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Abstract— This paper is about discovering and leveraging
architectural constraints in large scale 3D reconstructions using
laser. Our contribution is to offer a formulation of the problem
which naturally and in a unified way, captures the variety of
architectural constraints that can be discovered and applied in
urban reconstructions. We focus in particular on the case of
survey construction with a push broom laser + VO system. Here
visual odometry is combined with vertical 2D scans to create
a 3D picture of the environment. A key characteristic here is
that the sensors pass/sweep swiftly through the environment
such that elements of the scene are seen only briefly by
cameras and scanned just once by the laser. These qualities
make for a an ill-constrained optimisation problem which is
greatly aided if architectural constraints can be discovered and
appropriately applied. We demonstrate our approach in an
end-to-end implementation which discovers salient architectural
constraints and rejects false loop closures before invoking an
optimisation to return a 3D model of the workspace. We
evaluate the precision of this model by comparison to a ground
truth provided by a 3rd party professional survey using high-
end (static) 3D laser scanners.

I. INTRODUCTION

Within this work we are interested in the creation of large-
scale dense and accurate 3D metric maps of both indoor and
outdoor urban environments as the one shown in Figure 1.
We utilise a platform equipped with a stereo camera and a 2D
laser sensor for the creation of the dense 3D maps. The lasers
are configured in a push-broom orientation resulting in the
laser scans capturing a vertical snap-shot of the platform’s
environment as shown in Figure 2. By combining these scans
with the forward motion of the platform a 3D dense map of
the surrounding environment can be created.

The motion model of the platform is generated from the
stereo camera through Visual Odometry (VO). VO con-
sists of frame-to-frame motion estimation from visual input,
through a geometric hypothesise-and-test architecture and
least-squares optimisation [1]. While the motion estimation
from VO is accurate over small regions it accumulates error
and ‘drifts’ over time. The accuracy of the maps generated
using this method are intrinsically tied to the accuracy of the
motion estimation and this drift reduces the accuracy of the
maps. In this paper we present a framework that leverages
higher-level features found in indoor and urban environments
to create architectural constraints that improve the estimation
of motion and subsequent accuracy of the dense maps.

In this framework a graph-formulation similar to that
proposed by Lu and Milios [2] is employed. This involves the
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Fig. 1: A large scale optimised map obtained as solution of the
proposed graph optimisation on a urban environment that renders
over a 2km trajectory (top). The combination of two different sensor
modalities, a push broom laser and a stereo rig, allows us to create
very dense coloured models of the traversed environment. Our main
contributions is in the formulation of an unified framework to handle
multiple architectural constraints driven by the different geometric
features discovered in the environment (e.g. points, planes, etc). A
close up of lower corner is depicted (bottom).

construction of a graph whose nodes represent robot poses
or features/landmarks and the edges represent constraints
between nodes [3]. In our system, the sensors pass swiftly
through the environment so that scene elements are briefly
seen by the cameras and scanned once by the laser. Architec-
tural constraints in this case allow us to better estimate the
motion of the platform and from this, more accurate dense
maps of the workspace can be generated even when it has
been observed briefly.

The main contribution of this paper is to offer a unified
representation of architectural constraints in a graph optimi-
sation formulation. To do that, we extend the Symmetries and
Perturbations (SP) model [4] to a graph optimisation frame-
work. The SP model allows for the unified representation of



Fig. 2: Figure showing our system collecting non-overlapping laser
scans using a push-broom 2D Hokuyo laser. The motion of the
platform is estimated using VO.

geometric entities/features by using a reference coordinate
frame attached to them. In addition, we present a method
of validating loop closures found from the camera’s image
stream based on the generated geometric features.

In section II we present the related work. Section III
describes the representation of the architectural constraints,
how to incorporate them into the graph formulation and how
to seamlessly use them in the optimisation process. In section
IV we explain the generation of the architectural constraints
and they can be automatically associated. Section V presents
the results and in section VI we draw the conclusions.

II. RELATED WORK

Within the Simultaneous Localisation And Mapping
(SLAM) literature attempts to include higher-level features
to the problem of localising a robot within a constructed
map have been reported with the majority of the work
concentrating on planar features.

Early work into this was reported by Weingarten and
Siegwart [5] who incorporated planes into a filter-based
approach to the SLAM problem. Using a 3D laser scanner
planes were generetad through a RANSAC algorithm [6] and
included into an Extended Kalman Filter (EKF)-formulation
via a Symmetry and Perturbations (SP) model [4]. A similar
EKF approach was also taken in [7], [8] and [9]. While
the inclusion of these features improved the solution of the
problem the intrinsically large computational cost associated
with using an EKF severely limited the application of this
approach.

Planar features have also been incorporated to graph-
based SLAM approaches within the literature with the major
reported difference being the representation of the planes
and the effect it has on the optimisation process. Lee et
al. [10] utilised planes obtained from a RGB-D camera for
indoor mapping by representing them within the spherical
coordinate system prior to graph optimisation. The use of this
spherical coordinate system however leaves the optimisation
subject to singularities as it is a minimal representation of

orientation [11]. Trevor et al. [12] and Taguchi et al. [13]
represented planar features using the plane equations, which
are the normal and distance from the origin. As compared
to the spherical coordinate system which is a minimal repre-
sentation, the plane equations are an over-parametrised repre-
sentation and hence not allow for unconstrained optimisation.
Using the Levenberg-Marquadt technique optimisation was
carried out, this technique includes an internal regulariser
which constrains the optimisation at the cost of convergence
speed. Kaess [14] includes planes obtained from a RGB-
D camera to the graph-formulation by defining a minimal
representation for the planes similar to that used to represent
quaternions.

In this work all geometric features are represented using
the SPmodel framework. This model allows for uncon-
strained optimisation without the need to define a special
representation for geometric entities like planes. In addition,
it is not subject to singularities as is shown in the following
sections.

III. SPMODEL

In the SPmodel a geometric entity e is represented by a
reference coordinate frame Te attached to it. This reference
encapsulates both the entity’s position and orientation as
expressed below.

Te =

(
Re te

0T 1

)
∈ SE(3) (1)

Where Re ∈ SO(3) is the rotation matrix and te ∈ R3 is
the 3 dimensional translation vector of the transformation.
The SPmodel is based on the following two principles:
• The error in the position of a geometric entity is

represented locally
• A geometric entity is not allowed to move locally along

its underlying symmetries
In our case to accomplish the first requirement we denote

the current estimate of the location of an entity by T̂e

whereas its local error is represented by the differential ∆e.
The current estimation T̂e belongs to the Special Euclidean
SE(3) Lie Group while the error ∆e is defined in the Lie
algebra se(3) which allows for manifold optimisation (no
constraints required). The true position of the entity is then
given by:

Te = T̂e ⊕∆e (2)

with ⊕ representing the composition of the transformations
described later.

The Lie algebra se(3) is the tangent space of SE(3)
at the identity. The elements of this algebra are the 6-
vectors (w,v)T where w = (wx, wy, wz) is the axis-angle
representation of rotation and v is a rotated version of the
translation t. An exponential mapping can be used to map
the elements of the se(3) algebra back to the SE(3) group
as shown in Equation 3.

expSE(3)(w,v) =

(
expSO(3)(w) Vv

0 1

)
=

(
R t
0 1

)
(3)



with

expSO(3)(w) = I +
sin(θ)

θ
[w]× +

1− cos(θ)
θ2

[w]2×

V = I +
1− cos(θ)

θ2
[w]× +

θ − sin(θ)

θ2
[w]3×

θ = ||w||2

and [·]× is an operator which maps a 3-vector to its skew-
symmetric matrix.

The components of the error ∆e are given by dv• for the
translation and dw• for the rotation where the elements in
the subscript describe the allowed axis (x, y, z) along which
we can translate or rotate to correct the error.

To fulfil the second requirement of the model the axis
along which a particular entity can be locally moved depends
on the symmetries and real Degrees Of Freedom (DOF)
of the entity. Table I shows the corresponding coordinate
frames attached to a point, line, plane and robot pose entities.
The corresponding differential movements allowed are also
defined in the table with the motion composition given by:

T̂e ⊕∆e def= T̂e exp(∆e) (4)

For the purpose of this work we focus primarily on the
inclusion of plane entities, which can be used to generate
architectural constraints in the context of the large data sets
being analysed. As can be seen from Table I the coordinate
frame attached to the plane has its x and y vectors lying
along the plane with the z vector being the normal of the
plane. From this it can be seen that any translation in the
x and y direction as well as rotation around the z axis of
this reference will not change the plane equation. Leaving it
with the three degrees of freedom. By applying the respective
rotations sequentially we have full control of the symmetry
of the entities. In this way the exp(∆e) fully reflects the
degrees of freedom available to the specific entity as shown
in Table I.

A. Optimisation

The optimisation problem solves for a configuration of
parameters (Te)∗ that explains all the measurements by
minimising the following cost function:

F(Te) =
∑
i,j∈C

eij(T
e
i ,T

e
j , zij)

TΩijeij(T
e
i ,T

e
j , zij) (5)

where eij(T
e
i ,T

e
j , zij) is an error function that measures

how well the parameter blocks Te
i and Te

j satisfy the
constraint whose mean is given by zij and covariance by
Ωij . The set C represents the pairs of geometric entities for
which a constraint exists.

The error function eij used for all constraints in this

framework is defined as:

eij
def
= eij(T

e
i ,T

e
j , zij) (6)

eij = log(Eee) (7)

The log(·) function is the inverse of the exponential map
defined in Equation 3 and maps the Lie group SE(3) to its
corresponding Lie algebra se(3). In our implementation of
our SP model we utilise the residual matrix Eee to represent
the error between different geometric entities.

1) Pose-Pose residual: The first constraint used in this
framework is that between two poses where the residual
matrix is given as:

Exx = (Tx
j )−1Tx

i zij (8)

with zij defined as the relative transformation between the
poses.

2) Point-Plane residual: The first architectural constraint
considered is that between a point i and a plane j whose
corresponding transformations are given by:

Tπj =

(
n
πj
x n

πj
y n

πj
z pπj

0 0 0 1

)
∈ SE(3) (9)

Tpi =

(
I pi

0 1

)
∈ SE(3) (10)

These arise when a point lies on a plane or the distance zij
between a point and a plane is measured. The corresponding
residual matrix is given as:

Eπp =


1 0 0 0
0 1 0 0
0 0 0 n

πj
z · (pi − pπj )− zij)

0 0 0 1

 ∈ SE(3)

(11)
3) Plane-Plane Angle residual: Another architectural

constraint arises when the angle zij between two planes
is known, like for example for two parallel or orthogonal
walls indoors. The corresponding residual matrix between
the planes Tπi and Tπj is:

Eππ =


cos(φ) −sin(φ) 0 0
sin(φ) cos(φ) 0 0

0 0 0 0
0 0 0 1

 ∈ SE(3) (12)

φ = zij − acos(nπi
z .n

πj
z ) (13)

4) Error minimisation: With the error function defined
in Equation 7 a numerical solution to perform least squares
optimisation using the Gauss-Newton (GN) or Levenberg-
Marquardt (LM) algorithms can be derived [15]. In this
section we refer to ∆e as the state vector consisting of all the
differentials with ∆e

i referring to the individual differential
of entity i. Similarly we define the shorthand

eij(T̂
e ⊕∆e)

def
= eij(T̂

e
i ⊕∆e

i , T̂
e
j ⊕∆e

j , zij) (14)

The idea employed by LM and GN is to approximate the
error function by linearising around the current estimate
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exp(∆e) exp(dvxyzdwxyz) exp(dvz) exp(dwy) exp(dwx) exp(dvxyz) exp(dvyz) exp(dwz) exp(dwy)

DOF 6 3 3 4

TABLE I: Description of the proposed geometric entities and constraints: a point, line, plane and pose entity with their respective
representation within the proposed lie algebra framework. The attached reference frame as well as the graphical representation of the
entities are described together with the construction of exp(∆)e, the exponential mapping of the differential to preserve the symmetry of
each of the individual entities.

using a first order Taylor expansion.

eij(T̂
e ⊕∆e) ≈ êij + Jij∆

e (15)

The Jacobian Jij is given by

Jij =
∂eij(T

e ⊕∆e)

∂∆e

∣∣∣∣
∆e=0

(16)

Building up from Equation 5.

Fij(T
e) = eij(T̂

e ⊕∆e)Ωijeij(T̂
e ⊕∆e)

≈ (eij + Jij ⊕∆e)Ωij(eij + Jij ⊕∆e)

= eTijΩijeij︸ ︷︷ ︸
cij

+2 eTijΩijJij︸ ︷︷ ︸
bij

∆e

+ (∆e)T JTijΩijJij︸ ︷︷ ︸
Hij

∆e

= cij + 2bij∆
e + (∆e)THij∆

e

Applying this to the full Equation

F(Te) =
∑
〈i,j〉∈C

Fij(T
e)

=
∑
〈i,j〉∈C

cij + 2bij∆
e + ∆eHij∆

e

= c + 2bT∆e + (∆e)TH∆e

This form is obtained by setting c =
∑
cij ,b =

∑
bij and

H =
∑
Hij . The solution can be found as below

H∆e = −b (17)

The update is obtained by composing the solution ∆e

obtained in the current iteration k with the previous estimate
T̂e
k.

T̂e
k+1 = T̂e

k ⊕∆e (18)

The linearisation, solution and update step can be iterated

through until convergence. In our implementation we use the
Ceres solver [16] with automatic differentiation to calculate
the Jacobians in Equation 16.

IV. MAPPING FRONT END

With the optimisation procedure for the geometric features
described it remains to generate and incorporate features, in
the case of this paper plane features, into the framework
and this is dealt with via our front-end. The generation of
planes is done through segmentation of a 3D point-cloud
that represents the platform’s environment. This 3D point-
cloud can be retrieved directly using 3D sensors such as
RGB-D cameras or using a 2D laser sensor in a push-broom
configuration that is undergoing known motion. While RGB-
D cameras have been shown to produce accurate point-clouds
their operation is restricted to mostly indoor environments
with very limited operation available outdoors. The proposed
method is not constrained in this way and can be used in all
environments.

To generate the point-cloud the trajectory is divided into
sections of user-defined distance with the poses at the start
of the sections defined as Key Poses Ki∈{1,...,n} where n is
the number of sections in the trajectory. Within these sections
the error produced by the effect of drift on the VO is small
enough such that the point cloud generated within the section
can be considered accurate. Plane segmentation is therefore
carried out over the section’s point cloud followed by data
association between different sections.

A. Constraint Generation

With the 3D point cloud over a section defined the next
step is segmenting the point cloud into planes. To do this
a curvature-based algorithm is used [17]. The curvature
algorithm utilises the relationship between a point in the
point cloud and the small local region neighbouring it. If the
local region is planar the curvature of the region is expected
to be low and the normals of the points within the region will



also point in the same direction. By comparing the residual
and normals of a point to certain user-defined thresholds it
is possible to ‘grow’ a plane from the local regions.

The addition of the reference coordinate frame used to
incorporate the plane into the SPmodel requires the definition
of two orthogonal vectors that lie on the plane nπx ,nπy , a
normal vector nπz and a point pπ belonging to the plane as
shown in Table I and defined in Equation 9.

B. Data Association

In this paper there are two elements of data association
that are considered, that between planes found in successive
sections and those between planes in sections that have loop
closures detected by FABMAP [18]. Planes are associated if
they are coplanar.

All the planes generated in a section are represented in
the frame of their corresponding Key Pose. To compare
two planes represented in different sections with Key Poses
Ka and Kb a transformation TKaKb

∈ SE(3) is used to
represent the planes in section b in the frame of Key Pose
a. For successive sections we use VO to calculate TKaKb

while for the loop closures we use pairs of stereo images
matched by FABMAP to compute the transformation.

The coplanar test between two planes Tπa and Tπb can
be performed by comparing the angle θab and distance dab
between the planes with user-defined angle and distance
thresholds respectively.

θab = arccos((nπa
z )T .(RKaKb

.nπb
z )) (19)

dab = nπa
z (cπa − (RKaKb

.cπb + tKaKb
)) (20)

cπ ∈ R3 is the centroid of a plane. If θab and dab are less
than their respective thresholds the planes are coplanar and
can be associated as one.

The association of geometric features found in a loop
closure presents us with an opportunity to geometrically
validate the loop closures obtained via FABMAP, which
uses the appearance of stereo images. This is done via a
plane-compatibility test which checks whether the planes
and configuration of planes observed from both areas that
constitute the loop closure are consistent by analysing the
data associations.

V. RESULTS

To test this proposed framework four independent surveys
were carried out. We generated planes from the dense laser
map and added them as constraints for the optimisation as
shown in Figure 5. The results of the two surveys of an
indoor environment, the Acland building in Keble College
Oxford, and the two of an outdoor environment, a triangular
loop in the Jericho area Oxford are shown in Figure 3.
Column 1 of the table shows the dense maps created using
the motion estimation provided by VO, with the maps created
after the optimisation being compared in column 2.

For the indoor surveys taken the ground truth is available
via a professional survey taken of the same environment.
The comparison of these surveys to the professional survey

Fig. 5: This figure shows an automatically generated constraint for
a set of laser points that belong to a common plane. Observe that
laser points belonging to doors (interleaved between the constrained
walls) are not taken into account in the plane constraint. Consec-
utive 2D scans are not related except through the plane constraint
as they come from different poses. As a rigid transformation exists
between a laser point and the pose it was taken in, we can constrain
the trajectory by constraining the laser points.

after alignment via Iterative Closest Point (ICP) algorithm
is shown in the second column of Table 3 coupled with the
histogram of the error. For the first survey a Root Mean
Square (RMS) error of 0.1125 metres was observed for the
points with the platform travelling for approximately 200
metres. The second denser survey, as the platform was moved
at a slower speed, reported a RMS error of 0.2257 metres
over a similar distance travelled. The greatest errors were
reported in sections where windows/doors were opened in
the ground truth survey but not in our indoor surveys.

In the outdoor environment however ground truth data was
not available, for the comparison the two outdoor surveys
were compared against each other with the RMS error of
this comparison coming to 0.943 metres with the platform
covering two loops of approximately 0.9 kilometres each.
While this is a significant reduction in error of the maps, it
highlights the difference between indoor and outdoor maps.
In the indoor case the entire environment can be described by
a configuration of planes i.e two sets of orthogonal planes
found in corridors as shown in Figure 6 making the final
result very accurate while this is not the case in the outdoor
environment limiting the final accuracy of the model.

Table II provides details of the number of architectural
constraints used during each of the surveys carried out in
this unified optimisation framework. Additionally, we list
the time required for each iteration in each of the evaluated
datasets.
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Fig. 3: Figure showing the results of 4 surveys taken and optimised with this framework. The original surveys created using VO are shown
in column 1, while a comparison of the surveys after optimisation with architectural constraints together with their subsequent histograms
is shown in columns 2 and 3 respectively. Rows 1 and 2 present results from 2 independent indoor surveys of the Acland building in
Oxford where the ground truth dense map is available courtesy of a professional survey and used for the comparisons. In row 3 two
different independent outdoor maps are presented (grey and blue) of the Jericho triangle in Oxford. Since ground truth is not available
the comparison is done between the 2 point clouds optimised independently.

Fig. 4: Figure showing the trajectory of the platform covering two loops of the Jericho triangle of Oxford overlaid on a GPS map. The
loop closures generated from FABMAP are geometrically validated using our proposed method. A matched image pair together with its
respective transformed 3D sections is shown for the case when the loop closure is validated (green square) and rejected (red square).
For the rejected loop closure the transformation of the matched section (red) to the frame of the original section (blue) via the Key
Pose transform TK2K1 does not result in any overlap between the sections, thus any planes generated from these segments will not be
associated and it thus fails the plane association test. In the validated loop closure the Key Pose transformation results in the overlap of
the matched (red) and the original (blue) 3D sections, and the subsequent planes generated from this section overlap and complete the
plane association test.



Experiment Pose-Pose Plane-Point Plane-Plane No of Planes Time per iteration (s)
Acland 1 24523 84524 13 186 0.9
Acland 2 62421 252124 9 194 3.168
Jericho 1 114816 20860 0 125 3.163
Jericho 2 112164 21869 0 133 2.895

TABLE II: Number of constraints used in each of the surveys utilising the proposed unified optimisation framework.

Fig. 6: This figure shows the configuration of planes from the survey
of the Acland building. The structure of this environment can be
described by the automatically generated orthogonal relationships
(in purple) between the three sets of planes (in green) forming the
corridors.

The trajectory of the outdoor survey is presented in Figure
4 and with the platform traversing two loops of the Jericho
triangle we utilise FABMAP to generate matched images and
calculate a loop closure transformation from the matched
pair of stereo images. We then geometrically validate these
loop closures with our proposed technique and results from a
rejected and validated loop closure transformation are shown
in Figure 4.

VI. CONCLUSION

We have presented a framework for the creation of dense
3D maps of indoor and outdoor urban environments using
automatically detected architectural constraints. These con-
straints are required since our platform is equipped with a
laser oriented in a push-broom configuration where scans do
not overlap. Our motion source is given by a visual odometry
system. As main contribution of the paper we have pre-
sented a unified representation of the architectural constraints
that can be seamlessly integrated into a graph optimisation
framework. Using this framework, we have demonstrated the
generation, representation, association and optimisation of
high-level features such as planes to improve the estimation
of the trajectory of our system and the creation of accurate
maps. This work has been experimentally validated through
two indoor datasets obtaining a final accuracy comparable to
a professional survey and reporting similar results in outdoor
environments.
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