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Abstract— In this paper we propose an on-line system that
discovers and drives collision-free traversable paths, using a
variational approach to dense stereo vision. Our system is light
weight, can be run on low cost hardware and is remarkably
quick to predict the semantics. In addition to the scene’s path
affordance it yields a segmentation of the local scene as a
composite of distinctive labels – e.g, ground, sky, obstacles
and vegetation. To estimate the labels, we combine a very
fast and light weight (shallow) image classifier which considers
informative feature channels derived from colour images and
dense depth maps estimates. Unlike other approaches, we do not
use local descriptors around pixel features. Instead, we encom-
pass label-predicted probabilities with a variational approach
for image segmentation. Akin to dense depth map estimation,
we obtain semantically segmented images by means of convex
regularisation. We show how our system can rapidly obtain
the required semantics and paths at VGA resolution. Extensive
experiments on the KITTI dataset support the robustness of
our system to derive collision-free local routes. An accompanied
video supports the robustness of the system at live execution in
an outdoor experiment.

I. INTRODUCTION

A fundamental task for a mobile robot is the ability to
find and follow drivable or collision-free paths. In this paper,
we propose a vision-based system that, via a variational
approach, is able to segment and label semantically dis-
tinctive parts of the local scene including paths through it.
Our motivation, beyond the obvious case of autonomous
exploration, is the creation of a safety-net process which in
the temporary absences of a localiser can still execute a safe
and coherent path through its workspace. Figure 1 illustrates
our approach for a single image frame.

Our system integrates different modules including dense
local mapping, semantic label prediction, image segmenta-
tion, route calculation and robot control. A stereo camera is
used as the primary sensing modality in this paper. Stereo
cameras can provide an inexpensive and reliable means
of sensing the environment for a robot at true scale if
appropriately fast reliable processing schemes are deployed.
Over the years, novel theoretical foundations of continuous
optimisation [1], [2] and machine learning [3] for image
analysis, upon which the most advanced algorithms rely, have
become accessible for robotics and computer vision appli-
cations. In addition, the continuous development in parallel
computing allows us to build systems that can respond in soft
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Fig. 1: Our approach combines the use of a shallow classifier
with convex relaxation in a multi-labelling problem to obtain se-
mantically segmented images. Given the labels describing drivable
regions, we deliver collision-free local routes to the robot controller.
Top, a segmented image with the plausible path. Bottom, a dense
representation of the local scene.

real time. Our algorithm for path discovery works in outdoor
environments taking advantage of multiple, complementary
depth and colour cues. We use these cues in a multi-label
image segmentation approach. The problem is formulated in
a probabilistic framework that combines machine learning
with convex regularisation. In order to learn distinctive scene
labels, we rely on shallow classifiers such as Random Forests
(RF) [4]. This choice is driven by the intrinsic property of
the RFs as low variance classifiers. As a result, they provide
better generalisation by preventing from the undesirable over-
fitting problem. In addition, RFs explicitly allow us to model
pixel-wise label probabilities with frequentist inference [5].
Moreover, RFs can easily adapt themselves to architectures
supporting parallel computing and multi-threading to rapidly
predict the per-pixel label probabilities. We summarise our
contributions as follows:

• We demonstrate the ability of our system to run contin-
uous optimisation at two different tasks in reasonable
execution times –i.e. dense depth map estimation and
multi-labeling image segmentation.

• We derive plausible routes by analysing the image
semantics corresponding to drivable regions (e.g. road,
ground).

We analyse the ability of RFs to combine multiple features
leading to a further increase in performance when colour
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Fig. 2: Scene understanding pipeline for collision-free route following. The system considers different modules running in a main CPU
multiple thread process. Stereo pairs are first processed in a dense depth map estimation task. In parallel, several CPU threads can process
the rectified images to extract different colour and depth contextual feature channels. A different task is used to train our shallow Random
Forest. During on-line mode, the output of the Random Forest produces the predicted per-pixel label probabilities. A new task uses this
information to produced a regularised image segmentation. Given the image segmentation solution, we analyse the ground label and extract
a feasible path. Finally we send the path to the robot controller.

and depth features are used simultaneously. We show how
our system can rapidly obtain the required semantics – and
therefore paths– at VGA resolution. Extensive experiments
on the KITTI dataset support the robustness of our system
to derive collision-free local routes. An accompanied video
supports the robustness of the system at live execution in
an outdoor experiment with a wheeled robot exploring over
hundreds of metres of trajectory.

II. RELATED WORK

Over the past few years, there has been an increasing
development of path-following algorithms. Many of these
algorithms are not necessarily adaptive. Some rely on a priori
knowledge of specific visual characteristics such as lane
markers or road boundaries of the road surface [6] or their
geometric structure using complementary sensor modalities
such as LIDAR [7]. Other approaches employ supervised
learning techniques to learn to recognise a desired class of
roads by exploiting colour cues unique to the road surface
in combination with segmentation algorithms [8].

In this paper, we take advantage of the two frameworks
by combining dense local geometry and image colour cues.
We note, however, that our ultimate goal is to find a drivable
path with no assumption of any particular structure – i.e,
no lane or border information is used as prior. Therefore,
we deliver only collision-free paths that are suitable for pure
exploration, fall-back planning (localiser failure) and off-road
applications.

Related approaches have been presented in the past. For
instance, in [9] a fast path following strategy for unstruc-
tured scenes is formulated as a posteriori distribution for
the path given semi-dense stereo disparity, image texture
and orientation features. The texture feature described is
designed to adopt colour information, starting at reliably
classified seed points which are provided by simple disparity
based segmentation into road plane and obstacle. A different
algorithm is proposed in [10] where a 1D trifocal tensor is

used to estimate parameters required for the path-following
controller, through a structure from motion approach, without
having to explicitly recover the 3D structure of the environ-
ment.

The focus of much of our work is the development of a
path-following algorithm using scene understanding through
image segmentation. Common approaches use information
from dense stereo maps with Conditional Random Fields
(CRFs) [11] or Convolutional Neural Nets (CNNs) [12], [13]
to obtain a reasonable image segmentation – at the expense
of higher computational cost to predict the per-pixel labels.
A good assumption is that many scenes are a composite
of vertical surfaces –e.g. buildings, vehicles, pedestrians–
w.r.t the horizontal ground –e.g., road and sidewalk– with
possible parts of the sky [12]. Analogously, we model the
appearance of the ground using cues at pixel–level, such
as colour and texture, together with contextual information
from dense depth maps – in fact, they play an important
role in our image segmentation task. In this work, because
we require realtime performance, and in contrast to [12],
[13], we use a shallow classifier rather than a deep classifier
[14] to provide the data term into a down stream semantic
regularisation formulated as continuous convex relaxation.
Similar solutions are encountered in the literature. In [15]
for instance, a set of five channels are extracted from
depthmaps, however the approach does not take advantage of
other colour features. Moreover, the multilabel segmentation
problem is addressed as a combination of a RF classifier and
a graph cut MRF based approach. In this paper, we present a
solution that exploits continuous multilabel optimisation that
has been shown to be superior in terms of parallelisation and
runtime performance [16].

III. SYSTEM OVERVIEW

Our intermediate (but welcome) goal is to provide per-
pixel semantics for the simple application of exploration with
a mobile robot at near real time. To this end, we design



a system consisting of several tasks running in a multi-
thread process as illustrated in Figure 2. Each left and right
image of the stereo pair Ilr, is processed in a parallel task
to estimate a dense depth map ξ . In this paper we extend
the approach presented in [17] –whose solution relies on
continuous energy minimisation– to estimate stereo depth
maps with TGV regularisation. This choice allows us to
approximate locally the ground label as an affine surface.
Such approach also exploits the use of the Augmented
Lagrangian (AL) method to accelerate the convergence of
the primal-dual algorithm. The algorithm supports per-pixel
calculations, therefore allowing us to run the task on an
available GPU.

Simultaneously, several CPU threads process the left im-
age to extract different features channels Z consisting of
colour Zrgb, location Zloc, filter-banks Z f and depth-context
features Zξ .

The channels are received by a different task in charge
of training our shallow Random Forest. During on-line
mode, the output of the Random Forest produces per-pixel
u probabilities PT(u ∈ Li|zu) of u belonging to a set of
labels Li, i ∈ {1, . . . ,K}) where K is the number of labels.
A final task uses this information to estimate the regularised
image segmentation. Analogous to the depth map estimation
task, we run the regularisation on the same GPU. Given
the segmentation solution, we analyse the ground label and
extract a feasible path. Finally we send the path to the robot
controller.

IV. PREDICTING LABELS WITH A RANDOM FOREST

A Random Forest (RF) is a popular machine learning
method for classification and regression, which consists of an
ensemble of decision trees Tj, j ∈ {1 · · ·T} with predefined
tree depth dT. It has been shown that combining separate
decision trees to form a forest improves performance of
prediction and prevents over-fitting [4]. In our RF, each tree
Tj is trained individually. We follow the classical construc-
tion of the decision tree as a deterministic procedure. In
order to prevent having identical trees, our trees are trained
on different set of per-pixel features Z using a bootstrap
procedure. For each tree, the same number of pixels as
in the original set is randomly selected by sampling with
replacement. As a result, some feature samples may appear
several times, while some others could be absent. In addition,
we randomly select features in each node inducing several
node searching splits. Figure 3 illustrates this process.

A. Scene Features

A set of feature channels is used in order to obtain
informative information about the scene by applying various
transformations on the colour and depth map images. Let
zu ∈ Z be a per-pixel feature vector defined as

zu =
[

zT
rgb zT

loc zT
f zT

ξ ] (1)

where zrgb comprises an illumination invariant transform
zill inv and a rg-chromaticity transform zrg−chroma applied over
the rgb pixel channels. zξ is represented by two contextual
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Fig. 3: The RF classifier uses per-pixel features derived from colour
and depth cues. Given a new pixel sample z, each tree classifies it
in a different leaf. Each leaf saves a histogram modelling the class
distribution over the samples.

transforms over the depth: first, the height of the 3D back-
projection of the pixel w.r.t the ground zhg; second, the
vertical disparity gradient zvg. In addition, we estimate the
distance from the pixel to the horizon line zloc. Finally, we
use the Leung-Malik (LM) filter bank z f , a collection of
Gaussian and Laplacian of Gaussian filters at various scales
and orientations to represent the local texture.

B. Estimation of label distribution

The probability PT(u ∈ Li|zu) of a pixel u belonging to
a particular label Li is the result of a voting strategy. For
each tree in the forest Tj, a subset of the components of
the feature vector zu are compared at each node to a given
threshold θ . The comparison determines the next branch to
follow until a leaf node is reached. As can be seen in Figure
3, histograms learnt during the training phase are stored at the
leaves of the trees. For a given tree, the histograms contain
the number of pixels per label in the training set that end
up in that leaf. These histograms aim to approximate the
probability PTj

(u ∈ Li|zu). During on-line mode, the label
distribution of a test pixel is given by the average of the
histograms stored at the corresponding leaf of each tree in
the forest:

PT(u ∈ Li|zu) =
1
T

T

∑
j=1

PTj
(u ∈ Li|zu) (2)

V. REGULARISATION VIA CONVEX RELAXATION

With the initial per-pixel classification results in hand,
greatly improved results can be obtained by formulating the
complete image segmentation as a labelling problem with
a global energy function that balances “smoothness” of the
labelled segments (a prior) and per-pixel probabilities (a data
term) coming from the random forest. The energy function
is given by:

min
Ωi

{
1
2

K

∑
i=1

Per(Ωi)+
K

∑
i=1

∫
Ωi

fi(u)du

}
(3)

s.t. Ω =
K⋃

i=1

Ωi, Ωi∩Ω j = /0, ∀i 6= j

where Ω∈R2 represents all the pixels in the image assigned
to K disjoint regions Ωi (e.g. ground, vegetation, obstacles
and sky).



In Eq.(3) the data term is given by the sum of the
costs of the unary potentials fi(u) = − log(PT(u ∈ Li|zu))
per segmented region Ωi. The intuition behind fi(u) is that
when pixel u belongs to region Ωi with a high probability
(PT(u ∈ Li|zu)≈ 1) the cost added is negligible ( fi(u)≈ 0),
on the contrary, low probabilities produce an increasingly
unbounded cost. The main effect of the smoothness term is
to reduce the perimeter of the regions Per(Ωi) such that it
tends to smooth the boundary between neighbours and delete
small regions surrounded by bigger ones. In order to obtain
a more convenient expression of the energy for optimisation
we represent each region instead by its indicator function:

φi(u) =
{

1 if u ∈Ωi
0 otherwise (4)

The energy function in Eq.(3) can then be described by:

min
φi(u)

{
1
2

K

∑
i=1

∫
Ω

|∇φi(u)|du+
K

∑
i=1

∫
Ω

φi(u) fi(u)du

}
(5)

s.t. φi(u) ∈ {0,1},
K

∑
i=1

φi(u) = 1

where
∫

Ω
|∇φi(u)| is the Total Variation (TV) of the indicator

function φi(u) that can be shown to be equal to the perimeter
of the segment.

The constraint φi(u)∈ {0,1} makes the problem combina-
torial and NP-hard so it can only be approximately solved.
We use a known fast relaxation approach [18] that transforms
the original problem into a convex one. While this relaxation
is not the tightest, it produces good results in practice.
The relaxation is based on allowing φi(u) to take values in
the interval φi(u) ∈ [0,1]. Since in addition we know that
∑

K
i=1 φi(u) = 1, the constraint can be relaxed to:

φi(u)≥ 0, ∀i (6)

as a result, Eq.(5) becomes a convex optimisation problem.
Unfortunately the energy cost is non-smooth due to the

L1 norm that appears in the TV term. The Legendre-Fenchel
Transform [19] allows us to trade the non-smoothness of the
prior term for a smooth convex constrained maximisation:

∫
Ω

|∇φi(u)|du = max
Ψi(u)

∫
Ω

∇φi(u) ·Ψi(u)du (7)

s.t. |Ψi(u)|2,1 ≤ 1 (8)

where Ψi(u) : Ω→R2 is known as the dual function of φi(u).
Although this transformation seems to apparently increase
the complexity, the counterpart is that we can now use well
known first order methods available for smooth problems to
find the global solution of the relaxed energy.

As explained below, we can easily deal with the box
constraints given in Eqs.(6, 8) by projecting the solution
of the optimisation at each iteration to the feasible set
when it fails to meet the constraints. The equality constraint
∑

K
i=1 φi(u)= 1 can be included into the energy by introducing

Lagrange Multipliers Γ(u). The relaxed problem to be solved
is then:

min
φi(u)

max
Ψi(u),Γ(u)

{
1
2

K

∑
i=1

∫
Ω

∇φi(u) ·Ψi(u)du+
K

∑
i=1

∫
Ω

φi(u) fi(u)du

+
∫

Ω

Γ(u)

(
K

∑
i=1

φi(u)−1

)
du
}

(9)

s.t. φi(u)≥ 0, |Ψi(u)|2,1 ≤ 1

To solve the convex saddle point problem in Eq. (9) an
iterative primal dual algorithm [1] is applied. Basically we
just need to interleave gradient ascent steps for the max-
imisations with gradient descent steps for the minimisation
at each iteration of the algorithm. In both cases we project
the solution to the feasible set in case the box inequality
constraints are not met. Therefore at each iteration t and per
each label Li we perform the following steps:
• Maximising Ψi(u):

Ψ̃
t+1
i = Ψ

t
i +σ∇φ̄

t
i gradient ascent

Ψ
t+1
i =

Ψ̃
t+1
i

max(1, |Ψ̃t+1
i |2,1)

projection to feasible set

• Minimising φi(u):

φ̃
t+1
i = φ

t
i − τ(∇T

Ψ
t+1 + fi +Γ

t
i) gradient descent

φ
t+1
i = max(0, φ̃ t+1

i ) projection to feasible set

• Maximising Γ(u):

Γ
t+1 = Γ

t +µ

(
K

∑
i=1

φ
t+1
i −1

)
gradient ascent

• Over-relaxation:

φ̄
t+1 = φ

t+1 +θr(φ
t+1−φ

t)

where σ ,τ and µ control the step size of the gradient steps.
In practice, each variable is updated by performing pixel wise
calculations while the gradient operator ∇ is approximated
by finite differences. The parameters are set up to 1/2,1/4
and 1/5 respectively through the use of preconditioning [20].
The last over-relaxation step allows faster convergence of
the algorithm with 0≤ θr ≤ 1. Analogous to the depth map
estimation problem, the primal dual approach followed in this
section allows us to take advantage of general purpose GPU
hardware for parallel computing. For a detailed derivation of
the update equations, we refer the interested reader to [20].

VI. EXPERIMENTS

This section provides quantitative results for experiments
carried out over two different datasets. Our heterogeneous
pipeline (CPU/GPU) was tested in two different hardware
architectures whose details are summarised in Table I. In
addition, we show qualitative results from a live experiment
carried out in an outdoor environment. Our experiments con-
sider a parameter selection analysis as well as an assessment
that guides the importance of the feature channels over the
RF-based dataterm. Additionally, we make a comparison of
predicted labels before and after label regularisation.



TABLE I: Hardware architectures

Architecture OS Processor Graphics Card
Server Ubuntu 14.01 Intel(R) Core(TM) i7 CPU @ 3.50GHz GeForce GTX TITAN Black, 6144 MB 2880 CUDA Cores
Laptop OSX Mavericks Intel(R) Core(TM) i7 CPU @ 2.3GHz Geforce 750M, 2048 MB, 384 CUDA Cores

A. Quantitative experiments

In order to evaluate the proposed image segmentation
approach, we make use of a subset of the KITTI dataset for
which ground truth is provided [21]. The dataset consists
of 60 stereo pairs at resolution 1241× 376 with perfect
annotations for 12 semantic class labels and ground truth
depth maps. For the purpose of our evaluation, we synthesise
the annotations into ground, vegetation, obstacles and sky.
In this case, we employ 50% of the images for training and
50% for cross-validation. An additional dataset was collected
and manually labelled, Keble College dataset, consisting of
65 stereo frames at high resolution (1280×960). Optimised
depth maps are also provided with centimetre accuracy.

1) Parameter selection for RF-based dataterm: The accu-
racy and computational complexity of our RF-based dataterm
depends on two major parameters: the maximum tree depth
and the number of trees in the forest. In order to choose the
best parameters, we analyse their impact over the RF perfor-
mance. For the KITTI dataset, we carry out an exhaustive
search in a 2-dimensional grid representing the parameter
domain. For each parameter configuration (number of trees,
tree depth) we train a model. Figure 4 shows the average F1
score on the configuration space of parameters over 200 RF
models. Although the performance can be optimised to find
the maximum score, we found that a classifier consisting of
5 trees and 10 tree levels provides a good trade off between
performance and speed.

2) Contribution of feature channels: Our assessment also
takes into account the contribution of each feature channel
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Fig. 4: Analysis of the performance of several RF-based classifiers
for parameter selection. We carried out an exhaustive search in
a 2-dimensional array representing the parameter space domain.
For each parameter configuration (number of trees, tree depth), we
train the classifier and evaluate its average F1-score. Although the
performance can optimised by finding the maximum score, an a
classifier consisting of 10 trees and 15 tree levels can result in a
good trade off between performance and speed.
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Fig. 6: Precision-Recall curves obtained by increasing the complex-
ity of the RFs for different combination of labels. As expected, the
curves exhibit better accuracy for more complex models preventing
at the same time the undesirable over-fitting problem.

to the overall performance. We calculate the precision, recall
and F1 score for different models. Table II details this values
per label. An important part of the evaluation is to measure
the impact of the depth channels (i.e, zξ ). Moreover, we
emphasise the importance of each depth channel by leaving
one channel out at a time (e.g, Z\zhground). This test is also
applied to the colour channels allowing us to find strong
features by observing whether or not the performance drops
significantly when a particular channel is missing. Figure 5
summarises this information showing the average F1 score
for the KITTI dataset. Note that the overall performance
significantly decreases when the depth channels are not
considered. In fact, a model that uses only depth channels
performs better than a model using the rest of the channels.



We can also see that texture features do not appreciably affect
the performance.

Table II provides information about the accuracy achieved
per label. For instance, when only depth channels are used,
the ground and the sky labels already exhibit high accuracy.
This is not surprising if we consider that these labels are
associated to very distinctive depths. In contrast, the accuracy
obtained for the obstacle and vegetation labels when just
depth channels are used is lower as there is much higher
variability in their depth.

Figure 6 shows how the precision and recall curves vary
when we increase the complexity of the RFs for different
combination of labels. As expected, the curves exhibit better
generalisation (better accuracy) for increasing complex mod-
els preventing at the same time the undesirable over-fitting
problem.

3) Prediction labels before and after regularisation:
Table II and Figure 5 indicates the difference between
the performance of the models before and after applying
regularisation. Note that in all the cases, the regularised
solution outperforms the RF-classifier solution.

4) Running Time: Many of the tasks involved in our
pipeline can run in real time. Table III summarises the
running times per task for the two testing architectures. All
images are at VGA (480× 640) resolution. Despite stereo
depth estimation and label smoothing require more time than
other tasks, the frame rates are still acceptable to provide
reliable paths at live execution.

B. Live outdoor experiments

Fig. 7: Illustration of the collision-free algorithm to extract a route
from the ground label.

For our live outdoor experiment we use a Clearpath Husky
UGV equipped with a forward-facing PGR Bumblebee2
camera. In order to provide reliable collision-free paths, we
implement an algorithm that analyses the ground label in
a bottom-up direction. Figure 7 illustrates the process. The
algorithm tessellates the ground label in cells with adjustable
dimensions. Note that each cell contains only a sub-region
of the segmented label. For each cell, we calculate the centre
of mass. This simple strategy allows us to consider the shape
and orientation of the drivable regions. All the points with
valid centre of mass are concatenated together to form the
desired path. In addition, we impose a safety margin over the
robot dimensions. The robot is modelled as a circular object
of 1.5 meters of diameter. Each feasible point of the circle is
projected into the segmented image. We check for possible
collisions if the projection intersects other labels. The path
is back-projected to 3D space using the available depth
map and the intrinsic camera parameters. For simplicity, our
controller assumes a differential platform such that the path

(a) KITTI Dataset

(b) Live experiment

Fig. 8: Qualitative results of the path following approach. We
first evaluated the collision-free approach in different scenarios. In
some situations the ground segment extends in front of the robot,
thus our algorithm succeeds to find a route to control the robot
forwards. We show that in the presence of obstacles our approach
provides collision-free paths. When the ground segment is small –
for example when the robot reaches a wall– the estimated path can
only provide one or no points. In this case, the robot performs pure
rotation until it finds a ground region for which a plausible path
can be estimated.

is executed with a constant linear velocity of 1 m/s. The
angular velocity is derived from the path segments.

The collision-free path approach has been tested in differ-
ent scenarios. Figure 8 shows qualitative results on the KITTI
dataset and on our live experiment with a robot moving
autonomously in a quad along hundreds of meters. When the
ground segment extends in front of the robot and there are no
obstacles, the algorithm succeeds to find the simplest route
possible and plans to move the robot forwards following
a straight line. When obstacles such as cars are present,
our approach is able to over take the obstacles following
a collision-free path. Finally, when the ground segment in
front of the robot is not big enough – for example when the
robot reaches a wall– no path can be provided. In this case,
the robot performs a pure rotation until it finds a ground
region for which a plausible path can be estimated.

VII. CONCLUSIONS

In this paper, we presented a general framework that
combines a light weight (shallow) image classifier with
convex regularisation for the general problem of image scene
understanding. While recent approaches rely on the use of
complex and deep classifiers, we demonstrate that a random
forest can inform our variational formulation with very
reliable label probabilities. In fact, our system requires small
amounts of data during the training phase and yet produces
high accurate results during testing. Finally, we showed that
our system is remarkably fast to provide semantics form
image data allowing a mobile robot to discover and drive
collision-free traversable paths. We are also interested in
comparing to alternative solutions based on deep classifiers



TABLE II: Recall, precision and F1 score for different RF models

Ground Obstacle Vegetation Sky
Channels Recall Precision F1 Recall Precision F1 Recall Precision F1 Recall Precision F1

KITTI Dataset
91.83 87.41 89.56 69.59 65.03 67.23 57.24 63.65 60.27 98.20 98.20 98.20Zξ 91.40 87.23 89.27 82.36 70.28 75.84 58.27 76.58 66.19 93.36 97.39 95.34
57.29 53.25 55.20 66.49 59.72 62.93 65.98 79.15 71.97 62.89 60.02 61.42Z\Zξ 69.38 63.16 66.12 76.86 70.05 73.30 77.20 92.21 84.04 61.03 79.58 69.08
89.49 89.75 89.62 83.56 72.00 77.35 66.68 79.70 72.61 93.86 98.52 96.13Z\ zvg 91.28 89.77 90.52 90.71 79.56 84.77 75.74 91.88 83.03 86.80 98.43 92.25
71.03 74.24 72.60 78.63 66.36 71.97 66.16 78.60 71.85 58.40 66.86 62.35Z\ zhg 80.66 89.84 85.01 90.66 76.79 83.15 78.78 91.71 84.76 60.00 82.38 69.43
90.45 90.46 90.46 82.91 73.98 78.19 69.04 78.64 73.53 93.59 98.50 95.98Z\ zillinv 92.61 90.78 91.68 92.89 79.73 85.81 73.99 93.10 82.45 88.53 98.49 93.24
90.34 90.26 90.30 83.35 73.64 78.19 68.77 79.37 73.69 92.44 98.08 95.17Z\ zloc 92.02 91.92 91.97 91.37 82.47 86.69 79.18 91.74 85.00 88.84 98.21 93.29
90.62 89.94 90.28 82.41 72.63 77.21 66.58 77.85 71.77 96.33 98.31 97.31Z\ zrg−chroma 92.71 90.99 91.84 91.18 81.78 86.22 77.35 90.98 83.62 89.06 98.26 93.44
90.49 91.01 90.75 82.65 75.04 78.66 70.61 78.81 74.48 97.58 98.28 97.93Z\ z f 92.45 92.20 92.33 91.02 82.67 86.64 78.87 91.29 84.63 92.17 96.87 94.46
89.62 90.80 90.20 84.67 72.07 77.86 65.68 79.66 72.00 95.32 98.42 96.85Z 92.01 92.32 92.17 91.13 82.24 86.46 78.60 91.34 84.49 90.61 97.32 93.85

Keble College Dataset (Full Resolution)
Z 99.10 94.90 96.95 89.06 93.22 91.10 78.02 98.68 87.14 — — —

Keble College Dataset (VGA Resolution)
Z 98.48 94.55 96.48 86.65 94.13 90.24 73.96 98.71 84.56 — — —

We compared the impact of the channels over the performance before (white rows) and after (gray rows) applying regularisation.
For a better analysis, we show the independent precision-recall and F1 score per label. The first column describes the chan-
nels used for training. For instance, Z indicates that all channels have been used, while Z \ z∗ means that a particular channel
has been left out. zillinv is the illumination invariant transform, zrg−chroma is the rg-chromaticity transform, zξ is represented by
two contextual transforms over the depth. zhg is the height of the 3D back-projection of the pixel w.r.t the ground. zvg is the
vertical disparity gradient. zloc the distance from the pixel to the horizon line. z f are the Leung-Malik (LM) filter bank z f .

TABLE III: Average Running time per task

Task Server (ms (Hz)) Laptop (ms (Hz)) CPU Threads
Depth map estimation 190 ms (5.26 Hz) 1180 ms (0.85 Hz) 1
Feature Extraction 25 ms (40 Hz) 22 ms (45.45 Hz) 14
Label Probability prediction 10 ms (100 Hz) 6 ms (166 Hz) 10
Label Regularisation 155 ms (6.45 Hz) 1020 ms (0.98 Hz) 1
Route calculation ≈ 5 ms (200 Hz) ≈ 5 ms (200 Hz) 1

in combination with our variational approach. This will be
part of our future work.
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