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Abstract— This paper is about planning paths from overhead
imagery, the novelty of which is taking explicit account of
uncertainty in terrain classification and spatial variation in
terrain cost. The image is first classified using a multi-class
Gaussian Process Classifier which provides probabilities of class
membership at each location in the image. The probability
of class membership at a particular grid location is then
combined with a terrain cost evaluated at that location using
a spatial Gaussian process. The resulting cost function is, in
turn, passed to a planner. This allows both the uncertainty
in terrain classification and spatial variations in terrain costs
to be incorporated into the planned path. Because the cost of
traversing a grid cell is now a probability density rather than
a single scalar value, we can produce not only the most-likely
shortest path between points on the map, but also sample from
the cost map to produce a distribution of paths between the
points. Results are shown in the form of planned paths over
aerial maps, these paths are shown to vary in response to local
variations in terrain cost.

I. INTRODUCTION

In this paper we deal with the problem of path planning
outdoors using cost maps for mobile robots. Operating in
such an environment brings a number of challenges, chief
amongst which is that the environment is only partially
known. From limited data, cost maps must be generated
which represent a continuum of terrain costs wherein the
cost of a particular terrain may vary over the course of path
execution. Path derivation generally requires the cost map to
be passed to a planner such as A*, D* or E* which, unlike
in other planning approaches such as PRMs or RRTs, will
seek to minimize the accumulated cost from start to goal of
some navigation function.

Existing approaches to long range path planning typically
generate deterministic cost maps where each grid cell is
attributed a scalar value proportional to the estimated cost
of traversing that terrain. This paper addresses two issues
with deterministic cost maps, (i) terrain classification is an
uncertain process, and (ii) even within a particular terrain
class, the cost of traversing that terrain may not be the same
all over the map. Figure 1 illustrates a type of terrain that
pose difficulties for an overhead classifier - it interweaves
traversable open terrain with woodland, and in planning
through this area it would be useful to take this confusion
into account. Figure 2 shows two examples of what would be
classified as dirt road but which would have widely varying
terrain costs in different parts of our map. Here we use
Gaussian Processes - a non-parametric Bayesian technique
- to create probabilistic cost maps which explicitly take into
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account uncertainty in terrain classification whilst permitting
the cost of a particular terrain type to vary over the map.

Underpinning this framework is a cost function that
produces a probability density function (pdf) instead of a
scalar value for each grid cell (as is common practice).
The cost function combines the probability of terrain class
membership with the expected terrain cost at that cell (also
a probability density function). The overall cost of the cell is
the result of integrating over all possible classes of terrain,
taking into account the uncertainty that location. Each cell
is first classified using a Gaussian Process Classifier, which
gives the probability of membership of each of the nc classes
of terrain represented in the map. Independently of this, the
cost of terrain class T at the grid cell is evaluated using a
Gaussian Process Regressor for each of the nc classes. Then,
for each cell, we calculate a pdf over cost. The resulting cost
map can then be sampled to produce a distribution of likely
paths between points A and B in the map, or the mean of the
cells can be used to produce the most-likely path. Of course,
the vehicle’s knowledge of the environment is enhanced as it
moves, and Gaussian processes give us the ability to easily
retrain the cost function and come up with a more accurate
planning mechanism on-the-fly.

The key contribution of this paper is a novel framework for
cost map generation. Results are shown which demonstrate
the ability of this technique to plan sensible paths from
overhead imagery using only a limited number of features
and a sparse manually-labeled training data set. We demon-
strate the ability to sample from the cost map to generate a
distribution of paths in differing terrain, and also show how
the framework allows the path to adapt in response to spatial
variance in the cost of terrain - such as in the case where
a roadway may be blocked due to heavy traffic or normally
traversable scrub is prohibitively expensive due to a locally
steep gradient.

II. RELATED WORK

The idea of explicitly accounting for uncertainty when
planning paths is not new. Probabilistic Planners such as
PRMs [1] and RRTs [2] can use uncertainty in the environ-
ment when sampling - instead of planning over a regular
grid with a graph structure with a ‘node’ for each grid
cell they only create nodes in places known to be free.
However the jagged paths they create are generally unsuited
to field robots and they are more readily used in planning
over high dimensional spaces. More akin to the methods
described in this paper [3] presents a randomized version
of A* using machine learning to generate heuristics for the
A* planner. Phillipsen [4] presents a probabilistic navigation



Fig. 1. Uncertainty in Classification: Forest or Open Terrain? Traversable
or Not?

(a) High Traversal
Cost

(b) Low Traversal Cost

Fig. 2. Spatial Variation in Terrain Cost: Dirt Roads

function for planning in unknown dynamic environments,
Likhachev [5] introduces the notion of clear preferences on
the missing information in the environment and combines
this with multiple A*-like searches to produce an algorithm
capable of dealing with uncertainty in large maps. Another
method [6] is to frame uncertainty as a measure of the utility
of the cell in exploring the environment and use this reward
function to guide the robot.

The benefit of planning from overhead data gathered from
aerial sources such as satellites and planes has been noted
in [7] where aerial data is combined with laser data from a
ground vehicle to classify terrain using a neural network. In
[8] imitation learning is used to automate the building of a
cost function from overhead data which may be used with
different planners.

Gaussian processes themselves have found many suc-
cessful applications in robotics. In [9] Gaussian process
classification is used to exploit the structure of the envi-
ronment in creating occupancy grids. Plagemann [10] uses
learned terrain models and Gaussian process regression to
predict elevations at unseen locations in planning paths for
a legged robot. This builds on earlier work [11] which
uses non-stationary covariance functions in the Gaussian
process to accurately model terrain so that flat areas remain
smooth while discontinuities caused by edges and corners
can be preserved. Gaussian processes have long been used by
Geostatistics community (where the technique is known as
Kriging and usually restricted to modeling in physical spaces,

rather than the feature space representations commonly found
in robotics applications). In [12] pixels within hyperspectral
images are classified into land cover types using maximum-
likelihood classification where the mean of each spectral
band at a given location has been modeled by a spatially-
varying Gaussian process.

III. GAUSSIAN PROCESSES

Gaussian process (GP) modelling is a non-parametric su-
pervised learning technique which has recently found favour
in robotics, principally due to its capability of providing
uncertainty estimations at prediction points. A thorough
treatment of Gaussian Processes is provided by [13]. A GP is
a collection of random variables which forms a multivariate
Gaussian distribution with mean µ(x) and covariance func-
tion k(x, x′). Given a training set D = {(xi, yi)|i = 1, ...N}
where x denotes an input vector of dimension d and y
represents a scalar output, we want to learn a model for
the functional dependency yi = f(xi) + εi. Under the GP
paradigm, we view all target values y as jointly Gaussian
distributed p(y1, ..., yn|x1, ..., xn) ∼ N (µ,K). Typically, we
assume the mean µ is 0 and use the covariance matrix K
to specify prior knowledge of f(x) through a covariance
function cov(f(xi), f(xj)) = kij := k(xi, xj) + σ2

nδij ,
where σ2

n is a global gaussian noise variance.
Hence we are able to write the joint distribution of the

observed target values y and the function values f∗ at the
unknown target locations x∗ under this prior as:[

y
f∗

]
∼ N

(
0,
[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(1)

By conditioning the prior on the observations y, we
arrive at the following key equations for Gaussian Process
Regression (GPR) for a single test point x∗.

f∗|X,y,x∗ ∼ N (f∗,V[f∗]) (2)

where
f∗ = k>∗ (K + σ2

nI)
−1y (3)

V[f∗] = k(x∗,x∗)− k>∗ (K + σ2
nI)
−1k∗ (4)

for notational simplicity we have used k∗ = k(x∗, x)
to denote the covariance between the test point and the
training points, and K = K(X,X) to represent the matrix
of covariances between the n training points.

When using Gaussian Processes the only ‘prior’ we place
over the model of our dataset is the form of the covari-
ance function. A commonly used covariance function is the
squared exponential:

k(xi, xj) = σ2
f exp

−(xi − xj)2

2l2
(5)

which is stationary and hence invariant to translation in the
input space while also leading to very smooth modelling of
the data.

The quality of predictions produced by the Gaussian
process regressor depends entirely on the suitable choice
of covariance function. Typically a covariance function has



some free parameters (σf and l in (5)), which in the Gaus-
sian process framework are referred to as hyperparameters
(denoted by θ) to emphasize that they are parameters of a
non-parametric model. If the choice of θ is inappropriate
then poor results will be returned. To avoid this, and find the
best model for our data, we train the Gaussian Process by
computing the likelihood of the hyperparameters given the
training data x,y. Under Bayes’ theorem this can be done
by maximizing the log-marginal likelihood log p(y|x, θ) ac-
cording to equation (6), or by integrating over all possible
choices for θ.

log p(y|x, θ) = −1
2
yTK−1y − 1

2
log |K| − n

2
log 2π (6)

Classification with Gaussian Processes is a natural pro-
gression from regression, but is slightly more complex as
the values of the target y are no longer continuous. In the
multi-class case our n training points {x1, ...xn} are now
related to a vector y of length C × n:

{yi1, yi2, ...yiC , ......, yn1, yn2, ..., ynC}

with entries of 1 for the class which corresponds to the label
of point xi and 0 for the remaining C − 1 entries for that
point.

Again, we assume the existence of an underlying latent
function f(x)

{fi1, fi2, ...fiC , ......, fn1, fn2, ..., fnC}

over which we place a GP prior with form f |X = N (0,K).
K is a block diagonal matrix as the C latent processes are
uncorrelated: within each submatrix KC we represent the
correlations within that class C only.

Using Bayes’ rule we can compute the posterior of the
latent function:

p(f |X, y) =
p(f |x)p(y|f)
p(X, y)

i.i.d=
N (0,K)
p(X, y)

N∏
i=1

p(yi|fi). (7)

Unlike in regression, the likelihood term p(y|f) is not
Gaussian, and in multi-class classification is often a softmax
function:

p(yc
i |fi) =

exp(f c
i )∑

c′ exp(f
c′
i )
. (8)

From (7) we can obtain the class prediction of a new test
point x∗ in two steps.

p(f∗|X, y,x∗) =
∫
p(f∗|f , X,x∗) p(f |X, y)︸ ︷︷ ︸

(7)

df (9)

p(y∗|X, y,x∗) =
∫
p(y∗|f∗) p(f∗|X, y,x∗)︸ ︷︷ ︸

(9)

df∗ (10)

A number of techniques exist for performing multi class
Gaussian process classification. They vary in their choice
of likelihood function (eg softmax, multinomial probit) and
in their approach to handling the analytically intractable
integrals of equations (9) and (10).

Naive techniques for classification and regression take
O(N)3 to compute during training, and O(N2) during
prediction, due to the inversion of the covariance matrix K.
N is the number of training data points. In this paper we
have made use of toolkits which employ sparse approaches.

Typically, these sparse methods seek to reduce the number
of training points by selecting M � N points which
are still informative enough (as measured by entropy) to
adequately represent the training set. This reduces training
cost to O(NM2) and prediction to O(M2).

IV. PROBABILISTIC PLANNING FRAMEWORK

Gaussian processes can be introduced into the planning
domain to provide a means of dealing with uncertainty in
the construction of cost maps for grid map planners. In our
framework, we use data obtained from overhead imagery
to plan long range paths over differing terrain. Due to the
flexibility of the Gaussian process paradigm, the framework
can accommodate differing inputs (color, hyperspectral data,
principal direction) which aid in terrain classification and
terrain cost.

Imagine we are given an aerial image of the area over
which we wish to plan. We are going to use the aerial data
to classify each grid cell as one of n terrain classes, so in
order to do this we require some labelled training data which
relates features of the image (eg x,y location; r,g,b color;
hyperspectral data if available) to a single class label.

Independent of this we are given a priori cost data for
the region for each of the n terrain classes. The reason for
approaching the problem this way is that it frees the planner
from having to know the class of a cell or area before placing
a prior on traversability. We are hence able to incorporate
vague information only relevant to a particular class(es) into
our cost map. Examples of this would include ‘the area
to the south west is swamp land’, which would affect the
cost of anything classed as open terrain, but not the cost of
roads or impassable obstacles such as houses. Likewise ‘all
roads around London are congested’ affects only the cost of
roads, not open terrain or buildings. Attributing a separate
spatial GP to each class allows us to model the entire map
from a much smaller representative set of training data than
would be required if we were attempting to model all classes
together using just one GP. As training data we assume some
prior knowledge of the blanket cost of a particular terrain
type together with some local spatial variations.

We begin by discretizing the environment into a grid, this
can be done at the pixel or superpixel level. We classify
the grid cell using the aerial imagery to obtain p(T |x),
the probability of terrain class membership at that location.
Here we use T to represent the terrain class, and x is the
location (x, y) in the map. Separately, we evaluate our spatial
Gaussian process regressor for each of the n classes to obtain
p(c|T, x), the pdf representing the traversal cost c of that
particular class at the given location. Because our spatial
GPR can be viewed as modelling a cost-contour map for
each class we assume that a smoothing between data points is
appropriate and hence used a squared exponential covariance
function for the regression.

Next, the cost function combines the terrain class mem-
bership and terrain cost at a point x in a probabilistic form,
integrating out over the class types to produce the overall
cost of the cell.



p(c|x) =
∫

T
p(c|T, x)︸ ︷︷ ︸

GPR

p(T |x)︸ ︷︷ ︸
GPC

dT (11)

=
∑

t∈T p(c|t, x)p(t|x) (12)

Finally, we pass the information in the cost function to
a planner. Because our cost function is a pdf over grid cell
locations {x, y} we are able to not only produce the most
likely shortest path between point A and point B, but by
repeatedly sampling the cost function we may also produce
a likely distribution of paths between the two points.

V. RESULTS

To perform the multi-class classification we used the Vari-
ational Bayes Gaussian Process (VBGP) MATLAB toolkit
[14]. It uses sparse approximations and the variational bayes
methodology together with a multinomial probit likelihood to
estimate the posterior over class labels. Using this technique,
classification scales linearly in the number of classes but is
of order O(NM2) in training and O(M2) in prediction.

As we are potentially dealing with a large number of data
points in the regression case, we also made use of a sparse
gaussian process toolbox to perform the spatial regression.
Namely the IVM toolkit [15]. As we assume a spatially
smooth transition of values across the one terrain class, we
use a stationary squared exponential covariance function.

In this work we used A* to generate results but the
technique is equally applicable to any other planner reliant
on a cost map.

A. Responding to Spatial Variations in Terrain Cost: Most
Likely Paths

Figure 3 shows our framework operating on a simulated
data set. The aerial image has a resolution of 15m per pixel,
and each pixel becomes a grid cell for our planner. The
image has been labelled with 3 classes, and trained using 50
points each for the road, obstacle and scrub land classes with
input features corresponding to red, green and blue channels
in the image. In figures 3(a) - 3(c) we see the results of
the classification stage. Note how we get reasonably strong
probabilities (approaching 0.6) in the Obstacle and Road
classes, yet a muted response for the Open Terrain class.
Looking at the original image we see greatest variation in
colour amongst the open terrain class, there are various
shades of green (NB These results are best understood in
colour) and the light and dark extent of the colour range
represented leaves pixels of this class more open to mis-
classification than road or obstacle pixels.

Figures 3(d) - 3(f)) show the spatial cost maps for each
terrain type masked by the terrain classification. The cost
maps for the Obstacle and Scrub classes are almost uniform
over the map, but we have added some local high cost areas
to the road class to simulate areas of congestion, visible in
figure 3(f). The blue lines in figure 3(k) show two different
paths planned using this particular cost map.

Figures 3(g) - 3(i) show the convolution of spatial cost
map and class probability for a different congestion situation.

The difference is most visible in 3(i) where we see two very
high cost regions in the road cost map covering territory
which the blue path of the previous instance passed through.
Running the planner over this second cost map configuration
produces the magenta paths shown in 3(k), so we see that
by introducing some local spatial variation in the road class
only we have been able to influence the path chosen by the
planner.

B. Generating a Distribution of Paths

As mentioned, the pdf cost function can be sampled to
generate a distribution of paths between points. Figures 4(a)
to 4(c) illustrate the framework operating over 3 different
aerial images taken from Google Maps. The first two show
different urban environments, which we classified into road,
scrub and obstacle. The third shows a portion of the Aus-
tralian desert, which we classified into dirt road, tree canopy
and open terrain. Again, 50 training data points were used
for each class in classification. This time the cost maps were
approximately uniform and scaled appropriately so that road
was preferred over scrub which was in turn preferable to
obstacle.

In figures 4(a) to 4(c) we see the results of running 50
different A* searches over the map, resampling the cost
function each time. All paths have been plotted using an
alpha-blended overlay. In each case we see a thickened most-
likely path, together with other feasible paths that could result
given that many of the grid cells on the most-likely path have
uncertain classifications.

Figure 5 shows a histogram of the distribution of path
costs that stems from running the same search over the desert
image 200 times. Note that the distribution is multi-modal
and that this is also reflected in 4(c) where a number of
distinct clusters of similar paths are visible.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented an approach to probabilistic cost map
construction and path planning. Using two separate Gaussian
process techniques we were able to classify locations in an
aerial image probabilistically into one of nC classes. Inde-
pendently of classification we produce a cost map for each
of the nC terrain classes using a sparse Gaussian process
regressor. The benefits of this approach are multifarious: we
allow the cost of a terrain type to vary spatially, this reduces
the classification burden as we can abstract away variations
within broader terrain types into the independent spatial cost
map and hence require fewer classes to represent terrain.
We are also able to incorporate vague local knowledge (like
‘avoid highways’) into the spatial cost maps without having
to know the exact location of every instance of that terrain
type in the affected region. The Gaussian process spatial
regressor produces a cost and variance at each location in
the map for each terrain type, this is combined with the
probability of class membership at that point in a global
probabilistic cost map. We can sample from the cost map to
produce a distribution of probable paths between two points,



(a) Obstacles (b) Scrub (c) Road

The results of classifying the image into 3 classes: Obstacle, Scrub and Road. Note the relatively good discrimination between high and low confidence regions obtained for
both the Obstacle and Road classes, and compare this with the Scrub class, where confidence in actual regions of scrub (evident in (j)) barely reaches 0.4. The scrub class has

the highest variation in colour (shown in (j)) and as we train and classify on colour information only, this leads to poorest results for this class.

(d) Obstacle Costmap: instance 1 (e) Scrub Costmap: instance 1 (f) Road Costmap: instance 1

(d)-(f) The cost maps for each of the 3 terrain types used for the first iteration of the planner. To enhance understanding we have masked the cost maps with the probability of
class membership. Note that the Obstacle class is generally high cost everywhere, while the road class is almost uniformly low cost except for localised high cost regions

which we have deliberately added around the edge of the image.

(g) Obstacle Costmap: instance 2 (h) Scrub Costmap: instance 2 (i) Road Costmap: instance 2

(g)-(i) The cost maps for each of the 3 terrain types used for the second iteration of the planner. Note the high cost regions added to the road costmap right where the path of
instance 1 passed through.

(j) The original image: A simplified map of
a residential area with black corresponding to
roads, white to rooftops and green to scrub.

(k) Resultant Paths, instances 1 & 2

Figure (k) shows paths planned using costmap instances 1 (blue) and 2 (magenta). Note that the magenta path resulting from instance 2 now veers around the high cost regions
added to the map, and that by comparing with the original image (j) the magenta path in the right hand side of the image actually prefers to traverse scrub rather than road for

part of the route.

Fig. 3. Altering the path in response to spatial variation in terrain cost

as well as use the mean value of the cost function to find
the most-likely path.

Although we chose to demonstrate the framework by
planning over aerial images, it’s use could be applied to other
domains (such as on a mobile robot) simply by altering the
input feature set used for classification. We obtained decent
results using only colour red, green and blue pixel intensities
for classification into three classes. However, we would
expect better results using more inputs, such as hyperspectral

data which would allow us to better discriminate between
terrain such as vegetation or water. In turn, better paths
could also be obtained by using more classes, this will not
introduce much extra computational burden as the Gaussian
process multi-class classification technique we employed
scales linearly with the number of classes.

In a similar vein, we have used standard squared-
exponential covariance functions in both the GPC and the
GPR. Future work would encompass experimenting with dif-



(a) Planning Paths Across Tempe, Az

(b) Planning Paths Across Lisbon, Portugal

(c) Planning Paths Across the desert, Australia

Fig. 4. Path Distributions

ferent covariance function. One would expect the use of non-
stationary covariance functions in modelling the spatially
varying cost map to produce better results, as these may
better capture the abrupt local variations in terrain cost that
we are interested in modelling.

Fig. 5. The multi-modal distribution of path costs resulting from 200
iterations of planning over the desert image of Figure 4(c).
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