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Abstract— In this paper we address the problem of dense
depth map estimation from sparse noisy range data to re-
construct large heterogeneous outdoor scenes. We propose a
surface inpainting solution through energy minimisation with
an adaptive selection of surface regularisers among a set of
well known convex and non-convex regularisers. In fact, the
selection of norm is pivotal with respect to the intrinsic surface
characteristics. Our goal is to show how dense interpolation
of sparse range data can be leveraged of more exotic and
non-convex regularisers such as the log and logTGV [1] which
can better capture the scene geometry. In contrast to state
of the art solutions, we do not restrict ourselves to this set
of norms, instead we search for the most apt norm for each
semantically segmented part of the scene. Our energy model
selection use Bayesian optimisation to learn the best choice
of free parameters. This results in an adaptive model selection
and the generalisation of well studied regularisation norms. We
conclude with a detailed experimental analysis of our approach
using a basis of four norms over a set of challenging outdoor
scenes.

I. INTRODUCTION

The task of workspace reconstruction remains a vital con-
cern to computer vision and robotics. Given noisy, often
sparse data from single camera or range images how does
one construct a dense representation of the workspace which
contains at once discontinuities, rips, smooth surface patches
and holes. This paper is concerned with just this problem
and, as is common practice, approaches it from an energy
optimisation perspective. We seek a representation which
balances a data term (how well does the observed data fit
a solution) and a regularisation term (how well does the
solution fit a prior belief on the characteristics of the surface).

The choice of the algebraic form of these two terms, driven
by a choice of norm, has far reaching consequences and de-
serves careful attention. We show using an intuitive example
on 1D signals the relative merits of a set of well studied
and suitable convex and non-convex norms successfully used
for image processing tasks [1]. We extend their application
to a more challenging problem: dense reconstruction of
large outdoor scences from a single sparse range image. A
consequence of our analysis and optimisation construction
is the conclusion that new more complex norms should be
given a central role in dense reconstruction of large outdoor
scenes - in contrast to the usual standard L1 and Huber norms
successfully applied in small environments [2], [3]. The input
to our pipeline consists of a point cloud obtained from push
broom laser data and a corresponding set of images used
to calculate the vehicle trajectory using Visual Odometry.
From these, sparse depth images are obtained. Both sensors
are mounted on a car that traverses a city environment.

Several alternative methods have been brought to bare on
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this kind of problem in the literature. In [4] we find a method
to integrate high-res image data into low-res but sufficiently
regular and dense range data. As a result, it recovers range
data at the same resolution as the image data. The core of the
method relies on an Markov Random Field formulation with
a quadratic prior (or L2 norm) which favors fronto-parallel
surfaces in indoor scenes. Other approaches have been ap-
plied in the context of modeling to generate multiresolution
3D maps from sparse LIDAR measurements [5], [6], [7] or
Kinect dense depth images [8]. In all these works Gaussian
Process are employed. While these works share the same
application and demonstrations, their models are restricted
to the set of continuous and differentiable functions which
prevents the explicit formulation of discontinuities.

Our task is to assign a depth for every pixel starting
from the sparse seeding. Due to the heterogeneous structures
that are present in the scene (buildings, vegetation, roads,
walls,...), we do not apply a single energy model for the
whole scene. Instead, for each distinctive region of the image,
we search for a regulariser and its corresponding parameters
that best captures the underlying 3D structure. Regions are
acquired via an interactive multilabel segmentation of the
images, as it is a common practice in many computer vision
applications [9].

II. PROBLEM STRUCTURE

Consider the example of finding a surface, parametrised by
a function x : Ω → R, that best explains a sparse set of
noisy measurements given by a function z : Ωz → R, where
Ωz ⊆ Ω. This problem is in general ill-posed since there
exist many surfaces that can fit the data. A prior belief on
the surface properties (piecewise constant, smooth, affine,...)
can be introduced as a regularisation term to reduce the
space of valid solutions and, indeed, improve the stability
of the problem. As such, we can represent our task as a
minimisation over x of an energy E(x) defined by

min
x
E(x) = min

x
R(x) + λD(x, z) (1)

where R is a regularisation prior, D is a data term capturing
the compatibility between x and our measurements z and
λ > 0 is a weight trading off R and D. For now we will
proceed with a simple L2 norm for D

D(x, z) =
1

2

∫
Ω

(x− z)2 (2)

which is equal to zero when z 6∈ Ωz since in that case there
are no measurements to compare with.

Equation 1 is called the primal form of the problem- it
contains only our prime variable of interest x. If R and D
were smooth and convex we could proceed with common-
place continuum methods such as Levenberg-Marquadt [10].
But if R or D are not so tame our problem is harder, yet,



as this paper illustrates, the solution yielded is superior. We
will now describe the optimisation machinery [11] needed to
proceed.

If we wished to encourage x to be piece-wise constant
we might regularise the solution by penalising the Total
Variation [12] and so set

RTV (∇x) =

∫
Ω

||∇x||1 (3)

where Ω is the domain of x and∇x its gradient. The intuition
here is that the summation over the absolute infinitesimal
changes of a function gives its total change or variation. We
can discretise the regularisation and data terms obtaining

RTV (Kx) = ||Kx||1 (4)

D(x, z) =
1

2
||x− z||22 (5)

where x = [. . . xi . . .]
T are samples of signal x taken at

regular intervals of its domain Ω, operator K is a discretised
version of the gradient operator and the data term is zero
for zi 6∈ Ωz . Notice that here we are dealing with the non-
differentiable L1 norm and therefore we cannot make use
of standard optimisation methods for smooth functions. In
the next section we will summarise how a solution can be
obtained by using a primal-dual energy minimization scheme
which makes use of the Legendre-Fenchel Transform and the
proximal map operator.

A. The Legendre-Fenchel Transform

For all convex functions f(x) there exists a one to one
transformation known as the Legendre-Fenchel Transform
[13],

f∗(p) = sup
x
{〈x,p〉 − f(x)} (6)

that maps f(x) to another convex function f∗(p) known as
its dual conjugate. The variable p is called the dual variable.

The intuition behind the dual conjugate f∗(p) and the dual
variable p is as follows. Assume f(x) is smooth, since
−f(x) is concave so it is Eq.(6) and the point xsol that
maximizes it is obtained by differentiating and setting it to
zero:

p−∇f(xsol) = 0 (7)

Thus the dual variable p can be interpreted as the slope of the
original function at the solution. As for f∗(p), substituting
p for the slope we obtain

f∗(p) = f∗(∇f(xsol)) = 〈xsol,∇f(xsol)〉 − f(xsol) (8)

which is just the distance we have to shift the linear function
〈x,p〉 at xsol to make it tangent to f(xsol). Therefore all
pairs (p, f∗(p)) represent the set of all affine planes that are
below and tangent to the function f(x). Finally, because the
Legendre-Fenchel Transform of convex functions is bijective
we can also express f(x) itself in terms of its dual

f(x) = sup
p
{〈x,p〉 − f∗(p)} (9)

We will need these relationships in the next sections.

B. Proximal map operator

If f(x) is a convex function, a point x∗ is a global
minimizer of f if and only if

∂f(x∗) 3 0 (10)

where ∂f(x) is the subgradient [14] of f at a given point x.
If f(x) is in addition smooth,the previous condition becomes
the very well known ∇f(x∗) = 0 which can be easily solved
via classical iterative gradient descent with step size τk:

xk+1 = xk − τk∇f(xk) (11)

Defining an operator gradτf ≡ (I−τ∇f) allows us to write

xk+1 = gradτf (xk) (12)

A more general operator which can be applied to non-smooth
convex functions is the proximal map [13]. Given a closed
convex function f(x) its proximal map is defined by:

x = proxτf (u) = arg min
x

{
‖x− u‖2

2τ
+ f(x)

}
(13)

We can equivalently express the proximal operator of f
in terms of its subgradients by solving Eq.(13). Since the
proximal map involves a convex minimization problem it
must satisfy Eq.(10)

∂x

(
‖x− u‖22

2τ
+ f(x)

)
3 0

x− u

τ
+ ∂f(x) 3 0

x ∈ (I + τ∂f)−1(u) (14)

Noticing that the first quadratic term in Eq.(13) is a strict
convex function and that f is convex by assumption, then
the proximal map always produces a unique solution x for
any input u

x = (I + τ∂f)−1(u) = proxτf (u) (15)

Note that although we have now defined the proximal map
operator, we have yet to fill in any of the details about how
to implement it for a particular f . In particular for our case,
f will be one of the several norms of interest.

C. Primal Dual optimisation

Returning to our primal problem

min
x
RTV (Kx) + λD(x, z) (16)

we can express RTV in terms of its dual conjugate R?TV ,
according to Eq.(9), obtaining its primal-dual form

min
x

max
p
〈Kx,p〉 + λD(x, z)−R?TV (p) (17)

which is a saddle point problem in which a concave function
is maximized for p:

max
p
〈Kx,p〉 −R?TV (p) (18)

and a convex function is minimized for x

min
x
〈Kx,p〉 + λD(x, z) (19)

From Eq.(10) the following hold at the solution (xsol,psol):



Algorithm 1 x = TV(z, K)
1: {Initialization of variables:}
2: λ, τ, σ > 0, θ ∈ [0, 1]
3: x0 = z,p0 = 0
4: x̄0 = x0

5: while k ≤ N do
6: {Update Dual}
7: pk+1 = proxσR∗

TV
(pk + σKx̄k)

8: {Update Primal}
9: xk+1 = proxλτD(xk − τKTpk+1)

10: {Relaxation}
11: x̄k+1 = xk+1 + θ(xk+1 − xk)
12: end while

Algorithm 2 [x,y] = TGV(z, K, Ky)
1: {Initialization of variables:}
2: λ, α1, α2, τx, τy, σp, σq > 0, θ ∈ [0, 1]
3: x0 = z,p0 = 0,y0 = 0,q0 = 0
4: x̄0 = x0, ȳ0 = y0,
5: while k ≤ N do
6: {Update Dual}
7: pk+1 = proxσpR∗

TV
(pk + σpα1(Kx̄k − ȳk))

8: qk+1 = proxσqR∗
TV

(qk + σqα2Kyȳ
k)

9: {Update Primal}
10: xk+1 = proxλτxD(xk − τxα1K

Tpk+1)
11: yk+1 = yk + τy(α1p

k − α2K
T
y q

k)
12: {Relaxation}
13: x̄k+1 = xk+1 + θ(xk+1 − xk)
14: ȳk+1 = yk+1 + θ(yk+1 − yk)
15: end while

Algorithm 3 x = logTV(z, K)
1: {Initialization of variables:}
2: β > 0
3: x0 = z
4: while k ≤ N do
5: {Build W = diag([· · ·wi · · · ])}
6: wi = β/(1 + β||Kixi||2)
7: xk+1 = pd TV(xk, WK)
8: end while

Algorithm 4 [x,y] = logTGV(z, K, Ky)
1: {Initialization of variables:}
2: β > 0
3: x0 = z,y0 = 0
4: while k ≤ N do
5: {Build W and Wy}
6: wi = β/(1 + β||Kixi − yi||2)
7: wyi = β/(1 + β||Ky

i yi||2)
8: [xk+1,yk+1] = pd TGV(xk, WK, WyKy)
9: end while

differentiating Eq.(18) with respect to p yields

0 ∈ Kxsol − ∂R?TV (psol)

psol ∈ psol + σKxsol − σ∂R?TV (psol)

(I + σ∂R?TV )(psol) 3 psol + σKxsol

psol = (I + σ∂R?TV )−1(psol + σKxsol)

psol = proxσR?TV (psol + σKxsol) (20)

analogously, differentiating Eq.(19) with respect to x yields

xsol = proxλτD(xsol −KTpsol) (21)

Equations 20 and 21 provide the iterative primal dual TV
optimisation method shown in Algorithm 1. The optimisation
is assured to converge if step sizes σ and τ are properly
chosen. We follow the method proposed in [15] to select
them. Line 11 in the algorithm is simply a relaxation step to
speed up convergence. What remains to be explained though
is how to implement the proximal map operator for the
relevant norms. Solving Eq.(13) for f(x) = D(x, z) using
the L2 norm we obtain the analytical form

x = proxλτD(u)⇐⇒ xi =

{
ui+λτzi

1+λτ if zi ∈ Ωz
ui if zi 6∈ Ωz

(22)
In the next section we will introduce a more powerful set

of regularisers and in doing so explain how to implement
proxσR?TV .

III. ON MORE REGULARISERS, PROXIMAL MAPS AND
THEIR PROPERTIES

In this section we will describe the proximal maps and
the properties of four regularisation norms. To ease the
explanation and get a clearer visual interpretation of the
results obtained with each of these regularisation terms
we will make use of the 1D example shown in Figure
1. Figure 1(a) shows the original ground truth signal xGT

using a red continuous line and the noisy measured signal
z contaminated with zero mean Gaussian noise with σ =
2.0 in dashed black. For each regulariser the result of the
optimisation is shown in blue. The sum of squared errors
(SSE)

∑
i(xi−xGTi)2 is shown at the bottom of each figure.

The energy minimization and the iterations required for each
norm to converge are shown in Figure 2.

Total Variation (TV) / Huber (TVε)

Since the L1 norm present in the TV cost is a particular
case of the Huber norm ||x||ε defined by

||x||ε =

{
||x||22

2ε if ||x||2 < ε
||x||1 − ε

2 if ||x||2 ≥ ε
(23)

when ε = 0, we shall define the proximal map for the more
general case of TVε Huber norms.

We need to obtain the Fenchel dual conjugate of RTVε using
Eq.(6). The result is the function

R∗TVε(p) =

{
ε
2 ||p||

2
2, ‖p‖∞ ≤ 1

∞, ‖p‖∞ > 1
(24)

Notice that for ε = 0 the dual conjugate becomes an indicator
function constraining p to remain in the [−1, 1] interval. The
proximal map proxσR∗

TVε
can be calculated for each element

of p independently,

pk+1 = proxσR∗
TVε

(u)⇐⇒ pi =
ui

1+σε

max(1,
∣∣ ui

1+σε

∣∣) (25)

If our domain is an image (2D) rather than a 1D signal then
we index over (i,j) and not simply i.

TV-regularisation (ε = 0) is known for its ability to pre-
serve edges while smoothing homogeneous regions favouring
piecewise constant solutions. This behaviour is responsible
for the so-called stair casing effect shown in Figure 1(b)
at the ramp section of the original function. A modest
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Fig. 1. This example shows the different effects induced by five convex and non-convex regularisation terms. Our goal is to recover the
original form of a 1-dimensional signal, given noisy observations. a) True signal (red line) and corrupted signal (dashed black line) with
added Gaussian noise. b) Total Variation keeps high variation changes while it is able to filter out the noise in the piecewise constant
parts of the signal. However, it yields a stair-case effect for affine regions. c) Huber regulariser helps to prevent the stair-case effect by
smoothing the signal. d) Total Generalized Variation, can naturally deal with affine regions of the signal. Unlike TV, notice that it also
tends to fit linear functions to the piecewise constant parts. e) Given the non-convex nature of the logarithmic regulariser, noise effects are
even more dramatically reduced in the constant regions of the signal but the stair-case effect gets amplified for the affine part. f) The joint
action of the non-convex logarithmic norm and the Total Generalized Variation produces the best result due to the combination of their
properties. Gaussian Process solution for three typical kernel configurations. g) Squared Exponential Kernel. h) 1/2, 3/2 and 5/2 Matérn
Kernel. i) Neural Net Kernel.

improvement can be achieved in this region when ε > 0
by combining quadratic regularisation for small changes of
the function and total variation for bigger jumps. Figure 1(c)
shows the result. Although the staircase effect gets slightly
reduced, the quality of the recovered signal for the piecewise
constant regions worsens.

Total Generalized Variation (TGV)

The total generalized variation semi-norm TGV tα [16] of
order t = 2 is represented by

RTGV (Kx) = min
y
α1||Kx− y||1 + α2||Kyy||1 (26)

= min
y
α1RTV (Kx− y) + α2RTV (Kyy)

By introducing t− 1 additional primal variables, TGV can
intrinsically yield a balance between the first and higher
order derivatives of the solution signal. This property allows
us to generalise the piecewise constant behaviour of the

TV norm and favour instead the reconstruction of piecewise
polynomial functions of order t− 1 (piecewise affine, piece-
wise quadratic, ...). Since the TGV regulariser is convex a
global minimum can be found using a Primal Dual algorithm.
Here we use a TGV regularisation of second order (t =
2) to properly approximate piecewise affine features such
as planar surfaces found in man-made environments. The
TGV 2

α regularisation depends on the gradient of x, on a
new primal variable y that allows the creation of piecewise
affine elements and on two constants α1 and α2 that control
the piecewise smoothing.

Equation 26 gives us some intuition about why TGV 2
α

favours piecewise affine functions. Think of y as the slope
of x. If x is piecewise linear then y should be a piecewise
constant signal which explains the TV ||Kyy||1 penalty
term for y. Regarding the first term ||Kx − y||1, if y
properly estimates the slope of an affine region of x then the
contribution to the energy cost will be zero because Kx = y
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Fig. 2. Energy evolution for the 1D example. Each plot corresponds
to a different regulariser term applied to the problem. Therefore,
initial and minimum energy values do not have to coincide across
models. In all cases, less than 250 cheap iterations are required
to achieve a minimum. Thanks to their intrinsic convex properties,
Total Variation (blue continuous line), Huber (dashed blue line) and
the second order Total Generalized Variation (red continuous line)
regularisers yield their minimum energy faster than the non-convex
logTV (red dashed line) and logTGV (black line) norms.

and the only cost due to the penalty term will be the TV of
y.

Since RTGV can be expressed in terms of RTV we can
swiftly derive the dual conjugate for each summand

RTGV (Kx) = min
y
{max

p
α1〈Kx− y,p〉 −R?TV (p)

+ max
q

α2〈Kyy,q〉 −R?TV (q)} (27)

where p is the dual variable for x and q is the dual variable
for the new primal y. Both lines in Eq.(27) have the same
structure as Eq.(18) and so the proximal maps for the dual
variables p and q are the same as the one calculated for
the TV norm Eq.(25). Since Eq.(27) is differentiable with
respect to the new primal variable, y can be updated using
a gradient descent step. Algorithm 2 shows the Primal Dual
optimization for the TGV.

In Figure 1(d) we can see the results obtained with the
TGV norm for the 1D example. Notice that, as was expected,
the ramp section is now much better recovered. However,
piecewise constant regions get also approximated by affine
functions whose slope depend on the mean behaviour of the
noisy signal. For example, for time intervals [0s, 20s] and
[140s, 160s] the mean value of z tends to grow and so does
the solution x. Again for intervals [20s, 40s] and [80s, 100s]
the mean value of the noisy signal decreases and the slope
of the solution becomes also negative.

Logarithmic TV (logTV)

The logarithmic TV norm is given by

RlogTV (Kx) = log(1 + β||Kx||1) (28)

which is a non-differentiable and non-convex norm. The
benefits of using a non-convex norm are justified from
different perspectives in the literature of robust statistics [17]
and natural image statistics [18]. In [1] the authors present
a generalized iteratively re-weighted L1 (IRL1) algorithm
to efficiently minimize a non-smooth and non-convex Ln
pseudo-norm where n ≤ 1. The idea is to rewrite the original
function as the infimum over a family of L1 functions and
then solve using an iterative re-weighted L1 algorithm. This
means that, at each iteration j, instead of solving Eq.(28) we

solve
log(1 + β||Kxj ||1) =⇒ ||W jKxj ||1 (29)

where W j = diag([· · ·wji · · · ]) and wji = β/(1 + β|Kix
j
i |)

and therefore we end up iteratively solving a primal dual TV
problem. The structure of this process is shown in Algorithm
3 where an outer loop iterating over W j surrounds an inner
loop which is a standard TV solver.

The results obtained in the 1D example for the logTV
are shown in Figure 1(e). Notice that this norm produces
the best results for the piecewise constant section while the
staircase effect is amplified. The reason for this behaviour is
the peaky shape of the logarithmic function near the origin
and flat tails far from it. The logTV norm is reduced more
by anulling small bumps in the function (recall K is the
derivative operator) where the gradient of the logarithm is
steep than big jumps that appear in its flat tails (see all 20s
wide piecewise constant intervals before 120s).

Logarithmic TGV (logTGV)

We are now able to describe the final norm of interest. The
logarithmic TGV is given by the following expression

RlogTGV (Kx) = α1 log(1 + β||Kx− y||1) (30)
+ α2 log(1 + β||Kyy||1) (31)

and is solved in much the same was the logTV, we solve at
each iteration j a L1 approximation given by

α1||W jKxj − yj ||1) + α2||W j
yKyy

j ||1) (32)

i.e., we iteratively solve a weighted TGV problem.
Note how the logTGV norm produces the best results for

the 1D example in Figure 1(f). It is able to combine the best
properties of the TGV for the affine regions while maintain-
ing sudden discontinuities thanks to the log properties. We
will now put these techniques to work in a robotics context
- dense reconstruction from sparse laser data.

IV. DENSE MAP GENERATION FROM SPARSE SCENES

While a sparse map provides a compact representation for
autonomous navigation, higher level robot tasks can require
denser maps to improve scene understanding. This section
explains how we exploit the recently discussed norms to
generate 3D dense representations of outdoor scenes from
sparse laser data. The input to our pipeline consists of a
point cloud obtained from push broom laser data and a
corresponding set of images gathered by a camera. Both
sensors are mounted on a car that traverses a city environ-
ment. For a given image, a sparse depth map z is obtained
by assigning to a sparse set of pixels the depth of a 3D
laser point that falls in the field of view of the camera. Our
task is to assign a depth for every pixel starting from the
sparse seeding. Due to the heterogeneous structures that are
present in the scene (buildings, vegetation, roads, walls,...),
we do not apply a single energy model for the whole scene.
Instead, for each distinctive region of the image, we search
for a regulariser and its corresponding parameters that best
captures the underlying 3D structure. Regions are acquired
via an interactive multilabel segmentation of the images, as it
is a common practice in many computer vision applications
[9]. Figure 3 shows the segmented RGB image (left) and the
sparse projected map (right) for one of the gathered scenes.



TABLE I
PRECISION GAIN W.R.T STANDARD TV REGULARISATION

(a) scene 1 (b) scene 2

(c) scene 3 (d) scene 4

(e) scene 5 (f) scene 6

(g) scene 7 (h) scene 8

Scene 1
Sl TV logTV TGV logTGV Min range Max range Gain
1 0.0530 0.0230 0.0523 0.0117 7.2299 13.2393 77.92 %
2 0.1122 0.0496 0.0686 0.0233 2.6110 10.4195 79.23 %

Scene 2
Sl TV logTV TGV logTGV Min range Max range Gain
1 0.1754 0.1238 0.1931 0.0867 7.3390 24.9605 50.57 %
2 0.0305 0.0205 0.0216 0.0075 4.5311 6.8861 75.41 %
3 0.0198 0.0126 0.0228 0.0108 6.1705 10.4076 45.45 %
4 0.1268 0.1003 0.0474 0.0113 2.9398 7.8697 91.09 %

Scene 3
Sl TV logTV TGV logTGV Min range Max range Gain
1 0.0525 0.0365 0.0491 0.0212 2.7486 10.6596 59.62 %
2 0.0081 0.0066 0.0068 0.0060 4.9034 5.5492 25.93 %
3 0.0161 0.0126 0.0152 0.0106 2.8364 10.3617 34.16 %
4 0.0195 0.0208 0.0162 0.0149 2.8427 10.1468 23.59 %
5 0.0014 0.0011 0.0057 0.0031 7.2601 9.0595 21.43 %

Scene 4
Sl TV logTV TGV logTGV Min range Max range Gain
1 0.0444 0.0129 0.0595 0.0079 3.8445 24.5059 82.21 %
2 0.0810 0.0491 0.0724 0.0409 3.2909 15.9772 49.51 %
3 0.1910 0.1475 0.1856 0.1064 6.7509 14.5637 44.29 %
4 0.0236 0.0148 0.0170 0.0096 3.5569 7.8554 59.32 %
5 0.1382 0.0686 0.0223 0.0089 2.9013 6.9222 93.56 %

Scene 5
Sl TV logTV TGV logTGV Min range Max range Gain
1 0.0707 0.0287 0.0502 0.0135 9.0210 16.8020 80.91 %
2 0.0570 0.0311 0.0741 0.0162 8.6941 12.6879 71.58 %
3 0.0141 0.0094 0.0091 0.0064 14.8289 17.8515 54.61 %
4 0.1367 0.0401 0.0488 0.0076 2.8503 10.4670 94.44 %
5 0.0174 0.0152 0.0152 0.0112 5.4886 9.5690 35.63 %

Scene 6
Sl TV logTV TGV logTGV Min range Max range Gain
1 0.2367 0.0951 0.2982 0.0591 12.1138 34.4584 75.03 %
2 0.1874 0.0598 0.0822 0.0150 3.0169 14.9666 92.00 %
3 0.5061 0.3340 0.3360 0.1890 22.5005 38.4495 62.66 %
4 0.0341 0.0155 0.0285 0.0117 15.0562 20.6384 65.69 %
5 1.0200 0.9103 0.2730 0.0345 6.7719 18.5484 96.62 %

Scene 7
Sl TV logTV TGV logTGV Min range Max range Gain
1 0.0166 0.0093 0.0094 0.0081 4.3923 20.0294 51.20 %
2 0.0347 0.0146 0.0153 0.0094 2.7525 13.5629 72.91 %
3 0.3076 0.0528 0.1427 0.0252 7.3418 42.4991 91.81 %

Scene 8
Sl TV logTV TGV logTGV Min range Max range Gain
1 0.0270 0.0136 0.2225 0.0121 6.1231 13.6918 55.19 %
2 0.1804 0.1224 0.1635 0.0743 4.4674 13.8613 58.81 %
3 0.0446 0.0286 0.0461 0.0119 7.7731 18.8951 73.32 %
4 0.0273 0.0125 0.0140 0.0093 6.4383 8.3789 65.93 %
5 0.2272 0.2030 0.0891 0.0126 3.4327 7.3482 94.45 %
6 0.0513 0.0190 0.0216 0.0150 2.7488 11.6562 70.76 %
7 0.1640 0.1411 0.1557 0.0154 2.9164 4.2481 90.61 %

Left, set of selected outdoor scenes. Right, Evaluation of costs per segment/scene. First column, index of segmented
region. Second-Fifth columns, median of the computed errors. We use Bayesian optimisation to learn the best pa-
rameters per segmented region which minimize the energy model according to the four different regularisation terms
(TV, logTV, TGV, and the proposed logTGV). Sixth-Seventh columns, minimum and maximum range values obtained
from the laser for the corresponding segment. Eighth column, gain obtained for the Best regularizer (lowest median
error) that is registered (green) with respect to the TV median error (TV − Best)/TV . All units are in meters.

A. Learning Energy model parameters using Bayesian opti-
misation

One of the most important aspects that we encounter during
the minimization of any of the presented energy models
is their parameter dependence. Fortunately, some of the
parameters required, like the proximal map steps σ, τ in the
primal dual algorithm, only depend on the inner structure
of the discrete gradient operator K. It has been shown
in [15] that a good general choice for the steps can be
calculated using diagonal preconditioning. The advantages
of the preconditioning are three-fold: First, it reduces the
number of iterations required to converge to the optimal
solution. Second, as K is a sparse matrix, the calculation
of the preconditioners only requires fast sparse computations
and third, steps are calculated only once and remain constant

for all iterations.
Unfortunately, there are few guidelines regarding the values

that could be used for the regularisation parameters, i.e. the
trade-off λ between the regulariser and the data term, the
relation α1 and α2 between the primal variables for the TGV
model or the value for the β parameter in the non-convex
logarithmic priors. To estimate these parameters, we have
followed a Bayesian Optimisation (BO) approach, since it
provides an elegant Bayesian strategy to optimize unknown
black-box objectives by using a Gaussian Process (GP) to
learn the underlying function. After each function evaluation,
the GP is updated, forms a new posterior distribution over the
objective function and determines what the next query point
should be. This automatic approach allows us to optimize
the performance of each of the regularisation models with



Fig. 3. Example of a large scale outdoor scene as input data
for the 3D densification problem. Left, multilabel segmentation
Sl of the RGB image. Right, the resulting sparse projected map
(colored points). We extract 10 % of the measured sparse points
per segmented region (black dots) as test data zl to learn the energy
parameters PR∗ for a given regulariser through the GP-EI-MCMC
Bayesian Optimisation.

respect to their parameters while avoiding any dark magic/art
that relies on expert experience, rules of thumb, or brute-
force search. We use the GP-EI-MCMC method proposed
in [19] which uses Markov Chain Monte Carlo (MCMC) to
estimate and maximize the Expected Improvement (EI) over
the current best parameter solution.

Our black-box cost function is defined as follows. For each
segment Sl in a sparse depth map z, 10% of the points zl
are extracted as test data and the remaining points Sl \zl are
used as input for the densification. For a given regulariser R∗
and its parameters PR∗ we run the primal dual optimisation
until convergence and we calculate the errors between the
extracted test samples zl and their corresponding interpolated
points xl. The cost measure for PR∗ is then given by the
median of the errors

cost(PR∗) = median(zl − xl) (33)

Figure 3 shows the sampled set zl (black dots) per segment
Sl used during the BO evaluation of one of the sparse depth
maps.

V. RESULTS
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(a) scene 3
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(b) scene 4

−0.01 0.14 0.28 0.43 0.57 0.72
1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

R
eg

ul
ar

iz
er

 / 
S

eg
m

en
t

Error [m]

(c) scene 5

Fig. 4. Analysis of absolute errors on 5 of the scenes. Box plots
are obtained for each model (1-TV, 2-TGV, 3-logTV, 4-logTGV)
applied per segment for scenes (a)-(c). Colors match segments
according to table I. The tops and bottoms of each boxplot are
the 25th and 75th percentiles of the samples, respectively. The line
in the middle of each box is the error median. In most of the cases
the median values fall below tens of millimeters. Affine planes and
further objects promote more accurate results for TGV and logTGV
regularisation. In contrast, stairs and trees marginally benefit from
non convex norms.

We carefully selected eight outdoor scenes and ran mul-
tilabel interactive segmentation with the number of labels

ranging into the interval nl = 2 . . . 8. To generate a 3D dense
map, we carried out densification for each segment with
four of the energy models described previously (since TV
and Huber produce very similar outcomes): i.e we perform
energy minimization with TV, TGV convex priors and logTV,
logTGV non-convex priors.

To find the best parameter values in terms of accuracy
that minimizes each energy, we run 50 iterations of GP-EI-
MCMC per energy model on each region, which gives rise
to 9600 of total iterations (

∑
nl × 4 × 50) for the whole

dataset. Notice that the dimension of the parameter search
space will differ from one model to other: for TV, the GP-
EI-MCMC optimizes on R (λ); TGV induces a search on
the R3 domain (λ, α1, α2); logTV a search on R2 (λ,β);
and logTGV induces a search on R4 (λ, α1, α2, β).

Following the definition in Eq. 33, table I summarizes
the cost values for the best parameters attained once the
Bayesian optimisation is executed. The worst (red) and best
(green) costs among the energy models are highlighted in the
table showing that, in practically all the cases, the logTGV
regularisation prior achieves the lowest values (for the two
cases where it does not the cost is in fact very close to
the best one). In contrast, the TV prior usually provides
the highest cost. The results reported in the table demon-
strate the adaptive behaviour of logTGV for heterogeneous
outdoor scenes. For instance, consider segment 1 in both
scenes 2 and 6 for which TGV alone yields the worst cost.
Looking at their corresponding RGB images, these results
are understandable since they do not correspond to affine
structures but vegetation. However, the combination with the
nonconvex logarithmic function, logTGV, allows the system
to capture vegetation irregularity. This observation holds also
for segments with a high level of detail in their structure
as shown in scene 10. In general, purely flat segments
are well suited to the use of TGV or logTGV (see the
cases of segments representing roads or sidewalks). We
have also computed the percentage gain of the lowest prior
cost (basically logTGV) with respect to the standard TV
approach. Our results show a vast improvement (more than
50% of gain on average) when introducing the logTGV norm.

We expand the analysis above to study the accuracy of the
dense interpolation. For compactness of the results, Figure
4 depicts the boxplots of the error distributions. In general,
for each segment and each regularised energy model, the
mass (and the median) of the distribution collapses towards
its 25th percentile ranging between tens of millimeters to
approx. 0.5m for very large depths. Note in particular that
for each region in which logTGV achieved the best cost (see
table I), the accuracy is significantly improved in contrast to
the other regularisation options. Finally, figure 5 shows the
3D dense interpolation for five (dictated by space constraints)
of the ten datasets.

VI. CONCLUSIONS AND SUMMARY

In this paper we have made the case that the TV norm,
despite its widespread use in dense reconstruction, has far
inferior performance when compared to the logTGV norm.
As we suspected, too much TV is bad. We have carefully
and for the first time in one place, described how to imple-
ment this non-convex norm and provided clear and concise
pseudo-code with the aim of making this powerful technique
accessible to the robotics community’s attention. We have



(a) ns 10071, nd 197614, ps 3.24 %, pd 63.51 %, gain 1862.21 %

(b) ns 27130, nd 120176, ps 8.72 %, pd 38.62 %, gain 342.96 %

(c) ns 4787, nd 126932, ps 1.54 %, pd 40.79 %, gain 2551.60 %

(d) ns 6745, nd 138294, ps 2.17 %, pd 44.44 %, gain 1950.32 %

Fig. 5. Dense reconstruction of five outdoor scenes: a) scene 1 , b) scene 2, c) scene 3, d) scene 4, e) scene 5. First column, Sparse depth
map obtained after the projection of the laser scan on the corresponding image frame. Second column, dense depth map obtained after
optimisation with the best regulariser learned per region according to table I. Third column, ray tracing of the 3D dense reconstruction
per region. Fourth column, the textured 3D reconstruction. For each case, we calculate the percentage of points in the sparse (pd) and
dense (pd) maps w.r.t the total number of pixels in the image. Also, we show the gain of densification (nd − ns)/ns (expressed in %),
where nd is the number of pixels in the dense map and ns the initial number of pixels in the sparse map.

applied logTGV normalisation to a problem well known
to the robotics community - outdoor dense reconstruction
from sparse laser data - and presented detailed results.
We show that the logTGV norm, is on average twice as
good at capturing scene structure as the common-place TV
norm. Finally we addressed the little spoken of problem
of parameter selection by invoking Bayesian Optimisation
which learns the correlations between interacting parameters
on a per-segment basis.
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