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Abstract— This paper is about dense depthmap estimation
using a monocular camera in workspaces with extensive texture-
less surfaces. Current state of the art techniques have been
shown to work in real time with an admirable performance
in desktop-size environments. Unfortunately, as we show in
this paper, when applied to larger indoor environments, per-
formance often degrades. A common cause is the presence of
large affine texture-less areas like by walls, floors, ceilings and
drab objects such as chairs and tables. These produce noisy and
worse still, grossly erroneous initial seeds for the depthmap that
greatly impede successful optimisation.

We solve this problem via the introduction of a new non-
local higher-order regularisation term that enforces piecewise
affine constraints between image pixels that are far apart in
the image. This property leverages the observation that the
depth at the edges of bland regions are often well estimated
whereas their inner pixels are deeply problematic. A welcome
by-product of our proposed technique is an estimate of the
surface normals at each pixel. We will show that in terms of
implementation, our algorithm is a natural extension of the
often used variational approaches. We evaluate the proposed
technique using real datasets for which we have ground truth
models.

I. INTRODUCTION

Our goal here is to build dense maps of indoor scenes
with a drastically reduced reliance on surface texture. As
roboticists the case for monocular dense mapping is easily
made. With low cost sensors we want to be able to perceive
the complete 3D structure of the local workspace. This paper
is about filling in the gaps, quite literally, in this competency.
Gaps that are caused in dense maps through a paucity of
texture.

Current state of the art methods for creating dense
depthmaps with a monocular camera are based on powerful
variational optimisation algorithms that are able to produce,
in real time, dense volumetric reconstructions of desktop-
size workspaces under stable lighting conditions [1, 2, 3].
In general, the objective function (or energy function) to
be minimised consists of a data term that measures the
photoconsistency over a set of consecutive images and a
regularisation term that tends to preserve sharp discontinu-
ities between objects located at different depths while si-
multaneously enforcing depth smoothness for homogeneous
surfaces. A key step of the minimisation process involves the
application of a primal-dual optimisation scheme which is
widely used for solving variational convex energy functions
that arise in many image processing problems [4].

Figure(1) shows a target workspace for us. The challenge
is in dealing with large plain (and planar) structures like
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Fig. 1. Example of the success of the dense depthmap creation proposed
in this paper after integrating 10 consecutive images for a monocular
camera in a challenging environment: a long and elongated office corridor
with large texture-less image regions and low-parallax due to the camera
moving forwards. First row: (Left) Reference RGB image used to create the
depthmap. (Right) Depthmap obtained with the method proposed. Notice
the smoothness of the depthmap in all affine surfaces (floor, walls, ceiling)
and the consistent U-shape distribution of colours for elements in the
corridor that are at the same distance from the camera: red values are used
for close objects whereas dark blue colours indicate far points from the
camera. Second row: 3D coloured pointcloud obtained from back-projecting
depthmap pixels.

floors, walls or ceilings. In such regions the photoconsistency
term is of little help (all pixels are similar from all views)
and regularisers which promote smoothness “struggle” to
propagate information from distant boundaries.

We exploit the following idea: if we impose a strong prior
about the predominant shape of the objects in the scene (for
indoor environments we consider affine surfaces), we can
propagate the estimated depth from pixels at the border of
bland objects to their interior pixels by using a constraint



in the regularisation term that favours solutions with the
predetermined family shape. This means that, unlike tradi-
tional variational methods that just consider local information
of neighbouring pixels we need to relate distant pixels in
the cost function. Building on the work presented in [5],
our contribution is the introduction of a novel non-local
higher-order regularisation term which takes cues from a
soft-segmentation and yields dense maps across large affine
yet utterly bland scene regions.

The closest work we know of to ours is [6] where
the authors also consider planar constraints to improve the
estimation of monocular depthmaps. In this work, there is
a requirement for a nontrivial pre-processing stage to first
acquire from external means plane normals before construct-
ing optimsation constraints. This required segmentation of
keyframes into a set of superpixels, classification of the
superpixel into four predefined classes (wall, floor, ceiling,
clutter) or matching superpixels between different keyframes
using homographies. In contrast our method requires neither
a preprocessing step before the optimisation nor an additional
penalty term for regularisation. All of this is implicitly
wrapped up in the form and structure of our new objective
function.

II. PROBLEM OVERVIEW

A. Variational Optimistation

When a monocular camera is used, the state of the art
algorithm [2] to create a depthmap ξ(u) from a set of images
Iξ = {I0(u), . . . , In(u)} solves the following variational
problem

min
ξ
ER(ξ) + ED(ξ) (1)

where ED(ξ) is a nonconvex data term that calculates the
average photometric error ρ between a reference image Ir(u)
and the warp of the remaining images in set Iξ

ED(ξ) = λ

∫
Ω

1

|Iξ|
∑
k∈Iξ

ρ(Ir(u), Ik(u), ξ(u))du (2)

and ER(ξ) is a regularisation term, usually a Total Variation
(TV) or Huber regulariser, that is able to preserve depth
discontinuities while smoothing homogeneous regions

ER(ξ) =

∫
Ω

w(u)||∇ξ(u)||1du (3)

In eq.(2) λ is a parameter used to define the trade-off between
the regulariser and the data term whereas w(u) in eq.(3) is a
per pixel weight based on the gradient of the reference image
that reduces smoothing effects of the regulariser across image
edges.

The optimisation problem in eq.(1) is solved using an iter-
ative alternating optimisation method based on an exhaustive
search step that involves the nonconvex data term ED(ξ),
and a Primal-Dual algorithm [4] that solves a convex cost
function [7] involving the regularisation term ER(ξ).

B. The Consequences of Little Texture

We have tested our own CUDA implementation of the
previous (TV) algorithm on a NVIDIA GeForce GT 650M
1024 MB card using different synthetic scenarios found in [8,
9] obtaining a median depthmap error that is usually below
2 centimetres, after 800 iterations in 500 ms.

In Figure(2) we illustrate the performance of the algorithm
for one of the synthetic datasets and the results obtained in
two real scenarios for desktop-sized and office-sized environ-
ments. For the desktop-sized example we applied a sideways
“wavy” movement to the camera, typical of this kind of
experiment, which improves the parallax and therefore the
estimated depth. For the office-size example the camera was
mounted on a robot that was moving forward, which is, in
fact, the most challenging movement for calculating parallax,
but the natural one for collecting 3D models of indoor and
outdoor environments. In all three datasets, the image set Iξ
comprised 10 consecutive images.

Observe that for the majority of the pixels in the initial
seed of the synthetic dataset shown in Figure(2(b)) we have,
a reasonable estimate of the depth. At first sight this appears
to be true even in low-textured areas like the right wall.
This surprising result may be explained by the shadows cast
by some objects on the wall (like the computer monitor)
and the fact that the illumination pattern of the synthetic
rendered scene is probably just a Lambertian approximation
of the usually more complex lighting effects and reflectances
found in real scenes. For the headset dataset we can see
that the initial depthmap is clearly wrong for some of the
pixels of the table, Figure(2(f)). However the presence of
cables, papers, the headset and the calibration pattern, that
have a good estimate and occupy most of the image, help
the regulariser to propagate “good” estimates from correct
to wrong pixels. Finally, Figure (2(j)) shows an extremely
noisy initial seed for the office-size real environment due to
the fact that most of the scene consists of plain white walls
and the robot was moving in the direction of the field of
view. Although the regulariser improves the initial solution,
it cannot cope with the vast number of initial wrong pixels
and the final depthmap obtained is of worse quality, as can
be seen in the 3D pointcloud reconstruction shown in Figure
(2(l)).

C. Proposed Solution Requirements

In order to deal with the problems discussed in the last
example of the previous section (see Figure 2(j)) in the
context of indoor environments our regulariser has to satisfy
two requirements. Firstly, it has to be able to cope with
many pixels corresponding to weakly textured areas since
their initial depthmap estimates will be in gross error in most
of the cases. Secondly, it has to favour affine solutions since
it is likely that many pixels in the depthmap belong to the
same 3D plane.

III. NON-LOCAL TOTAL GENERALISED VARIATION
IN-PAINTING



(a) Sythetic: RGB Image Truth (b) Synthetic: Initial Seed for
Depthmap

(c) Synthetic: Depthmap (d) Real: 3D coloured Pointcloud

(e) Real: RGB Image (f) Real: Initial seed for Depthmap (g) Real: Depthmap (h) Real: 3D coloured Pointcloud

(i) Real: RGB Image (j) Real: Initial seed for Depthmap (k) Real: Depthmap (l) Real: 3D coloured Pointcloud

Fig. 2. Three examples of creation of depthmaps using a state of the art TV algorithm for synthetic (first row), real desktop-size (second
row) and real office-size datasets (third row). For each dataset the first column shows the RGB imagesIr used as reference to calculate
the depthmap, the second column shows the initial seed obtained by just minimising ED(ξ) using exhaustive search, the third column
contains the final depthmap created after regularisation and the fourth column shows the corresponding coloured pointcloud obtained
from back-projecting the pixels estimated in the depthmaps. Observe that for the office-size environment we obtain an extremely noisy
inital seed due to the lack of texture in the images (walls and ceiling) and the type of movement applied to the camera. As a result, the
final depthmap calculated is of lower quality than the ones obtained for the previous datasets as can be verified in the corresponding 3D
pointcloud in 2(l).

(a) Texture vs Texture-less Data Term (b) Meaningful Depths (c) Textured Neighbours

Fig. 3. Subfigure 3(a) shows the profile of the data term ED(ξ(u)) for a textured pixel ut (solid green) and texture-less one utl (red) as well as a
quadratic approximation of the data term at the minimum cost of ut (dashed green). The practical importance of this graph is that pixels well localised in
depth use to have high curvatures at the solution. Subfigure 3(b) shows meaningful depth pixels that have been selected by thresholding the curvature at the
initial depth solution. Subfigure 3(c) shows a simple heuristic used to select for texture-less pixels utl a set of non-local meaningful candidates N (utl)
with proper depth estimates. In the example shown four candidates, connected with red lines, have been found for the central pixel of the left wall

A. Primal-Dual Algorithm Review

In this section we give a brief review of the standard
primal-dual optimisation algorithm since it will be used to

optimise the energy function proposed in this paper. Space
precludes a step by step introduction to this machinery and
with regret we must point the reader to [4] for a more detailed



Algorithm 1 primal-dual
1: {Initialization of variables:}
2: τ, σ > 0, θ ∈ [0, 1]

3: ξ0 = η,p0 = 0, ξ̄
0

= ξ0

4: while k ≤ N do
5: {Dual step:}
6: pk+1 = Πp(pk + σKξ̄

k
)

7: {Primal step:}
8: ξk+1 = Πξ(ξk − τKTpk+1)
9: {Relaxation step:}

10: ξ̄
k+1

= ξk+1 + θ(ξk+1 − ξk)
11: end while

description 1.
Given a noisy signal η(u) a standard application of the

primal-dual algorithm consists of calculating a denoised
signal ξ(u) by minimising the following energy function

min
ξ

∫
Ω

α|∇(ξ(u))|1 + λ(ξ(u)− η(u))2du (4)

If we discretise this equation we obtain

min
ξ
α|Kξ|1 + λ||ξ − η||2 (5)

where ξ and η are the images represented in vectorised
form and operator K is a discretised version of the gradient
operator. Algorithm 1 shows the basic steps of the primal
dual algorithm where p is an internal dual variable used
during the optimisation and σ and τ are parameters that
control the step size of the algorithm. Finally, the proximal
map operators for the primal and the dual steps [10] can be
calculated for each pixel ij individually using

Πξ(ξij) =
ξij + λτηij

1 + λτ
(6)

Πp(pij) =
pij

max(1, |pij |/α)
(7)

B. Assessing Depth Estimates and Finding non-local Match-
ings

As we saw in Figure(2(j)) most of the pixels that corre-
spond to low-textured regions have noisy and meaningless
depth values for the initial seed obtained from exhaustive
search of the data term ED(ξ). Figure(3(a)) shows, for a
textured pixel ut (light green), the values taken by the
data term ED(ξ(ut)) along a range of inverse depth values
[ξmin, ξmax] and also the corresponding cost profile for a
texture-less one utl (red). Notice that for the textured pixel
there is a clear minimum ξ(ut)

∗ of the data term that
corresponds to a well estimated depth whereas the low-
textured pixel shows a flat profile that explains why any small
noise in the original intensity images can randomly change
the position of the minimum. According to these figures, we
use the curvature of a second order approximation of the

1because of space constraints we must proceed assuming that the reviewer
is cognisant of primal-dual optimisation

data term at the minimum cost (shown in dashed green for
the textured pixel only) as a measure of the reliability of
the initial depth estimated ξ(ut)

∗. Using this measure we
can select only those pixels of the initial depthmap that have
meaningful depths as can be seen in Figure(3(b)). During
the optimisation process we will disregard invalid depth
estimates of texture-less pixels by just setting λ = 0 in
Equation(4). As explained in [4] this is equivalent to generate
an interpolation solution (also known as in-painting in the
computer vision literature) for those pixels that depends on
the regulariser chosen.

During the optimisation, in order to speed up the transfer
of depth information to invalid pixels we need to select, in
addition to a local neighbourhood for each pixel, a set of
potential meaningful non-local pixel candidates with valid
depths. In this paper we use a simple approach to find
potential candidates by just looking for the closest valid
pixels along the main 8 star directions (E, NE, N, NW, W,
SW, S, SE) as shown in Figure(3(c)). We denote the non-
local neighbourhood of a texture-less pixel utl by N (utl)

C. Geometric constraint for pixels belonging to the same
affine surface

In this Section we show that if two pixels u1 and u2

in an inverse depth image ξ(u) belong to the same planar
surface in 3D their inverse depth values ξ(u1) and ξ(u2) are
constrained by the following affine equation

ξ(u1)− ξ(u2) = 〈w,u1 − u2〉 (8)

where 〈•, •〉 is the inner product between two vectors and
w is the normal vector that describes the orientation of the
affine surface.

Given a camera with intrinsic parameters (fu, fv, cu, cv),
where f is the focal length and c the optical centre, the
corresponding 3D point x = (x, y, z) for a pixel u = (u, v)
in the image can be calculated using the following back-
projection equation x

y
z

 =
1

ξ(u)

 u−cu
fu
v−cv
fv

1

 (9)

If, in addition, the corresponding point x belongs to a plane
p = (n, d) in 3D it has to accomplish

d = 〈n,x〉 = nxx+ nyy + nzz (10)

where n = (nx, ny, nz) is the unitary normal vector of the
plane and d is the orthogonal distance to the origin.

Substituting x in Eq.(9) into Eq.(10) we obtain

d =
1

ξ(u)

(
nx
u− cu
fu

+ ny
v − cv
fv

+ nz

)
ξ(u) =

nx
fud

u+
ny
fvd

v +

(
nz
d
− nxcu

fud
− nycv

fvd

)
= 〈w,u〉+ const (11)



where w = (wu, wv) = ( nxfud ,
ny
fvd

) codifies the projection of
the 3D surface normals into the image plane. Finally if u1

and u2 belong to the same 3D plane then from eq.(11)

ξ(u1)− ξ(u2) = (〈w,u1〉+ const)− (〈w,u2〉+ const)

= 〈w,u1 − u2〉 (12)

D. Optimisation Algorithm

We first create a semi-dense depthmap η(u) containing
meaningful depth estimates using the method explained in
subsection III-B – Figure(3(b)) shows an example. Making
use of the geometric constraint explained in subsection III-C
the proposed energy function to be minimised is given by

min
ξ,w

∫ ∫
Ω

α1(u1,u2)|ξ(u1)− ξ(u2)− 〈w(u1),u1 − u2〉|1
(13)

+ α2(u1,u2)|w1(u1)− w1(u2)|1 (14)
+ α2(u1,u2)|w2(u1)− w2(u2)|1du1du2 (15)

+ λ(u)

∫
Ω

(ξ(u)− η(u))2du (16)

Equation (13) is the part of the regulariser in which we
favour affine surfaces between pixels u1 and u2 using the
constraint shown in eq.(8). Equations (14) and (15) impose a
total variation constraint on the components of the estimated
projected normals w(u) = (w1(u), w2(u)). Thus this term
tries to impose similar normal vectors for homogeneous
surfaces allowing at the same time large discontinuities
between different surfaces. As it is explained in [5] this regu-
larisation term can be considered as a non-local extension of
a Total Generalised Variation norm [11]. Finally, eq.(16) is a
standard data term that enforces pixels for which λ(u) 6= 0
to be close to the input depthmap η(u).

Coefficients α1(u1,u2) and α2(u1,u2) are used to incor-
porate soft-segmentation cues in the regulariser. In the cur-
rent implementation these weights are based on the intensity
similarity between pixels u1 and u2 in the reference image:

α1(u1,u2) ∝ exp

(
−|Ir(u1)− Ir(u2)|

σi

)
(17)

where σi controls the influence of the neighbouring pixels.
In addition, the coefficients are used as support weights to
control the local and non-local influence of pixels. For all
pixels support weight values are calculated for a local 7× 7
window. To allow the transmission of depth information from
meaningful depths to a texture-less pixel utl we calculate
additional support weights with its non-local neighbours
N (utl).

Let us assume that m is the total number of support
weights α1 different from zero and that the images have
n pixels. We can express the proposed energy function in a
more compact matrix form after discretisation

min
ξ
|α ◦Kξ∗|1 + ||λ ◦ (ξ∗ − η∗)||2 (18)

where ◦ represents point-wise multiplication, α =
[αT1 ,α

T
2 ,α

T
2 ]T is an 3m × 1 vector containing all support

TABLE I
MEDIAN ERROR

Range = [1.655 3.445] [m]
Dataset 1 4 cm
Dataset 2 6.74 cm
Dataset 3 3.62 cm

weights, ξ∗ = [ξT ,wT
1 ,w

T
2 ]T is a 3n × 1 extended vector

containing the optimised depths ξ and the first w1 and
second w2 components of the normals, η∗ = [ηT , 01×2n]T

is a 3n × 1 extended input vector with the semi-dense
depthmap η and additional padded zeros to match ξ∗ size
(we make the corresponding λ = 0 in λ for this additional
components) and K is a sparse selection matrix that takes
into account distances between matched pixels. Finally, and
most importantly, note that the expressions in eq.(18) and
eq.(5) are almost identical allowing us to make use of
Algorithm 1 to solve the minimisation problem.

IV. EXPERIMENTS

We evaluate our algorithm using three real datasets for
which we have ground truth models computed from a push-
broom laser. By projecting the laser points into the reference
image we generate ground truth depthmaps that are used for
comparisons. Since not all laser points get projected we use
the corresponding subset to obtain our statistics. Figure(4)
shows and compares ground truth depthmaps with the ones
created using the technique proposed in this paper. Figure(5)
shows histograms of the depth errors. For visualisation
purposes all errors are saturated to a maximum of 0.5 metres.
Finally, table I shows the median error for each dataset .

V. CONCLUSIONS

We have introduced a method which allows us to re-
construct dense depthmaps in workspaces which contain
textureless yet affine surfaces - the plain plane. We have
shown how to frame the problem as a non-convex opti-
misation problem which includes an energy term designed
to propagate depth image across the scene - in particular
from boundaries to interiors. We have further shown that
the optimisation can be expressed in a familiar form which
admits primal-dual optimisation. We have demonstrated the
efficacy of our approach on a variety of data gathered from
a robot moving on a trajectories designed to challenge the
reconstruction process.
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