path from the robot’s cur-
rent position to any other location in the environment. To
construct the complete GNT the robot must achieve sensor
coverage of the entire environment, and the GNT is forced
into completeness by iteratively chasing the non-primitive
leaves of the tree until they, and any children that result from
their subsequent splitting into other gaps, disappear. When
a leaf disappears, another non-primitive leaf is selected for
chasing and the procedure is repeated until all leaves are
primitive.

We believe the simplicity of the GNT approach to explo-
ration means the algorithm is well suited for use in next ac-
tion selection when used in conjunction with a metric SLAM
system. As outlined in [2], the most important practical issue
prohibiting the use of the GNT in a real setting lies with
the gap tracking process. Implicit in the GNT algorithm
is the assumption of the perfect gap sensor/gap tracker.
Sparse sampling and non-smooth environment boundaries
as illustrated in Figure (5) are common examples of cases
where gaps may be falsely detected or prove difficult to track,
especially with a simple ‘one-shot’ sensor. Should the gap
sensor not prove robust to these situations, the robot will fail
to detect important visual events leading to malformations of
the tree structure, or causing the robot to chase the ‘wrong’
gap. The GNT does not have a probabilistic basis and our
experience shows it to be fragile when driven with real
sensors.

This paper details an implementation of the gap sensor
which utilizes a partially-complete SLAM map a basis
for gap detection and tracking. The success of view-based
SLAM methods, in particular those based on mobile robot
systems equipped with laser scanners, has lead us to focus
on the application of the GNT to a SLAM system producing
point cloud maps. A SLAM system using point clouds will
still lead to the sparse sampling of some surfaces, depending
on the current orientation of the sensor relative to the surface
and also due to the sensor’s distance from the surface.
However, we show the use of a SLAM map not only reduces
the number of faux gaps due to sparsity, but also allows us
to derive a model for expected gap motion hence allowing
for robust tracking.

IV. GAP SENSOR IMPLEMENTATION

A. Gap Detection

Before gaps can be tracked, we must first define a capa-
bility that allows the detection of gaps in the accumulated
SLAM map. We introduce a visibility based formulation
similar to [12] [13].

To compute the visibility map of Figure 2 we take a point
cloud P sampled from the environment Ω. We limit the view
direction from the current vehicle position x0 to the set of
angles θ ∈ [0, θd, 2θd...2π)where θd is the desired angular
resolution of our gap sensor. The view direction from the
vehicle to any given point x is calculated as

v (x0, x) =

(

x − x0

|x − x0|

)

Robot

Gap 3
Tangent Point

Gap 2
Tangent Point

Gap 4
Tangent Point

Gap 1
Tangent Point

Fig. 2. A Visibility Map showing an approximation to the area visible
from the robot’s current position. The visible region is shaded in red.

We then define the visibility function ρx0
which provides

a piecewise constant approximation to the visible region at
the robot’s current viewpoint.

ρx0
(θ) =

{

minx∈Ω{|x − x0| : v (x0, x) = θ} if exists
rmax otherwise

where rmax is the maximum range of the sensor.
The visibility map is then differentiated to locate gaps in

the visible region. The differential is evaluated only at points
θ ∈ [0, θd, 2θd...2π) so we arrive at a piecewise constant
approximation to the differentiated visibility function.

dρx0

dθ
=

ρx0
(θk+1) − ρx0

(θk)

θk+1 − θk

Gaps are classified as existing at those locations where
dρx0

dθ
exceeds a threshold T. Note that this threshold is

set to be dependent on characteristics of the environment
(say known doorway widths or corridor widths in an in-
door environment, or spaces between buildings in an urban
setting). Prudent selection of this threshold aids in limiting
the appearance of spurious gaps. We assume each gap can
be uniquely parameterized by a tangent point [xg, yg]; the
closest point on the boundary which intersects a line drawn
in the view direction from the robot’s current position. Figure
3 illustrates the gap detection process using the visibility
and difference functions together with the gap detection
threshold.

It is important to note that due to the discretization of the
data and the discontinuous representation of the environment
offered by a point based SLAM map, the gap detector often
returns gaps in locations when there are none. For this reason,
we employ the notion of persistence (explained in Section
IV-C) before adding gaps to the gap tracker or gap navigation
tree.

In addition to the tangent point, the gap detector also
records whether the gap results from a discontinuity which
stretches from a near point on the environment boundary
to a distant point or conversely from far to near, relative
to the anti-clockwise direction zeroed at the robot’s current
heading. This information enables us to identify whether the

−150 −100 −50 0 50 100 150
0

5

10

15

20

25

View Angle from Current Robot Position (Degrees)

ρ

Visibility Function

−150 −100 −50 0 50 100 150

0

5

10

15

View Angle from Current Robot Position (Degrees)

Differentiated Visibility Function

Gap Detection
Threshold

(T)∆ρ
Gap 1 Gap 2

Gap 3
Gap 4

Sensor Range Exceeded

∆θ

Fig. 3. Visibility Function (top) and Difference Function (bottom)
corresponding to Figure (2). In this example four gaps are detected.

occluded region lies to the left or right of the tangent point,
aiding in selection of the best viewpoint to travel to next and
expediting the gap’s disappearance.

B. GAP TRACKING

To introduce our gap tracking algorithm we present the
gap tracking problem from a probabilistic point of view. We
are interested in maintaining the distribution p(gk|D

k,mk),
where gk represents the location [xg, yg] of gap g at time
k given the history of our gap detector outputs Dk and the
matrix of points mk representing the current state of the map.

We assume that our gap tracking problem is a Markov
process, such that knowledge of the state at k − 1 provides
all the information needed to propagate the state at k. This
allows us to write the gap motion model p (gk|gk−1,mk) as
a probabilistic models adhering to the Markov property. We
also define the gap observation model p (dk|gk,mk) which
defines the likelihood of the next measurement dk given the
current state of the map and the last known gap position.
The graphical model of Figure 4 illustrates the relationship
between the map, measurements and state of the gaps.

Given the current state of the map at time k and the set
of previous observations Dk−1, we can write an expression
which predicts the position of the gap at time k (prior to
making the observation dk at time k):

p
(

gk|D
k−1,mk

)

=

=

∫

p (gk|gk−1,mk) ×

p
(

gk−1|D
k−1,mk

)

dgk−1 (1)

Once we have the relevant measurements we are able to
update the state representation:

p
(

gk|D
k,mk

)

=

=
p(dk|gk,mk)p(gk|D

k−1,mk)

p(dk|Dk−1,mk)
(2)

Combining (1) and (2) allows us to write

Fig. 4. A graphical model showing the relationship between the measure-
ments, map and gap position

p(gk|D
k,mk) =

p(dk|gk,mk)
∫

p(gk|gk−1,mk)p(gk−1|D
k−1,mk)dgk−1

p(dk|Dk−1,mk)
(3)

The above equation is recursive and allows well known
(Kalman) closed form updates if we assume gaussian distri-
butions.

Critically important to our gap tracking solution is the gap
motion model p (gk|gk−1,mk). This function represents the
gap’s change in position from time k − 1 to k. We assume
it is a gaussian of the form

p
(

gk|gk−1, D
k−1,mk

)

∼ N(gk−1, Pk−1 + Γ(gk−1,mk))
(4)

where Γ is a function parameterized by the gap and the
SLAM map and Pk−1 is the gap’s covariance at time k − 1.

Γ is expressed as

Γ(gk,mk) = V DΛV T (5)

where V is a rotation matrix and Λ is a diagonal matrix of
eigenvalues resulting from the eigenvalue decomposition of
the covariance matrix of the nearest neighbours, calculated
according to

V ΛV T = cov[K(mk, gk)] (6)

K(mk, gk) is the neighbourhood operator on mk, return-
ing the n points in the map which are closest to the estimated
gap position gk. D is a diagonal scaling matrix.

While genuine gaps that appear in the gap sensor as a
result of generalized inflections and bitangents discussed in
Section III can be adequately represented and tracked using a
circular covariance function, we are also required to maintain
representations of faux gaps that result from the limited range
of our sensor. These gaps tend to jump with the arrival of
new data. Take for example a gap marking the extent of our
vision along a wall. As the next chunk of data comes in, we
see an extra x metres of the wall and the gap moves by x
metres in accordance.

Note that as these tangent points are located at the map
extremity, they are also surrounded by few data points.
We allow the local map shape and point cloud density to
dictate the motion of perceived gaps by examining the nearest
neighbours of the tangent point (within radius R), calculating
the covariance of these points as in (6) and exaggerating the
largest axis with an appropriate choice of scaling matrix D

in (5). This method, when applied to genuine gaps tends

to produce ellipses of small axes due to the agglomeration
of data corresponding with their typical physical presence
as corners in a structured environment and reflecting the
belief that these gaps are unlikely to move when next
observed. In contrast, our faux gaps tend to lie on the visible
extremity of a wall, so the direction of minimum variance is
perpendicular to the wall (and unlikely to change) while the
maximum variance is in the direction parallel to the wall.
The large covariance parallel to the wall reflects the belief
that subsequent observations will see this gap shift along the
wall with the addition of new data.

C. DATA ASSOCIATION

A nearest neighbour χ2 test is used to find the most prob-
able association between measurements D = [d1, d2, ...dn]
returned by our gap detector and Ĝ = [g1, g2, ...gm] the
predicted locations of the gaps currently being tracked. This
association is used to update the gap positions.

We also maintain an association matrix A of all mea-
surements that gate with current gap positions given a less
stringent bound γ.

Aij =

{

0 χ2
ij > γ

1 χ2
ij ≤ γ

where χ2
i j is the Mahalanobis distance between the de-

tected gap di and known gap gj .
This association matrix is used to spot splitting and merg-

ing of gaps for use in the construction of the gap navigation
tree. A split corresponds to multiple measurements being
associated with one gap, and conversely a merge equates to
multiple gaps associating with the one measurement.

Unexplained measurements (those that do not associate
with any existing gaps) are used in the initiation of new gaps.
As explained in Section III, spurious gaps are problematic
and we do not want to initialize a gap based on a single
appearance in the gap sensor. A list of putative gaps that
have associated with prior putative gaps is maintained, these
gaps are added to the gap tracker and the gap navigation tree
once they have been observed a threshold number of times
and we are hence confident they are actual gaps.

V. RESULTS

We focus here on the role of a gap motion model rather
than the completion properties of the GNT. Figure 5 shows
the progress of the robot through a simulated 2D world
where our gap sensor is informed only by noisy, sparse data
from a 2D laser scanner. The current state of the tree is
shown at each time step, the L or R notation at each node
shows whether the associated gap occludes an area to the
left or right of the robot as defined in Section IV-A. The
accumulated point cloud map is shown together with square
markers indicating the position of currently tracked gaps. The
covariances of each gap are shown as red ellipses. The dotted
lines emanating from the robot indicate the direction of gaps
detected by the gap detector (note that in some instances
these gaps may have recently appeared and are hence not
yet tracked by the gap tracker).

In Figure 5(a) four gaps are being tracked and the robot is
in pursuit of Gap 3. All four gaps lie at the extent of known
walls and hence the covariances (in red) are maximal in the
direction parallel to the wall and are large in size, reflecting
the belief that these gaps are likely to move as the map is
incremented.

Figure 5(b) shows that as the robot moves past the corner,
Gaps 2 and 4 merge to form Gap 12. Gap 3 has disappeared
as a result of the map being filled in as the robot explores and
sees more of its environment. A new, unassociated gap has
appeared at the top right extent of the map, corresponding to
the visible extent of the far wall. The robot is now in pursuit
of Gap 6.

In Figure 5(c) the robot has turned around a second corner
point but has still managed to track Gap 12. As the right
side of the map is now completely known, Gap 12 is the
sole remaining gap and now represents the entire occluded
region of the known map located to the right of the tangent
point. Note the altered shape of the covariance of Gap 12 at
this point - it is now located at a well-defined corner of the
map with a greater point cloud density than in the previous
examples.

Note that Gap 12 is a non-primitive gap, meaning at least
part of its occluded region is unexplored. In Figure 5(d) the
robot is retracing its trajectory in pursuit of Gap 12. As
expected, the location of the tangent point to Gap 12 travels
back along the wall towards its previous position in Figure
5(b). The correct association between the region represented
by Gap 12 is maintained throughout Figures 5(a)-5(d).

We found the primary effect of adapting the GNT to real
world conditions is the addition of faux gaps to the tree. They
were not found to adversely affect the operation of the GNT
however, as they tend to be associated with simple geometric
structures such as walls and simply disappear (rather than
split) when chased. If anything, they have the tendency to
inbuild ‘wall following’ behaviour into the tree. Gap 3 of
Figure 5(a) is an example of such a gap, as the infinite
range gap sensor of [2] at the robot position would detect the
entirety of the wall on which Gap 3 is located as well as the
Wall at the end of the corridor that is evident in Figure 5(c).
No discontinuity would be ever be detected in the region of
Gap 3.

Weaknesses of the algorithm include the dependency of
the gap detector sensitivity on the structure of the local
environment. Despite offering improved robustness over non-
probabilistic implementations of the GNT, the data structure
is still prone to failure a result of failing to detect the splitting
or merging of gaps. A rollback/journalling facility could be
added to overcome this and provide capability to maintain
multiple hypotheses about the possible tree and environment
structure at any one time.

VI. CONCLUSION

This paper presented a probabilistic approach to tracking
occluded regions of the environment while exploring an
unknown environment using the Gap Navigation Tree. It was
shown that the use of online metric mapping reduces the

(a) Time step 1: Four gaps are present, all correspond to
unseen regions at the extent of the visible walls.

(b) Time step 2: Gaps 2 and 4 have merged into Gap 12.

(c) Time step 3: The robot pursues gap 6 until it disappears,
the top right corner of the U-shaped map is now complete.

(d) Time step 4: Gap 12 corresponds to the unexplored area
obscured by gaps 2 and 4, the robot turns around and begins
to pursue this uncharted territory.

Fig. 5. Tracking a Gap

practical difficulties associated with using the Gap Naviga-
tion Tree in real environments with sensor uncertainty, as
it allows a model of expected gap motion to be derived and
used in gap tracking. The robust approach to gap sensing and
tracking presented here positions the hybrid combination of
the topological Gap Navigation Tree and metric SLAM as a
viable method for use in mobile robot exploration.

REFERENCES

[1] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[2] B.Tovar, R. Murrieta-Cid, and S. M. LaValle, “Distance-optimal nav-
igation in an unknown environment without sensing distances,” IEEE
Transactions on Robotics, June 2007.

[3] B. Tovar, L. Guilamo, and S. M. LaValle, “Gap navigation trees:
Minimal representation for visibility-based tasks,” in Proc. Workshop
on the Algorithmic Foundations of Robotics (WAFR), 2004.

[4] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in CIRA ’97: Proceedings of the 1997 IEEE International Symposium
on Computational Intelligence in Robotics and Automation. Wash-
ington, DC, USA: IEEE Computer Society, 1997, p. 146.

[5] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA: MIT Press, 2005.

[6] C. Stachniss, G. Grisetti, and W. Burgard, “Information gain-based ex-
ploration using rao-blackwellized particle filters,” in Proc. of Robotics:
Science and Systems (RSS), Cambridge, MA, USA, 2005.

[7] P. Newman, M. Bosse, and J. Leonard, “Autonomous feature-based
exploration,” in IEEE International Conference on Robotics and
Automation, Taiwan, September 2003.

[8] A. Makarenko, S. Williams, F. Bourgault, and H. Durrant-Whyte, “An
experiment in integrated exploration,” in In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), Lausanne,
Switzerland, 2002., 2002.

[9] R. Sim and N. Roy, “Global a-optimal robot exploration in slam,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), Barcelona, Spain, 2005.

[10] H. Choset and K. Nagatani, “Topological simultaneous localization
and mapping (slam): toward exact localization without explicit lo-
calization,” IEEE Transactions on Robotics and Automation, vol. 17,
no. 2, pp. 125 – 137, April 2001.

[11] A. Victorino and P. Rives, “An hybrid representation well-adapted to
the exploration of large scale indoors environment,” in Robotics and
Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International
Conference on, vol. 3, 2004.

[12] Y. Landa, R. Tsai, and L.-T. Cheng, “Visibility of point clouds and
mapping of unknown environments.” in ACIVS, ser. Lecture Notes
in Computer Science, J. Blanc-Talon, W. Philips, D. Popescu, and
P. Scheunders, Eds., vol. 4179. Springer, 2006, pp. 1014–1025.

[13] Y. Landa, D. Galkowski, A. Huang, Yuan R.and Joshi, C. Lee,
G. Leung, Kevin K.and Malla, J. Treanor, V. Voroninski, and Y.-H. R.
Bertozzi, Andrea L.and Tsai, “Robotic path planning and visibility
with limited sensor data,” in ACC ’07, 2007, pp. 5425–5430.

[14] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach.
Prentice Hall Professional Technical Reference, 2002.

