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Abstract— In mobile robotics applications, generation of ac-
curate static maps is encumbered by the presence of ephemeral
objects such as vehicles, pedestrians, or bicycles. We propose
a method to process a sequence of laser point clouds and
back-fill dense surfaces into gaps caused by removing objects
from the scene – a valuable tool in scenarios where resource
constraints permit only one mapping pass in a particular region.
Our method processes laser scans in a three-dimensional voxel
grid using the Truncated Signed Distance Function (TSDF) and
then uses a Total Variation (TV) regulariser with a Kernel
Conditional Density Estimation (KCDE) “soft” data term to
interpolate missing surfaces. Using four scenarios captured with
a push-broom 2D laser, our technique infills approximately
20 m2 of missing surface area for each removed object. Our
reconstruction’s median error ranges between 5.64 cm - 9.24 cm
with standard deviations between 4.57 cm - 6.08 cm.

I. INTRODUCTION AND PRIOR WORK

In robotics applications, it is vital to maintain an accurate

map of the local environment. When in the presence of

ephemeral objects (e.g., vehicles, pedestrians, bicycles, etc.),

this map can quickly become cluttered and inconsistent.

These inconsistencies make the map difficult to use.

If a static map has been created from a previous data

run, these difficulties can be avoided by removing ephemeral

objects. Removing these objects from the map and infilling

the missing background data results in an accurate static

map which then enables more accurate real-time processing

algorithms. For example, one can then quickly identify which

laser points in the current scan are affiliated with the static

map and which points are from new ephemeral objects. This

is useful in distraction suppression [1] scenarios where a

mask is applied to the input data to avoid bias in depen-

dent localisation or perception algorithms. Alternatively, to

complement the recent “hard negative” mining research [2],

this can be used as an automated method to generate “hard

positives” for standard detector or classification training.

However, removing ephemeral objects traditionally re-

quires manually labelling positive and negative data sets to

train a detector. And, once removed, it is even more difficult

to back-fill the gaps (Figure 1) left in the laser data because,

without a prior, there is ambiguity as to which areas should

be free space and which should contain interpolated surfaces.

There has been a variety of work in this area. Wang

and Oliveira [3] use a least-squares method to estimate a

locally-smooth surface for holes. However, this requires user
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(a) Before: The sparse laser point cloud input after removing
ephemeral objects (automobiles). The resulting gaps are highlighted
by red arrows.

(b) After: Our dense reconstruction with interpolated surfaces.

Fig. 1. Example scenario (a) where three large gaps appear in the laser data
after vehicles are removed. These gaps must be filled in (b) to generate an
accurate map which could later be used for algorithms such as localisation
or ephemeral-object detection.

intervention to identify the holes and can only reconstruct

simple surfaces. Vasudevan et al. [4] use a neural-network

based Gaussian process to model large-scale, outdoor en-

vironments. They produce visually appealing results for

landscape-type environments. However, this is not applicable

in the city-street environments typical for our mobile robotics

platform. Davis et al. [5] use a small, local signed distance

function to represent the surface around the hole. Then,

based on a number of heuristics, they select a “class model”

to approximate the missing surfaces. Their algorithm was

designed and tested in a small scale environment and only

operates on gaps which are surrounded on all sides by dis-

tance data - the latter assumption is routinely violated in our

data runs with tall ephemeral objects or when objects pass

near to the laser sensor. Häne et al. [6] use a regularisation



term to both smooth out noisy range data and to interpolate

small holes in the dense reconstruction with the assumption

that the surfaces are piecewise planar.

Much of the recent research in the field of general dense

reconstruction is based on RGB or RGB-D (e.g., Microsoft

Kinect) inputs [7] [8] [9] [10]. However, we seek to produce

an accurate, dense model solely from sparse range-data input

(laser) and then infill ephemeral-object gaps via a post-

processing step.

This paper’s contribution is the formulation of a new

Kernel Conditional Density Estimation (KCDE) data term

for the energy functional in dense reconstruction. With

no directly observed data in the interpolation regions, the

KCDE makes the energy sympathetic to local structure by

using a Gaussian-based likelihood model dependent upon

neighbouring surfaces. This helps avoid the tendency for

Total Variation (TV) to produce a saddle-shaped surface

when reconstructing multiple planes.

A naive approach to missing surface reconstruction might

use pure interpolation or a simple affine prior. However, the

sophisticated regularisation approach we use allows us to

model more complicated surfaces without explicitly enumer-

ating all possible priors.

We begin in Section II by framing the problem in the

context of an implicit 3D function: the TSDF. In Section III,

we derive our regularisation method from Bayes’ theorem

and outline the key equations needed for an implementation.

Quantitative and qualitative analysis of our regulariser’s

performance in an urban environment are presented in Sec-

tion IV. Finally, we outline our conclusions in Section V.

II. VOXEL GRID STRUCTURE AND FUSION

The voxel grid model is a discretised version of a Trun-

cated Signed Distance Function (TSDF) f : Ω → R where

Ω ⊂ R
3 represents a subset of points in 3D space and f

returns the corresponding truncated distance to surfaces in

the scene [11]. The TSDF is constructed in such a way that

zero is the surface of an object, positive values represent

empty space, and negative values correspond to the occluded

side of surfaces, as shown in Figure 2. Thus, by finding

the zero-crossing level set, f = 0, we arrive at a dense

representation of surfaces in a workspace.

The outputs of this fusion process are:

1) The weighted average TSDF value along with an

associated weight (i.e., confidence) (Section II-A)

2) The Ω set in which the voxel belongs (Section II-B),

indicating if the voxel contains valid surface data or if

the surface data must be interpolated.

A. Data Fusion

Consider the case of a single laser ray with an origin at

ρρρo and a termination (i.e., reflectance) point at ρρρ t . ~ρρρ is fused

into the voxel grid by tracing the ray and updating each voxel

with the signed distance to ρρρ t . Specifically, the following

operations are performed on all voxels which intersect the

ray from ρρρo to ρρρ t :

1) Calculate the voxel’s centroid p = [x,y,z]T
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Fig. 2. A graphical depiction of how a single ray-traced laser is fused
into a two-dimensional ‘voxel’ grid. The TSDF values represent the zero-
crossing surface (black line) which has only been partially observed (Ωd )
while the remaining portion of the surface must be interpolated (Ωi). All
voxels with TSDF values are part in Ωd (blue voxels), voxels near the
interpolated surface are in Ωi (green voxels), and the remaining voxels are
in Ω̄ (red voxels). These TSDF values f ∈ [−1,1] are a linear mapping from
the signed distance a surface is from a given voxel centroid. There is no f

value when the signed distance is less than −µ , however when the signed
distance is greater than µ (i.e., observed free space in front of a surface)
all those voxels are updated with f = 1.

2) Evaluate vSDF as the signed difference between ρρρ t and

p. If vSDF > 0, the voxel is between the surface and

the laser sensor, whereas vSDF < 0 indicates the surface

occludes the laser sensor’s view of the voxel.

3) Evaluate vT SDF as a linear scale-and-clamp of vSDF

such that any voxel for which vSDF ≥ −µ lies in the

interval [−1,1].
4) Update the voxel’s current f (TSDF value) and w

(weight or confidence in the given TSDF value) at time

k,

wk =

{

wk−1 +1 vSDF ≥−µ

wk−1 vSDF <−µ

fk =

{

vT SDF+wk−1 fk−1

wk
vSDF ≥−µ

fk−1 vSDF <−µ

(1)

where wk−1 and fk−1 are the previous values of f and

w for that voxel.

These calculations are highly data-independent and thus

suitable for parallel processing. However, one must ensure

the memory update operations are atomic since multiple laser

rays may simultaneously intersect any given voxel.

B. Ω-Domain Inclusion

Building on our approach described in [12], we use the

“Ω domain” to limit regularisation to areas in which we have

either directly observed laser data or where we desire to

interpolate a surface. All other regions (Ω̄) must be excluded

to avoid spurious surface generation by the regulariser.



The Ω domain employs a principal similar to Neumann

boundary conditions - i.e., carefully define and limit an

operation (regularisation) by taking into account special

boundary conditions for the operating domain. To leverage

the Ω domain within our regulariser, we subdivide our voxel

grid into three distinct sets:

1) Ωd – These voxels were directly intersected by a laser

ray, so the regulariser will only smooth the already-

existing data.

2) Ωi – These voxels were not intersected, but they are in

a region in which we will interpolate missing surfaces.

Since the automatic object detector [13] indicates

where ephemeral objects exist, we remove the objects

and add those areas to Ωi to interpolate the surfaces.

In other words, for each laser ray that intersected an

ephemeral object, we extend the ray further outwards

to include the background area in Ωi.

3) Ω̄ – These voxels were neither directly intersected by a

laser ray nor were they in a region targeted for interpo-

lation. These voxels are excluded from regularisation.

Therefore, our Ω domain is defined as Ω=Ωd

⋃

Ωi. These

subsets are graphically depicted in Figure 2.

III. VARIATIONAL METHOD REGULARISATION

At its core, our method calculates the maximum a poste-

riori (MAP) estimator,

argmax
u

(P(u| f )) (2)

with P(u| f ) defined as Bayes’ theorem,

P(u| f ) =
P( f |u)P(u)

P( f )
(3)

where the scalar u is the denoised or interpolated result, f

is the noisy TSDF data, P( f ) is a constant, P(u) is the prior

or “regularisation” term, and P( f |u) is our likelihood model

or “data” term.

From this foundation, we derive a traditional TV energy

functional (Section III-A) and incorporate a KCDE to create

a more sophisticated regulariser (Section III-B).

A. Bayesian Perspective

P(u) and P( f |u) can be modelled, respectively, as Laplace

and Gaussian distributions,

P(u) ∝ ∏
ui∈Ω

exp

(

||∇ui||1
2σ2

u

)

P( f |u) ∝ ∏
( fi, ui)∈Ω

exp

(

|| fi −ui||
2
2

2σ2
f

) (4)

The numerator in the Laplace and Gaussian exponential’s

fraction are the L1 and L2 norms. If these distributions

are substituted into Equation 2, we can reframe this as a

minimising optimisation problem,

argmin
u

(− log(P(u| f ))) =

argmin
u

∑
( fi, ui)∈Ω

||∇ui||1 +λ || fi −ui||
2
2

(5)

where λ encapsulates the ratio of the constant scalar values

in Equations 2 and 4.

Equation 5 can be mapped to the continuous domain as a

variational method’s cost functional in the form [14],

E(u) = Eregularisation(u)+Edata(u, f )

E(u) =
∫

Ω
||∇u||1dΩ+λ

∫

Ω
|| f −u||22dΩ

(6)

where E(u) is the energy (which we seek to minimise)

of the denoised (u) and noisy ( f ) data. The data energy

term seeks to minimise the difference between the u and

f . The regularisation energy term, commonly known as a

TV regulariser, seeks to fit the solution (u) to a specified

prior. When data is non-existent, the regularisation term acts

an interpolator and its form serves as a prior. This is a

convex energy minimisation problem that can be solved using

Primal-Dual techniques [15].

In our initial experiments, we found both the TV and

Total Global Variation (TGV) regularisers tend to create a

saddle-shaped surface when interpolating a complex junction

between multiple planes. We therefore propose modifying

Equation 4 with a bipartite likelihood, one computation for

smoothing and another for interpolation, as explained in the

next section.

B. Proposed Likelihood Function

For voxels where data is missing (i.e., Ωi), we cannot

calculate the corresponding P( f |u). Our novel data term adds

a KCDE likelihood estimator for the interpolated voxels (Ωi),

P( f |u,v) ∝

{

exp
(

|| f−u||22
2σ2

u

)

v ∈ Ωd

L(u) v ∈ Ωi

(7)

where v is the current voxel and L(u) is a KCDE which

provides a prior data term to guide the regularisation as it

interpolates surfaces [16],

L(u) =

M

∑
i=1

Ku(u−ui)Kd(di)

M

∑
i=1

Kd(di)

Ku(α) ∝ exp

(

−α2

2σ2
α

)

, Kd(β ) ∝ exp

(

−β 2

2σ2
β

)

(8)

where M is the number of cardinal neighbouring voxels in

Ωd , ui is the neighbour’s TSDF value, and di is the distance

between the current voxel and the neighbour. The Ku(·)
kernel incorporates the neighbour’s TSDF value while Kd(·),
in concert with the denominator, provides a confidence in

the neighbour’s value based on the distance between voxels.
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Fig. 3. Software Pipeline Overview: Our software pipeline consists of three stages to convert a sequence of laser scans into an interpolated dense model.
First, we process the laser scans to automatically detect ephemeral objects in the 3D point cloud. Next, the laser rays not associated with an object are
fused into a dense 3D model (Section II). Finally, we apply our KCDE-modified TV regulariser to interpolate surfaces behind the previously-removed
objects (Section III-C).

This can be thought of as a memory-efficient method to

accomplish a similar effect as the approach described in [17].

The minimisation version of Equation 7 now becomes,

δ (u, f ) =

{

|| f −u||22 v ∈ Ωd

− ln(L(u)) v ∈ Ωi

(9)

which results in the energy function,

E(u) =
∫

Ω
||∇u||1dΩ+λ

∫

Ω
δ (u, f )dΩ (10)

However, the KCDE term makes δ (u, f ) non-convex and

cannot be solved with traditional techniques. We therefore

approximate it with a second-order Taylor Series expan-

sion which guarantees convergence when the Hessian is

a positive-semidefinite matrix [18]. In addition, the non-

convexity of the data term contains multiple local minima

which we account for in Section III-D.

C. Implementation

Figure 3 is a summary of our overall software pipeline,

outlining the steps required to process a sequence of laser

scans to ultimately generate an interpolated dense model.

In this section, we describe the algorithm to solve Equa-

tion 10 which is required in the last stage of our software

pipeline. There are substantial steps required to derive this

implementation. We provide an overview of the key concepts

of our contributions and point the reader to [19] [15] [20]

for additional details.

The L1 term in Equation 10 is not differentiable; therefore,

it cannot be minimised using standard techniques. We use the

Legendre-Fenchel Transform [20] [15] to transform it into a

differentiable form,

min
u

∫

Ω
||∇u||1dΩ = min

u
max

||p||∞≤1

∫

Ω
u∇ ·pdΩ (11)

where the primal scalar u is the current denoised and

interpolated TSDF solution and ∇ · p is the divergence of

the dual vector field p defined as ∇ ·p = ∇px +∇py +∇pz.

Applying this transformation to Equation 10, the original

energy minimisation problem now becomes a saddle-point

(min-max) problem with a new dual variable p along with

the original primal variable u,

min
u

max
||p||∞≤1

∫

Ω
u∇ ·p+λ

∫

Ω
δ (u, f )dΩ (12)

The solution to this regularisation problem is found with

a Primal-Dual optimisation algorithm [15] which we briefly

summarise in the following steps:

1) p, u, and û are initialised to 0. û is a temporary variable

which reduces the number of optimisation iterations

required to converge.

2) To solve the maximisation, we update the dual variable

p,

pk =
p̃

max(1, ||p̃||2)

p̃ = pk−1 +σp∇û

(13)

where σp is the dual variable’s gradient-ascent step

size.

3) For the minimisation problem, the primal variable u is

updated by,

uk =

{

ψ(ũ,w, f ) v ∈ Ωd

ξ (ũ,uk−1,w, f ) v ∈ Ωi

(14)

with,

ũ = uk−1 − τ∇ ·p

ψ(·) =
ũ+ τλw f

1+ τλw

ξ (·) =
ũ+ τλi(δ

′′(uk−1,·)uk−1 −δ ′(uk−1, ·))

1+ τλiδ ′′(uk−1, ·)

(15)

where τ is the gradient-descent step size and w is the

weight of the f TSDF value.

The ξ (·) calculation is a numerical approximation of

the second-order Taylor series expansion of δ (u, f )
from Equation 9. This uses a modified λi which is



Fig. 4. The 10 km data collection route was traversed twice: once
for reference with few vehicles on the roads and a second time for
evaluation data with a large variety of vehicles visible. Map generated with
OpenStreetMap [22].

further described in Section III-D. To meet the positive-

semidefinite matrix constraint, since δ ′′(u0, ·) is a

scalar, we restrict its value to ≥ 0.

4) Finally, to converge in fewer iterations, we apply a

“relaxation” step,

û = u+θ(u− û) (16)

where θ is a parameter to adjust the relaxation step

size.

While the derivation in Section III may seem intimidating

at first glance, the preceding four steps are all that a user

must implement to take advantage of our approach.

D. Adaptive Regularisation

As previously mentioned, the non-convexity of the KCDE

data term contains multiple local minima. We initially set

λi to a small value and then increase it after the regulariser

converges.

Initially setting λi to a value orders of magnitude lower

than λ ensures the KCDE data term only guides rather

than dominates the regularisation process. This effectively

removes the non-convexity of the energy functional and

allows the regulariser to select solutions outside of the

current local minimum. Once the regulariser converges, λi

is increased to further refine the solution. This two-stage

process minimises the global energy and therefore reduces

the impact of non-convexity of the KCDE data term.

Our approach of utilising different values for λi, based on

confidence in the local data, was inspired by image pyramids

and the 2D depth-map regularisation in [21].

IV. RESULTS

To evaluate the performance of our algorithm, we ran

an automated ephemeral object detector on a 10 km data-

collection route in Oxford, UK, as depicted in Figure 4.

Our vehicle had a Bumblebee 2 stereo camera for Visual

Odometry (VO) [23]; a Ladybug 2 for colouring the laser

Fig. 5. An example dense reconstruction produced by fusing laser data
into a voxel grid and applying texture to the surfaces from camera data.

points [24] and to add textures to the dense reconstructions;

and a SICK LMS-151 2D laser oriented for push-broom

collection.

The data-collection route was driven on two separate

occasions. The reference data run was accomplished before

dawn to minimise the number of vehicles parked on the

roadside. The evaluation data run took place near noon on

the same day, a time where there were a maximum number

of vehicles on the roads or parked nearby.

We selected four 30 m segments from the two routes to

access our dense reconstruction. The segments contained two

or more vehicles in the second data run with no overlapping

vehicles in the reference data run. This allowed us to auto-

matically detect cars in the second data run, remove them,

apply our dense reconstruction technique, and then compare

our results with the original data run. We used the object

detector described in [13].

We generated metrically consistent local 3D swathes from

the 2D push-broom laser using a subset of laser-to-world

pose estimates TTT wℓ ∈ SE(3) in 30 m windows,

MMMℓ = ζ (TTT wℓ,xℓ)

where ζ (·) is a function of the set of laser points (xℓ) in the

same 30 m interval. The resulting 3D point cloud (Mℓ) was

used as ground truth for our assessment.

From the output of our reconstruction algorithm, we ex-

tracted a point cloud sampling of the zero-crossing isosurface

(e.g., Figure 5) in our voxel grid [25] and compared this to

the reference data with CloudCompare [26]. These results

are quantitatively summarised in Table I and Figures 6 - 9.

Each automobile removed required approximately 20 m2

of surface area to be interpolated by the regulariser. Our

reconstructions had median accuracies ranging from 5.64 cm

- 9.24 cm with standard deviations between 4.57 cm -

6.08 cm.

TABLE I

SCENARIO ERROR STATICS

# Median Error (cm) σ (cm) Eval Dims (m) Vol. (m3)

1 8.48 6.00 3.8 x 2.8 x 11.4 121.3
2 9.24 6.08 3.7 x 2.1 x 10.7 83.1
3 5.64 4.64 5.6 x 2.8 x 22.9 359.1
4 5.97 4.57 3.8 x 3.7 x 13.8 194.0



(a) The raw pointcloud used as the input to our regularisation
algorithm.

(b) The dense reconstruction with infilled background
data. Since there is no texture data for the obstructed
background, a triangle mesh is overlaid to visualise the
reconstruction’s 3D model.
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(c) The distribution of the translation error for
the isosurface extracted from the dense recon-
struction.

(d) A pointcloud of the translation errors for the dense reconstruction. Each colour
in this figure correspond to the same translation error in (c).

Fig. 6. Scenario 1: Reconstruction of area behind two automobiles where the surrounding laser data includes a tree (top right of reconstructed area).
Error: median = 8.48 cm, σ = 6.00 cm

The scenarios which were most challenging included com-

plex surfaces such as trees (Figure 6), six separate intersect-

ing planes (Figure 7), or features (e.g., door or window)

obscured by the removed vehicle (Figure 9). However, a

more typical city-street environment were the reconstruction

is dominated by two planes (the pavement and building

façade) resulted in the best reconstructions (Figure 8 and

9).

Our previous work [19] demonstrated that other regular-

isation terms can produce better results than TV. However,

once the KCDE data term was added to our pipeline, the TV

and TGV regularisers converged upon nearly identical solu-

tions - therefore the additional computational and memory

requirements of TGV are not justified.

V. CONCLUSIONS

In this paper, we presented a new approach to reconstruct

large-scale environments from laser scans, remove ephemeral

objects, and then back-fill the gaps in the laser data. We

created accurate reconstructions by fusing laser data into a

voxel grid and isolating the regions for TV regularisation

with a KCDE data term to assist when interpolating the

missing surfaces. When reconstructing approximately 20 m2

of surface area, our proposed method’s median accuracy

was under 10 cm with a standard deviation of 6 cm or less.
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(a) The raw pointcloud used as the input to our regularisation
algorithm.

(b) The dense reconstruction with infilled background
data. Since there is no texture data for the obstructed
background, a triangle mesh is overlaid to visualise the
reconstruction’s 3D model.
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(c) The distribution of the translation error for
the isosurface extracted from the dense recon-
struction.

(d) A pointcloud of the translation errors for the dense reconstruction. Each colour
in this figure correspond to the same translation error in (c).

Fig. 7. Scenario 2: Reconstruction of area behind two automobiles where six separate intersecting planes must be interpolated. Error: median = 9.24 cm,
σ = 6.08 cm
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(a) The raw pointcloud used as the input to our regularisation
algorithm.

(b) The dense reconstruction with infilled background
data. Since there is no texture data for the obstructed
background, a triangle mesh is overlaid to visualise the
reconstruction’s 3D model.
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(c) The distribution of the translation error for
the isosurface extracted from the dense recon-
struction.

(d) A pointcloud of the translation errors for the dense reconstruction. Each colour
in this figure correspond to the same translation error in (c).

Fig. 8. Scenario 3: Reconstruction of area behind two automobiles in a typical two-plane-dominated street environment. Error: median = 5.64 cm,
σ = 4.64 cm

(a) The raw pointcloud used as the input to our regularisation
algorithm.

(b) The dense reconstruction with infilled background data.
Since there is no texture data for the obstructed background, a
triangle mesh is overlaid to visualise the reconstruction’s 3D
model.
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(c) The distribution of the translation error for
the isosurface extracted from the dense recon-
struction.

(d) A pointcloud of the translation errors for the dense reconstruction. Each colour
in this figure correspond to the same translation error in (c).

Fig. 9. Scenario 4: Reconstruction of area behind three automobiles in a typical two-plane-dominated street environment. Error: median = 5.97 cm,
σ = 4.57 cm
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