
Risky Planning: Path Planning over Costmaps with a Probabilistically
Bounded Speed-Accuracy Tradeoff

Liz Murphy
School of Engineering Systems, Queensland University of Technology

Email: liz.murphy@qut.edu.au

Paul Newman
Oxford University Mobile Robotics Group

Email: pnewman@robots.ox.ac.uk

Abstract— This paper is about generating plans over uncer-
tain maps quickly. Our approach combines the ALT (A* search,
landmarks and the triangle inequality) algorithm and risk
heuristics to guide search over probabilistic cost maps. We build
on previous work which generates probabilistic cost maps from
aerial imagery and use these cost maps to precompute heuristics
for searches such as A* and D* using the ALT technique. The
resulting heuristics are probability distributions. We can speed
up and direct search by characterising the risk we are prepared
to take in gaining search efficiency while sacrificing optimal
path length. Results are shown which demonstrate that ALT
provides a good approximation to the true distribution of the
heuristic, and which show efficiency increases in excess of 70%
over normal heuristic search methods.

I. INTRODUCTION
Typical approaches to path planning for field robots in-

volve simplifying the robot’s environment into a discretized
costmap, where the cost of each grid cell is a scalar value
proportional to the estimated cost of traversing the terrain
thought to lie at that location. In the absence of perfect
sensing and classification, this cost is actually an uncertainty
distribution over the terrain associated with a particular cell.
In [1] we argued that the typical ‘scalar’ approach to costmap
creation throws away useful information, and presented a
framework for producing probabilistic cost maps from aerial
imagery.

In this work we capitalize on the probabilistic nature of
these costmaps to ‘speed up’ path planning by providing
guaranteed bounds on the sub-optimality of paths produced
when we trade the accuracy of the results for the speed
of finding a potential path. We achieve this by making the
heuristic that controls the search probabilistic. The A* and
D* family of algorithms, commonly used in field robotics,
both belong to the heuristic search family. The heuristic is
used to estimate how far a particular node is away from
the goal (in A*, in D* the direction of search is reversed
so the heuristic estimates the distance to the start) and is
used in conjunction with the known distance from the start
to estimate the shortest path from start to goal via that node.
This total distance is used to prioritise the node against all
other nodes in the search in terms of its likely contribution
to finding the shortest path and determines which of the
nodes under consideration is chosen for expansion next. By
focussing the search towards the goal, heuristic searches find
optimal paths more efficiently than comparable algorithms
such as Dijkstra’s search.

The more accurate the heuristic is, the less time we spend
searching. A recent technique [2] precomputes distances

This work was supported by The Australian Federation of University
Women Queensland Branch

between every cell in the map to and from a small set of
Landmarks distributed throughout the map. These precom-
puted distances are used in conjunction with the triangle
inequality to provide a lower bound on the heuristic distance
for arbitrary node-goal pairs during an A* search. In our case
this precomputation of path lengths involves the addition
and subtraction of gaussian cell costs, which leads to a
distribution which approximates the one we are interested in.
This approximation governs the distance between the node
and the goal.

Moreoften than not in robotic path planning we are
interested in finding a ‘good’ path rather than the shortest
possible path. Anytime algorithms recognize this and a suite
of solutions have been developed to provide good trajectories
to the robot quickly and improve on them if time allows
[3] [4]. These algorithms work by relaxing the admissibility
criterion - which normally requires that the heuristic estimate
of the goal distance always be less than or equal to the true
distance. Figure 1 shows the quandary that the admissibility
criterion introduces into our probabilistic planning domain.
Let p(fn) be the probability density function over the cost
of traversing a path from start to goal through node n. Here,
p(fn1) has the lower mean, but it is quite possible that
the actual path cost p(fn2

) through node n2 is somewhat
lower due to the longer tail of its distribution. Intuitively we
would opt to expand n1 as the shape of the density functions
renders f(n1) > f(n2) unlikely. However, an admissible
heuristic would force us to expand n2 as the longer tail
of this distribution means that to act otherwise would risk
overestimating the cost to the goal. We propose to solve this
quandary by using the heuristic to quantify the level of risk
we wish to take that the paths returned by the planner will
be suboptimal.

Fig. 1: Which node to expand next? Node n1 with cost function f1 promises
a lower mean, but f2 indicates n2 has significant probability of offering a
lower cost than n1.

Pearl [5] [6] developed the R∗δ algorithm to deal with cases
in which the user wishes to invoke probability distributions
in the admissibility criterion. The premise is simple - if we

know the probability distribution governing the heuristic, we
know how often, on average, it will overestimate the distance
between the node and the goal and therefore we know how
often it will overestimate the shortest path. The algorithm
allows the specification of a level, δ which bounds the risk
of returning a suboptimal path.

In this paper we show how the R∗δ algorithm can be
applied to probabilistic costmaps. We use ALT [2] to provide
a good base estimate of the probability distribution governing
the heuristic and learn a scaling parameter to improve this
estimate on the fly. The results show that for minimal
precomputation we can obtain 73% improvement in search
efficiency and quantify the risk of the path being longer than
optimal. Together with the work in [1], this paper provides
an end-to-end framework for incorporating uncertainty into
path planning for mobile robots.

II. RELATED WORK

Many modern planning algorithms [7] [8] [9] build on
the idea of A* search [10]. A∗ is a best-first graph search
algorithm which finds the shortest path between a start and
a goal node. Central to the A* algorithm and its variants is
a distance-plus-cost heuristic which determines the order in
which nodes of the graph being searched are visited. This
heuristic itself has two parts, one is the cost of travelling from
the starting node to the current node n under examination,
usually denoted g(n). The second part, denoted h(n) is a
heuristic estimate of the distance from n to the goal. The
sum f(n) = g(n)+h(n) determines the priority of the node
n on the OPEN queue of nodes awaiting expansion.

Typically in the A* paradigm the heuristic must be con-
sistent (monotonic) and admissible, meaning it never overes-
timates the cost of reaching the goal. In the extreme, when
h = 0 for every node, A∗ becomes Dijkstra’s algorithm.
Conversely, if we have perfect knowledge of the problem
space and can tailor the heuristic to make use of this knowl-
edge then h = hoptimal and fewest nodes are expanded. It
is the admissibility condition that guarantees that A* will
find an optimal solution path if it exists. However, it has the
unfortunate by-product of frequently leading the search to
spend large amounts of time deliberating between roughly
equal solution paths and does not give us the option of
terminating the search with an acceptable but not optimal
solution path. In Bandwidth Search [11] Harris showed that
if the heuristic overestimation is bounded by ε then the
resulting cost cannot exceed (1 + ε)C∗, where C∗ is the
optimal path cost. The concept of ε-admissibility has more
recently been used in [4] to produce bounded suboptimal
solutions which produce increasingly better solutions to
planning problems in a given time window.

The idea of placing risk bounds on heuristics was in-
troduced by Pearl [5] [6] who sought to invoke likelihood
considerations into the admissibility guarantee. The resulting
R∗δ algorithm is a variant of A∗ that relaxes Harris’ ε −
admissibility condition even further, to allow the use of a
precise estimator that may occasionally overestimate h∗ by

more than ε, such as is the case when the arc costs of a graph
are known to be drawn from a probability distribution.

In [5] the performance of R∗δ was demonstrated on an
instance of the Travelling Salesman Problem with statistics
generated from multiple previous searches. Pearl used regres-
sion techniques to fit parameters to a best fit model ĥopt,
a heuristic that accurately estimates the future cost of the
search but occasionally overestimates this distance. The true
minimum arc cost h is assumed to be normally distributed
with mean ĥopt and variance σ2 estimated from the statistics.

Obviously, the computation of heuristics for a Travelling
Salesman search bears little relevance to problem domains
encountered by a mobile robot. What we wish to demonstrate
in this paper is the effectiveness of risk bounded search in
searching terrain that may be traversed by a mobile robot. In
[1] we demonstrated how probabilistic maps can be obtained.
In the work that follows we will demonstrate how these
probabilistic maps can be used to construct probabilistic
heuristics for use with R∗δ search.

When applying A∗ search to large graphs such as those
created by an overhead map it is desirable to restrict the point
to point search to examining only relevant areas of the input
graph. Recently there has been a focus on preprocessing the
graph to obtain better heuristics. The ALT (so named because
of its use of A∗, Landmark and the Triangle inequality)
algorithm [2] [12] selects a small set of vertices as landmarks
and uses precomputed distances from every node to these
landmarks in evaluating the A* heuristic. The LPI (Landmark
Pathfinding between Intersections) algorithm [13] also uses
landmarks to precompute heuristics, but solution paths are
restricted to follow shortest paths stored between landmarks.
Hierarchical Terrain representation for Approximately short-
est Paths (HTAP) [14] works by precomputing a hierarchy
of abstracted graphs. At each level of the hierarchy a path
is found between start and goal and this is used to constrain
subsequent higher-resolution searches.

III. RISK BOUNDED SEARCH

The first stage of our risk-bounded search strategy is to
obtain an input graph where the arc costs are probability
distributions. The nature of the problem domain is such that
negative arc costs are not permitted. The reason for this is
two fold - with negative edge costs the optimality guarantees
of A∗ and its variants are voided. In addition, we are making
the assumption that it will always cost something for a robot
to traverse terrain.

We assume we have a set of arc costs obtained using a
the approach in [1], where the cost of a grid cell is obtained
by multiplying the probability of its class membership with
the probability density associated with the cost of that class
in that particular area. We then use ALT to precompute
probabilistic heuristics. Consider the landmark L in Figure
2, if d(·) defines the distance to L, then by the triangle
inequality:

d(u)− d(v) ≤ dist(u, v) (1)

else if d(·) defines the distance from L, we have

d(v)− d(u) ≤ dist(v, u). (2)

The largest lower bound over all landmarks is used to select

d(L,v) − d(L,u) ≤ d(u,v)d(u,L) − d(v,L) ≤ d(u,v)

d(L,u)
d(L,v)d(v,L)

d(u,L)

d(u,v)d(v,u)

u u

v v

LL

Fig. 2: Landmarks: The triangle inequality provides a lower bound on the
distances between nodes in the graph, the maximum of these distances over
all available landmarks is used to provide a feasible lower bound for any
location in the graph.

the heuristic which will guide the A∗ search. The mean of the
Gaussian distributions is used in conjunction with Dijkstra’s
search to precompute distances to and from every point in
the map to the selection of landmarks. The variances over
the path so calculated are also summed. Neighbouring cell
costs are added together leading to a cost over the entire path
from node n to the Landmark (Lk) of K landmarks:

L̂k∈K(n) = N

 ∑
i∈path

ui,
∑
i∈path

σ2
i

 (3)

We use this estimate of the distance between node n and
the landmark k in conjunction with equations (1) and (2) to
estimate the distance from the node to the goal. The ‘most
accurate’ lower bound is provided by taking the maximum
heuristic estimate over the K landmarks we are evaluating.

ĥALT (n) = max
k∈K

(
L̂k(n)− L̂k(g), L̂k(g)− L̂k(n)

)
(4)

Note that this distribution is an approximation to the
distribution we are actually interested in, over the distance
between the node and the goal. As Figure 3 illustrates,
depending on where the landmark is located in relation to
the node and the goal influences how accurate the landmark’s
estimation of the goal distance is.

We account for this by scaling the variance of the heuristic
estimate by a factor ϕ, which is dependent on the ratio of
the lengths of the sides of the triangle used to compute the
estimate. This ratio is passed through a sigmoidal function

c =
min [d(u), d(v)]

max [d(u), d(v)]
(5)

ϕ =
1

1 + e−10∗(c−0.5)
+ 1 (6)

which has the effect of scaling out the variance by a factor of
between 1 and 2. For the examples in Figure 3 the variance
of the Landmark 3 (LM3) case, which produces a perfect
estimate of the distance, would be inflated by 1.25. The
Landmark 1 case which grossly underestimates the distance
between the two points would be inflated by 2.0.

d(u,LM) = 5.83 d(v,LM) = 5.83

LM1: d(u,v) = 0.00
min(d(u,L), d(v,L)

max(d(u,L), d(v,L)
=

5.83

5.83
=1.00

d(u,LM2) = 11.18

d(v,LM2) = 14.87

LM2: d(u,v) = 3.69
min(d(u,L), d(v,L)

max(d(u,L), d(v,L)
=

11.18

14.87
=0.75

d(u,LM3) = 10.00 d(v,LM3) = 4.00

LM3: d(u,v) = 6.00
min(d(u,L), d(v,L)

max(d(u,L), d(v,L)
=

 4.00

10. .00
=0.40

LM2

LM3

LM1

u v

Fig. 3: Three different landmarks produce widely varying estimates for the
true distance (6.00) between nodes u and v. While they all produce valid
lower bounds, the correct distance is provided only by landmark LM3
which correspondingly exhibits the smallest ratio of min to max distances
between u, v and the landmark. The problem of the accuracy of the lower
bound being dictated by the relative position of the node, goal and landmark
is addressed by pushing this ratio through a sigmoidal function to ‘scale up’
estimates such as those provided by LM1 in this instance, while leaving
correct estimates (such as LM3) relatively untouched.

In order to guarantee the probabilistic bounds detailed later
in this section, we also need to correct for the consistent
overestimation of the mean by the ALT heuristic. We in-
troduce small scaling parameters for both the mean (τ) and
the variance (incorporated into ϕ) and learn these parameters
by conducting multiple searches and comparing the results
to optimal paths found by A* search using an admissible
(euclidean) heuristic.

ĥ = N (µĥALT − τ, ϕ(σ
2
ĥALT

)) (7)

Learning is done once per environment. In our experience
the searches converge to a ‘good’ estimate within approxi-
mately 15 searches.

In analysing the risk we adapt the analysis provided in [5].
If we take h(n) to be the minimum arc cost from node

n to the goal, we know that equation 7 has provided for
us an estimate of the minimum arc cost in the form of a
probability density function ĥ(n). We can choose to interpret
this as the likelihood of h given our precomputed estimates
ĥ, and denote the likelihood by p(h | ĥ). In the course of
carrying out an A∗ search we observe ĝ(n), which is the
best known approximation to g(n) - the minimum cost of
navigating from the start s to node n. Note that this is a
scalar value. Knowledge of ĝ induces a conditional density
function on f†(n), the cost of a path from the start to goal
via n.

f†(n) = ĝ(n) + h(n) (8)

This leads to a probability distribution over f†:

p(f† | ĝ, ĥ) = ĝ + p(h | ĥ) (9)

Every optimal solution path must be a continuation of
a path T (n) which passes through some node currently
contained on the OPEN list. Therefore we can say that OPEN
always contains a/some node/s for which f†(n) = f(n) =
Copt, where Copt denotes the optimal shortest path length.

Termination conditions for a normal, scalar-driven A∗

search are straightforward. The search continues until the

goal node has the lowest f -value of any node in the OPEN
list. Now that our OPEN list is ordered by probability
distributions, the decision as to when to terminate the search
becomes more complicated.

Figure 4 illustrates the dilemma. Suppose the best path
found so far has a cost C, shown by the straight vertical
line on the graph. The node n at the top of the OPEN list
has an f -value given by the gaussian distribution shown.
Expanding n shows some promise of coming up with a path
shorter than C, but on average n would produce a longer
path as the mean of the distibution f† is greater than C.
The decision as to whether to explore n or not thus involves
evaluating the risk of terminating the search at cost C. Under

C
Cost

p(f†|ĝ, ĥ)

Fig. 4: Under R∗
δ search, if the true cost of node n lies in the shaded region

and we terminate the search at Cost C, we risk not finding the shortest path.
the R∗δ paradigm, the risk of missing futher cost reduction
is characterized by a Risk Function R(C) which depends on
both C and p(f† | ĝ, ĥ). It is a non-decreasing function of C.
We have chosen to investigate two types of Risk Functions:

1) Probability of Suboptimal Termination

RST (C) , p(C − f† > 0) =

∫ C

y=−∞
p(y | ĥ, ĝ)dy

(10)
2) Expected Risk

RER(C) =

∫ C

f†=−∞
(C − f†)p(f† | ĥ, ĝ)df (11)

An R∗δ search imposes the requirement that the underlying
A∗ search will continue until no node on the OPEN list has a
risk associated with it that is greater than some level δ. This
introduces the notion of δ-risk admissibility, guaranteeing
that the search always terminates at a cost C such that
R(C) ≤ δ for all nodes left on OPEN.

This means that instead of using f -values to order the
OPEN list, we use a threshold cost function Cδ(n) which is
given by the solution to the equation

R(C) = δ. (12)

When using the Probability of Suboptimal Termination
risk functional, we choose δ to be the probability of obtaining
a suboptimal solution which we are prepared to accept. For
instance, if we were prepared to risk obtaining a suboptimal
solution 5 out of every 100 iterations of a particular problem
instance we would set δ to 0.05. When using the Expected
Risk functional, δ represents the additional cost of the path

over that of the optimal path which we are prepared to accept.
As equation (17) will show, it is often preferable to express
this as a percentage of optimal path length.

Once we have chosen our risk functional and the level of
risk we are prepared to accept, we need to translate this into
a threshold cost function value Cδ(n) - that can be computed
from ĝ and p(h | ĥ) to be used in ordering the OPEN list in
our A*-like search.

For the RST (C) risk functional, it makes sense to use
the properties of the Gaussian distribution and write δ as an
expression of the distance from the mean.

Cδ(n) =

 µ δ = 0.5
µ− σ δ = 0.159
µ− 2 ∗ σ δ = 0.023

(13)

Evaluating the RER(C) functional for a gaussian leads to
the following piecewise-linear approximation:

RER(C) =


0 C < µ− 2σ√

2π
σ√
2∗pi +

1
2 (C − µ) µ− 2σ√

2π
< C < µ+ 2σ√

2π

C − µ µ+ 2σ√
2π
< C

(14)
which can be solved for values of Cδ(n)

Cδ =

{
µ+ 2

(
δ − σ√

2π

)
0 < δ < 2σ√

2π

µ+ δ 2σ√
2π
< δ

(15)

As alluded to earlier it is more useful to express the risk
as a percentage of the solution cost

δ =
R(C ′)
C ′

(16)

which leads to the following expression for C ′δ

C ′δ =


2σ√
2π
−µ

(2δ−1) 0 < δ <
2σ√
2π
−µ

2
(

2σ√
2π

+µ
) + 1

2

µ
(1−δ)

2σ√
2π
−µ

2
(

2σ√
2π

+µ
) + 1

2 < δ.
(17)

IV. RESULTS

We implemented the risk heuristic searching algorithms in
C++ and ran them on a standard PC with 4G RAM and a dual
core 1.8GHz processor. Landmarks were generated using the
planar landmark selection method [2] [15]. This method
stems from the observation that placing a landmark behind
the destination tends to generate good results in geometric
graphs.

The graph in Figure 5 compares the results obtained
over a 65 × 65 grid graph with various approximations to
the heuristic. Eight landmarks were used in precomputing
the search. Each data point in the graph is the average
result obtained over repeated searches between the same
start and goal node after sampling 50 distinct instances from
the probabilistic cost map distribution. The 30 data points
represent 30 different start/goal combinations. The three
graphs show the results of searching using the mean minus 2
standard deviations (where 97.7% of searches should return
the optimal path), the mean minus one standard deviation
(84.1% should be optimal) and the mean (50% optimal). The

graphs clearly show that our method of scaling the heuristic
produces a distribution nearly identical to the true distance
between the node under consideration and the goal - because
with the scaled mean and variance we obtain the expected
performance in terms of the number of optimal solutions for
all three cases.

0 5 10 15 20 25 30
0

20

40

60

80

100
h=µ−2σ

%
 o

f s
ol

ut
io

ns
 o

pt
im

al

ALT Approximation
Adjusted for LM Accuracy
Scaled Variance
Scaled Mean and Variance

0 5 10 15 20 25 30
0

20

40

60

80

100
h=µ−σ

%
 o

f s
ol

ut
io

ns
 o

pt
im

al

0 5 10 15 20 25 30
0

20

40

60

80
h=µ

%
 o

f s
ol

ut
io

ns
 o

pt
im

al

Costmap Instance

Fig. 5: Approximating the heuristic distribution. The dotted horizontal lines
show expected % accuracy for each of the h = µ − 2σ, h = µ − σ and
h = µ bounds. The graphs show that scaling the heuristic estimate obtained
via ALT produces many-fold improved results over the raw estimate. The
bottom graph illustrates the importance of shifting the mean to account for
consistent (but slight) overestimation by ALT.

To test the operation of the algorithm itself we generated a
256×256 random fractal terrain map (Figure 6) for both the
mean and variance of the cells. This was done to ensure that
there would be distinctive areas of high and low variance in
the map - rather than randomly scattered throughout - and
that this would reflect real world situations where certain
regions would be better known than others. We placed 16
landmarks using planar landmark selection and compare the
results of our risk based searches against that of A* guided
by a euclidean distance heuristic.

Fig. 6: The mean and variance of the random fractal terrain map used for
the experiment

Precomputing the landmarks took an average of 2.58
seconds per landmark - this involved running a Dijkstra

search in both forward and reverse directions over the graph,
with the edge lengths set to Gaussian values. By way of
comparison, A* searches with euclidean distance over the
graph took an average of 2.16 seconds. So precomputation
took approximately 19 times as long as one search.

We performed 60 different start to goal searches, and
at each iteration generated 50 different samples from the
probabilistic cost map to test the operation.

Figure 7 shows the results of the R∗δ search with varying
levels of suboptimal risk allowed. Overall, the µ − 2σ
heuristic achieved 96% accuracy; µ − σ achieved 81.2%
and µ achieved 50.2%, close to the expected values of
97.7%, 84.1% and 50.0% respectively. Figure 8 illustrates the
efficiency savings of these heuristic values - on average they
require 95.4%, 97.3% and 27.43% of the search effort respec-
tively and produce normalized path lengths of 1.0002, 1.0006
and 1.002 multiples of that of the A* search. Due to the
probabilistic nature of the risk based search, h = µ − σ
performs worse than h = µ. However, our results show that
using the h = µ search heuristic guarantees the shortest path
distance 50% of the time and expands only 27% of the cells
that an equivalent A* search would do - an efficiency saving
of 73%.

0 10 20 30 40 50 60
30.0

40.0

50.0

60.0

80.0

84.1

90.0

97.7
100.0

Performance of the Suboptimal Termination Risk Functional

Search Instances

P
er

ce
nt

ag
e

of
 S

ol
ut

io
ns

 th
at

 a
re

 th
e

O
pt

im
al

 P
at

h
Le

ng
th

 (
%

)

h=µ
h=µ−σ
h=µ−2σ

Fig. 7: Performance of R∗
δ with suboptimal termination

Figure 9 shows the results of running 60 iterations of the
search with varying levels of expected risk allowed. Here, δ
is used to bound the percentage over which the path length
returned by R∗δ exceeds the optimal path length. The graph
shows that even with δ set to 40%, on average the path
length is only 1.77% in excess of that achieved by A* with
an admissible heuristic, and at worst it is 18.5% longer.
However it only expands 78.7% of the nodes, an efficiency
saving of 22.3% while bounding the length of the resultant
path. Table I shows the planning times of the two heuristic
families compared with that of A* search with the standard
euclidean heuristic. Note that the more complicated nature
of our heuristics results in longer planning times for all but
the h = µ suboptimal termination heuristic. However, as the
heuristics examined in this paper cause A* search to expand
less nodes, we would expect the planning times to decrease
relative to that of the euclidean heuristic as the size of the
costmap grows.

V. CONCLUSIONS

This paper introduced a tradeoff between speed and accu-
racy for Path Planning over probabilistic costmaps. We see

1

1.0005

1.001

1.0015

1.002

1.0025

1.003

1.0035

1.004

A* h=µ−2σ h=µ−σ h=µ

N
or

m
al

iz
ed

 P
at

h
C

os
t

Heuristic

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

A* h=µ−2σ h=µ−σ h=µ

N
or

m
al

iz
ed

 S
ea

rc
h

E
ffo

rt

Heuristic

Fig. 8: The results of running Rδ search with three different risk functional
levels as per Equation (13). The top plot is the normalized path cost with the
solid line representing the mean of the normalized path cost and the filled
section denoting the spread of values obtained within one standard deviation
of the mean. The bottom plot is the normalized search effort in terms of
nodes expanded. The solid line denotes the average search effort, the filled
section denotes one standard deviation from the mean search effort.

Time (s)
Suboptimal Termination
µ 1.3134
µ− σ 3.5597
µ− 2σ 3.5530
Expected Termination
δ = 5% 3.5955
δ = 10% 3.5816
δ = 20% 3.5400

A* search with euclidean heuristic 1.7623
TABLE I: Planning Times of the various heuristics on a standard PC with
4G RAM and dual core 1.8GHz processor

this as being particularly useful in field robotics applications
where often a ‘good’ path is as acceptable as the shortest
path, and coarse, uncertain prior data such as aerial maps
- from which to precompute a probabilistic heuristic - are
freely available. The heuristic is valid for the duration of
planning over that particular environment, and allows the
user to specify how much risk they wish to take on in
terms of the quality of the paths returned. The results show
efficiency gains of up to 73%, and that the precomputation
effort is minimal especially if multiple traverses will be made
over the same terrain.

In future we plan to examine the placement of the land-
marks. In this work we used a planar landmark selection
method which scatters landmarks around the boundary of
the the map. In this approach landmarks simply equated to
grid cells located in the map rather than physical objects
with salient characteristics. While this worked well in normal
scalar grid maps, it would be worthwhile investigating the
effect of choice of landmark on the accuracy bounds of the
R∗δ search, i.e. is it better for our purposes to place landmarks
in areas of well known terrain?

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

δ (%)P
at

h
Le

ng
th

 In
 E

xc
es

s
of

 O
pt

im
al

 P
at

h
Le

ng
th

 (
%

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.5

0.6

0.7

0.8

0.9

1

δ (%)

N
or

m
al

iz
ed

 S
ea

rc
h

E
ffo

rt

Fig. 9: The results of running R∗
δ with 6 levels of expected risk

REFERENCES

[1] E. Murphy and P. Newman, “Planning paths from overhead imagery,”
in Proceedings of the IEEE International Conference on Robotics and
Automation, Anchorage, AK, May 2010.

[2] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A*
search meets graph theory,” in 16th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’05), Vancouver, Canada, January 2005.

[3] M. Likhachev, G. Gordon, and S. Thrun, “Ara*: Anytime a* search
with provable bounds on sub-optimality,” in Conference on Neural
Information Processing Systems (NIPS), 2003.

[4] M. Likhachev, D. Ferguson, G. Gordon, A. T. Stentz, and S. Thrun,
“Anytime dynamic a*: An anytime, replanning algorithm,” in Pro-
ceedings of the International Conference on Automated Planning and
Scheduling (ICAPS), June 2005.

[5] J. Pearl and J. H. Kim, “Studies in semi-admissible heuristics,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 4,
no. 4, pp. 392–399, July 1982.

[6] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Prob-
lem Solving. Addison-Wesley, 1984.

[7] A. Stentz, “Optimal and efficient path planning for partially-known
environments,” in Proceedings of the International Conference on
Robotics and Automation, 1994, pp. 3310–3317.

[8] S. Koenig and M. Likhachev, “D*lite,” in Eighteenth national con-
ference on Artificial intelligence. Menlo Park, CA, USA: American
Association for Artificial Intelligence, 2002, pp. 476–483.

[9] D. Ferguson and A. T. Stentz, “The field d* algorithm for improved
path planning and replanning in uniform and non-uniform cost en-
vironments,” Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-
TR-05-19, July 2005.

[10] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
of Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, July
1968.

[11] L. R. Harris, “The bandwidth heuristic search,” in International Joint
Conference on Artificial Intelligence, Stanford, USA, 1973, pp. 23–29.

[12] A. V. Goldberg, “Point-to-point shortest path algorithms with pre-
processing,,” in Current Trends in Theory and Practice of Computer
Science (SOFSEM), Harrachov, Czech Republic, 2007.

[13] K. Grant and D. Mould, “Lpi: Approximating shortest paths using
landmarks,” in ECAI 2008 - Workshop on AI and Games, Patras,
Greece, July 2008.

[14] D. Mould and M. C. Horsch, “An hierarchical terrain representation
for approximately shortest paths,” in 8th Pacific Rim International
Conference on Artificial Intelligence, Auckland, New Zealand,, August
2004.

[15] A. V. Goldberg and R. F. Werneck. (2009, September) Selecting land-
marks in shortest path computations. Patent Application Publication.
Microsoft Corporation.

