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Abstract— Urban environments are characterised by the
presence of distinctive audio signals which alert the drivers
to events that require prompt action. The detection and inter-
pretation of these signals would be highly beneficial for smart
vehicle systems, as it would provide them with complementary
information to navigate safely in the environment. In this paper,
we present a framework that spots the presence of acoustic
events, such as horns and sirens, using a two-stage approach.
We first model the urban soundscape and use anomaly detection
to identify the presence of an anomalous sound, and later
determine the nature of this sound. As the audio samples
are affected by copious non-stationary and unstructured noise,
which can degrade classification performance, we propose a
noise-removal technique to obtain a clean representation of the
data we can use for classification and waveform reconstruction.
The method is based on the idea of analysing the spectrograms
of the incoming signals as images and applying spectrogram
segmentation to isolate and extract the alerting signals from
the background noise. We evaluate our framework on four
hours of urban sounds collected driving around urban Oxford
on different kinds of road and in different traffic conditions.
When compared to traditional feature representations, such as
Mel-frequency cepstrum coefficients, our framework shows an
improvement of up to 31% in the classification rate.

I. INTRODUCTION
Smart vehicle systems offer a unique opportunity towards

the realisation of applications and services of high socioeco-
nomic impact that can revolutionise everyday life, offering a
safer and more comfortable means of transportation. Audi-
tory perception and sound processing can play a crucial role
in this context. In fact, in a driving scenario, certain alerting
stimuli, such as sirens, are meant to be heard, and some of
them, such as horns, are exclusively acoustic. The majority
of research in robotics and smart autonomous systems has
focused on optical sensors, radars and lasers as means of
interpreting the environment. In several situations, however,
acoustic signals provide complementary information that
cannot be captured by traditional sensing modalities. Indeed,
hearing enables omnidirectional perception and overcomes
the limitations imposed by occlusions. Various sounds can be
used as cues for events that require further attention and, as
a result, help avoid danger by navigating the focus on things
that require prompt action. It is apparent that people with
hearing impairments are potentially more prone to accidents
that could be avoided if such cues could be perceived [1]. In
the same way, autonomous cars would highly benefit from
the ability to identify and interpret acoustic signals which
carry crucial information in traffic scenarios. An emergency

1Authors are members of the Oxford Robotics Institute,
University of Oxford, United Kingdom, {letizia,
ingmar}@robots.ox.ac.uk

Fig. 1. Example of a typical use-case with an emergency vehicle approach-
ing an intersection and the proposed pipeline. The framework first detects
the presence of an anomalous sound and then further process this sound to
classify the correspondent sound source and reconstruct the waveform. Such
processing includes spectral analysis through the use of Gammatonegram
representation and spectrogram segmentation to extract a binary mask used
for classification, target signal extraction and waveform reconstruction. The
reconstructed signal in the time domain allows the localisation of the sound
source with off-the-shelf algorithms.

vehicle approaching an intersection could be detectable much
before it reaches the crossing point and despite potential
occlusions. The possibility of having advance information of
this kind would considerably increase the time frame allowed
for a safe response from the driver and, for a smart car
working in semi-autonomous regime could also be used to
trigger manual intervention.

In this paper we leverage auditory perception in smart
vehicles for urban soundscape modelling and interpretation.
We propose a framework to detect acoustic events such
as sirens, horns, and pedestrian traffic lights (i.e. accessi-
ble traffic signals). Rather than directly targeting specific
sound events and employing filtering techniques to spot the
presence of those sounds, we model the urban road traffic
soundscape and we use anomaly detection to determine the
presence of an acoustic event. As the considered sounds are
conceived to overcome background noise [2], their temporal
and spectral characteristics are meant to differ from the ones
of the background noise to be easily audible and attract the
attention of the driver (see e.g. [3] and [4]). This allows us
to identify them through anomaly detection. Moreover, such
a modelling choice enables the framework to detect acoustic
events which are neither sirens, horns or pedestrian traffic
lights, but that still represent an anomaly and need to be



considered.
Our analysis is twofold: we first detect the presence of

anomalous sounds using one-class classification and then
further process the detected anomalous sounds to identify
their nature. One of the main challenges of this process lies in
the presence of non-stationary and unstructured noise in the
data. The audio samples, in fact, are mixtures of an unknown
number of different static and dynamic sound sources, whose
characteristics and spatial distribution are not available. Clas-
sic feature representations used in the literature, such as
Mel-frequency cepstrum coefficients [5], provide a compact
and efficient representation of the shape of the spectrum of
a signal, and have been shown to perform well on clean
data. However, their discriminative power decreases when
dealing with more realistic and complex scenarios. Moreover,
acoustic events, such as the ones analysed in this paper, can
have a highly variable duration both within the same class of
sound (e.g. horns) and between different classes (e.g. sirens
and horns). This highlights the importance of considering
the temporal dynamics of the signals to model the urban
soundscape.

With this purpose, we opt for spectrogram-based repre-
sentations of the sounds, as they incorporate information
both in the time and the frequency domains, and provide
a visual signature of the signals. We take advantage of
such a visual signature, proposing a noise-removal method,
which relies on the idea of treating the spectrograms as one-
channel images and applying image processing techniques.
Specifically, we perform spectrogram segmentation to extract
the time-frequency content of the target signal from the one
of the background noise. This process allows us to perform
classification on a time-frequency representation of the sound
samples which is no longer affected by the presence of
maskers, overcoming the limitations induced by the high
variability of the noise to produce more reliable results.
Finally, as the time-frequency content of the target signal
has been identified and isolated, the original waveform in
the time domain is reconstructed and can potentially be used
to localise the respective sound source. A representation of
the entire framework is provided in Figure 1. We evaluate
our framework on four hours of urban acoustic data collected
driving around urban Oxford on different kinds of road and at
different times of the day (i.e. different traffic conditions). To
the best of our knowledge, this is the first work investigating
model-based anomalous acoustic event detection, classifica-
tion and waveform reconstruction in driving scenarios for
smart car applications. It is also the first work utilising
spectrogram segmentation for signal isolation and extraction
in outdoor unstructured acoustic environments.

II. RELATED WORK

Abnormal sound detection methods have already been
proposed in the literature, such as in [6] and [7]. The former
presents a framework for detection of abnormal sound events
in a subway station by learning a set of mixtures of temporal
trajectories and spotting the events that differ from the set of
learnt trajectories. In the latter, the authors are able to classify

abnormal sounds such as gun shots, glass breaking, and
explosions in indoor environments (e.g. a rental apartment)
using Hidden Markov Models (HMMs) [8]. Siren and, more
generally, emergency vehicle detection in synthetic and real-
istic driving scenarios has been investigated in [9],[10], and
[11]. In [9] and [11], the analysis relies on the knowledge of
the specific frequencies characterising the pitch of the siren
sound and classic signal processing filtering techniques for
the detection of those frequencies. Specifically, the first work
employs a two-state scheme, based on Module Difference
Function (MDF) and peak searching. The second work makes
use of an adaptive predictor noise canceller system [12]
to identify and extract the siren signal. In [10] a part-
based model is proposed and its performance analysed in
a simulated driving scenario at different signal-to-noise ratio
(SNR) levels. The authors obtain good results in clean sce-
narios, but the performance decreases with higher levels of
noise. In robotics, much interest has been devoted to speech
processing for human-robot interaction purposes (e.g. [13]),
while non-speech sound modelling has received less investi-
gation. Indoor acoustic event classification for domestic robot
applications has been explored in [14] and articulated in
two different phases: a preliminary sound detection phase
and a final sound recognition one. Additional acoustic event
recognition has been proposed in [15] and [16]. In these
works, the audio data is modelled using traditional feature
selections in the time and in the frequency domains, with the
Mel-frequency cepstrum coefficients (MFCCs) [5] being the
most commonly employed.

This paper is in line with the two-phase structure presented
in [14], but, rather than using cross-correlation (which em-
phasises the changes in the temporal evolution of the signal)
as a measure of difference to identify anomalous signals,
it models the driving soundscape and defines anomalous
sounds as the ones which are less likely to be encountered
in such a soundscape. This allows us to obtain a long-
term representation of the acoustic environment, which takes
into account different noisy scenarios with variegated time-
frequency patterns, leading to a more robust anomaly de-
tection. Such variety cannot always be captured by cross-
correlation similarity metrics. In this fashion, we share the
aspiration of [6]. With respect to that work, though, we
also provide a classification scheme to assign the detected
anomalous sounds to specific groups of interest, such as
sirens, pedestrian traffic lights and horns. Furthermore, as
we are considering environments characterised by unstruc-
tured and non-stationary noise, we cannot rely on more
traditional feature representations, which are sensitive to
different levels of auditory masking. With this purpose, we
consider the visual signatures of the signals drawn by their
spectrograms. Works in other disciplines have used the visual
insights of the spectrogram as input for further analysis (e.g.
[17][18]). Sharing this vision, in this paper we treat the
spectrograms as one-channel images, applying vision-based
segmentation techniques to isolate the anomalous signal from
the background noise in a complete unsupervised way. Such
representation allows us to overcome the limitations imposed
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Fig. 2. Flowchart of the pipeline operating in the framework. Two main
phases can be identified: anomalous sound detection, and sound source
classification and waveform reconstruction. The first phase is based on One-
Class Gaussian Process Classification (OCGPC). When anomalous sounds
are detected at this stage, further processing of those sounds is performed.
The spectrogram representation of the signal is segmented to extract the
target sound from the background noise, generating Empirical Binary Masks
(EBMs). Those masks are fed to a k-NN classifier, which identifies the
nature of the sound source. The same masks are used, by comparison
with the original spectrogram of the noisy signals (target together with the
background noise) to reconstruct the target signal, which can be used as
input to off-the-shelf localisation algorithms.

by the presence of unstructured and non-stationary noise
in the audio data, leading to a more accurate and robust
classification. Furthermore, this feature selection offers also
the inherent possibility of extracting the target signal from
the background, which can be used for reconstruction and
sound source localisation.

III. TECHNICAL APPROACH

As already proposed by other works in the field (e.g. [13],
[14]), our framework is articulated in two different phases.
Figure 2 shows in more detail the pipeline operating in the
framework. Following a two-phase approach is computation-
ally advantageous, as, in this way, only the anomalous sounds
are further processed. Considering the system working in
real-time on a continuous audio input stream, the anomalous
sounds will represent a small portion of this stream, hence
the high computational savings.

A. Anomalous Sound Detection

Several approaches have been proposed in the literature
to solve anomaly detection tasks, following a supervised,
unsupervised or semi-supervised paradigm. In our frame-
work, we employ a one-class classification approach, as it
is easy to obtain data from the normal class, while the
availability of samples from the anomalous class is quite
limited and such samples are not necessarily representative
of the entire class. In particular, we implement One-Class
Gaussian Process Classification (OCGPC). With respect to
other kernel-based methods, OCGPC provides a Bayesian
framework and it has shown to outperform other techniques,
such as Support Vector Data Description [19] in several
one-class classification tasks [20]. OCGPC is a special case

of Gaussian Process (GP) binary classification when only
samples from one of two classes are provided in the training
phase. In the case of standard GP binary classification, given
a training set X = {x1,x2, ..,xn} of n examples xi ∈ RD,
denoting feature vectors and corresponding binary labels
yi ∈ {−1, 1}, the goal is to predict the label y∗ of an
unseen example x∗. Classification is obtained by introducing
a latent function f(x), and then applying any sigmoidal
function σ(f) such that p(y∗ = 1|x∗) = σ(f(x∗)), to
squash the output of the latent function into [0, 1]. The
prior on the latent function can be modelled as a GP,
f(x) ∼ GP(µ(x), k(x,x′)), specified by a mean function
µ(x) and a covariance (or kernel) function k(x,x′). Given
a specific covariance function, the values of the hyper-
parameters are obtained during the training phase, by max-
imising the log marginal likelihood of the training data.
Predictions on an unseen example x∗ are obtained in two
steps. In the first one, the distribution over the latent variable
corresponding to the unseen example is obtained using:

p(f∗|X ,y,x∗) =
∫
p(f∗|X ,x∗, f)p(f |X ,y) df . (1)

In the second one, the probabilistic prediction is obtained by
marginalisation of the latent function f∗ = f(x∗):

p(y∗ = 1|X ,y,x∗) =
∫
σ(f∗)p(f∗|X ,y,x∗) df∗. (2)

Exact inference is not possible due to the sigmoidal function,
but approximations, such as Laplace approximation (LA) and
Expectation Propagation (EP) [21] can be used. In OCGPC,
only the samples from one class will be provided at training
phase. In this case, only feature vectors x correspondent to
normal (i.e. non anomalous) audio frames (y = 1) will be
used for training. However, it is possible to derive member-
ship scores by choosing a specific GP prior characterised
by a mean function with a smaller value than the one used
to indicate the positive class labels [20]. Specifically, we
choose the prior on the latent function to be characterised
by a zero mean function and covariance function K. This
choice will reduce the space of probable latent functions
to functions with values gradually decreasing while far
away from observed points and give the possibility of using
directly the predictive probability p(y∗ = 1|X ,y,x∗) and
its first and second order moments as membership scores.
The posterior mean function, in fact, will have high values
(around y = 1) in high density areas close to the training
points and monotonically decreasing values while far away
from the observed points. The posterior variance will be
characterised, instead, by the opposite behaviour. For further
details and for a mathematical justification on predictive
mean and variance being suitable OCC measures, the reader
is referred to [20].

B. Sound Classification and Waveform Reconstruction

When an incoming signal x∗ is considered anoma-
lous, further processing is applied. Specifically, we use a
spectrogram-based representation of the audio sample, car-



rying information both in the time domain and frequency
domains. As we are dealing with realistic scenarios, such
representation, however, is corrupted by the presence of
noise, whose characteristics are not known a priori, and
that can highly affect classification performance. Taking
advantage of the visual appearance of the spectrogram, where
masker and target sounds are easily identifiable, we treat the
spectrogram of the signal as a one-channel image and employ
image segmentation techniques to perform noise removal.
Specifically, we apply k-means image segmentation [22], as
it operates in a completely unsupervised manner and without
the necessity of specific input knowledge on the structure
of the specific class of the segment. The segmentation
allows us to cluster different portions of the spectrogram
depending on their energy and to identify and isolate the
cluster characterised by the highest energy content. In this
case, given the nature of the considered anomalous sounds,
the highest energy content corresponds to the target signal
(i.e. anomalous sound without background noise) [2]. Let us
define as C = {C1, C2, ..., Ck} the set of clusters obtained
after k-means segmentation where k is the total number
of clusters, and as Cmax the cluster containing the most
powerful parts of the spectrogram. Empirical Binary Masks
(EBMs) can be obtained by assigning value 1 to all the time-
frequency bins of the spectrogram which are part of Cmax,
while setting to 0 the time-frequency bins in C\{Cmax}.
EBMs are conceptually akin to Ideal Binary Masks (IBM)
[23]. Both representations, in fact, aim to identify the most
powerful time-frequency bins of a spectrogram (correspond-
ing the a specific target signal) with respect to an interference
one. More details on the characteristics of IBMs and their
use as a solution to Computational Acoustic Scene Analysis
(CASA) are provided in [23], [24] and [25].

EBMs are then fed to a k-NN based classifier [26] to
identify the nature of the sound source. The k-NN classifier
is trained using samples from the different classes that we are
interested in recognising, and classifies the anomalous audio
frames in input by a majority vote of its k nearest neighbours.
It has been shown that it is possible to reconstruct (re-
synthesise) the waveform of the estimated target signal by
combining information from the gammatonegram of the orig-
inal mixture signal (target signal together with background
noise) and the binary mask related to the target signal alone
[27][28]. When more than one channel (microphone) is
available, sound source localisation can be achieved using
interaural time difference and cross-correlation, as illustrated
in [29].

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of our framework, we
collected four hours of data by driving around Oxford,
UK. The data has been gathered using two Knowles
omnidirectional boom microphones mounted on the roof of
a car and an ALESIS IO4 audio interface. The data has
been recorded at a sampling frequency fs of 44100 Hz at a
resolution of 16 bits. Additional data used to train the k-NN
classifier has been taken from the Urban Sound Dataset

[30]. A more detailed description of the dataset employed
is given in Table I.

Training Testing

NR 320,000 17,000

AN Siren Horn PTL Siren Horn PTL
3496 3168 3210 106 98 93

TABLE I. Dataset used for evaluation. The table shows the distribution
of the samples used for training and testing. NR denotes the normal audio
samples, while AN indicates the anomalous ones, which are divided into
siren, horn and pedestrian traffic light (PTL). Samples here refer to frames
of one second used for detection and classification.

A. Feature Representation

Previous studies (e.g. [6]) have shown that for sound event
detection and classification tasks, standard features in the
frequency domain are not guaranteed to provide satisfactory
performance. In realistic and noisy scenarios, in fact, and
while dealing with classes of signals of variable duration,
information about the frequency components of the audio
signals, as well as their evolution in the time-domain, need
to be taken into account.

Classic spectrograms are a visual representation of the
Short-Time Fourier Transform (STFT) of a signal. In this
paper we use a special case of spectrograms, the gammatone-
grams, which are characterised by an STFT obtained with
gammatone filterbanks [31]. Gammatone filterbanks have
been originally introduced in [32] as an approximation of the
human cochlea signal analysis and, for this reason, are called
perceptual features. As the specific sounds we are consider-
ing are meant to differ from the masking noise, to be easily
detectable by the drivers, we prefer using a representation
able to mimic the behaviour of the human auditory system
and, thus, to capture these differences. Moreover, gamma-
tonegrams have been shown to be more suitable than other
time-frequency representations for waveform reconstruction
[33]. Standard spectrograms are obtained by considering a
constant bandwidth across all frequency channels. In the
spectral representation which derives from the application of
gammatone filterbanks, instead, the frequency bins are not
equally spaced. Gammatonegrams have been proved to be
extremely useful features in several audio classification tasks
(e.g. [34]). Figure 3 shows an example of gammatonegrams
for the considered acoustic classes. Specifically, we use 64
frequency channels between 50 Hz and fs/2 = 22050 Hz,
corresponding to the maximum frequency resolution given
by the STFT. The gammatonegrams are computed on time
domain frames of one second after applying a Hamming
window to avoid spectral leakage.

B. Anamalous Sound Detection

Following [20], we train an OCGPC using only normal
sounds. The detection is then performed by using both nor-
mal and anomalous sounds. Since the frequency content char-
acterising the acoustic signals belonging to the two classes
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(a) Normal

time / 10 ms steps
20 40 60 80

fr
eq

 / 
H

z

287  

795  

1801 

3796 

7751 

15593

-100

-80

-60

-40

-20

0

(b) Siren
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(c) Horn
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(d) Pedestrian Traffic Light

Fig. 3. Example of the Gammatonegram representation of sound frames of one second for the different acoustic classes considered. From left to right:
normal sound (i.e. non anomalous), siren, horn, and pedestrian traffic light. The energy of the time-frequency bins is expressed in decibel (dB) scale. We
observe that the frequency bins are not equally spaced, due to the application of the gammatone filterbanks.

(normal and anomalous) differs significantly, we used a time-
independent version of the gammatonegrams, obtained by
first summing the time-frequency bins over time and then
normalising the power values of the resulting frequency bins.
Figure 4 shows the time-independent representation for the
gammatonegrams illustrated in Figure 3.

Fig. 4. Time-independent and normalised representation of the gamma-
tonegrams in Figure 3. From left to right: normal sound, siren, horn, and
pedestrian traffic light.

Figure 5 shows the detection performance
when a radial basis function (RBF) kernel
K (x,x′) = exp(− 1

2σ2 ‖x− x′‖2) is used. The figure
provides the Receiver Operating Characteristic (ROC) curve
both in case of decisions based on the GP posterior mean
µ∗ and the GP posterior variance σ∗2. The area under the
curves (AUC) is given in the legend. We observe that the
output of the first stage constitutes a very trustworthy input
for the second stage.
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Fig. 5. ROC curves in case of decisions based on the GP posterior mean
µ∗ and the GP posterior variance σ∗2. The performance is very similar in
both circumstances.

C. Sound Source Classification

The sound frames which have been considered anomalous
from the previous step of the pipeline, are then classified and

the respective waveform reconstructed. The classification is
performed using a k-NN based classifier operating on the
EBMs of the anomalous sound frames. The EBMs employed
for training are obtained from a combination of samples from
the Urban Sound Dataset (USD) [30], samples from our data
collection with the car, and samples publicly available from
www.freesound.org (FreeS). In particular, we are inter-
ested in three different kinds of anomalous sounds: sirens,
horns and pedestrian traffic lights. We use data from the
USD for what regards sirens and horns, and a combination
of samples from our data collection and from FreeS for what
regards the pedestrian traffic lights. Training data has been
augmented through affine transformations of the original
signals, to take into account potentially different scenarios
at testing phase.

1) Empirical Binary Masks and Classification: The first
step towards EBMs is to segment the gammatonegram of
the sound frames using k-means. We explore the behaviour
of the segmentation considering a different number k of
clusters, finding the best performance in case of k = 3.
Once the segmentation is completed, we select the cluster
containing the most powerful parts of the gammatonegram.
The EBM is then obtained by setting all of the time-
frequency bins in this cluster to 1 and all the remaining
bins to 0. We observe that EBMs computed in this way
are still characterised by some low-frequency noise, which
we attribute to the presence of some normal driving noise
in the background. As we follow a model-based approach
for the detection of anomalous sounds, we now have the
possibility to extrapolate statistics on the normal sounds,
and to remove most part of the noise still present in the
masks, by comparing the EBMs of the anomalous signals to
the EBM extracted from the average gammatonegram of the
normal sound frames that we used to train the OCGPC in
Section IV-B. Specifically, we want to keep only the time-
frequency regions in the target mask which are not in the
binary mask of the background noise. Let us define the EBM
resulting from noise removal as EBMclean, the original
EBM of the anomalous sound considered as EBMtarget

and the EBM related to the average gammatonegram of
normal sounds as EBMnoise. Leveraging their binary na-
ture, the noise removal is performed with the following
binary operation: EBMclean = EBMtarget ∧ ¬EBMnoise.
An example of how the clean EBM is generated is
given in Figure 6. The original gammatonegram is given



in Figure 3c. Table II reports the confusion matrix ob-
tained by averaging across different numbers of neighbours
k ∈ {1, 5, 10, 15, 25, 30, 35, 40, 45, 50, 55, 100}. The average
classification rate for all classes is shown along the diagonal
of the matrix. The first column (EBMs) of Table III reports
the average classification performance for different numbers
of neighbours k, across the three classes.

Predicted Class

Class Siren Horn PTL

Siren 0.81 0.19 0

Horn 0.18 0.79 0.03

PTL 0.11 0.05 0.83

TABLE II. Confusion Matrix obtained averaging across the different
number of k. The average classification rate for all classes is shown along
the diagonal of the matrix.

2) Baseline Evaluation Methods: Our feature selection
inherently offers the facility for performing sound source
segregation and recovering the waveform of the target signal.
To further highlight the benefits provided by the use of
the EBMs, we also analyse other feature representations
commonly used in the literature for sound recognition tasks
and compare the classification performance obtained. In
particular, we compare our approach against the full gam-
matonegrams, computed as illustrated in Section IV-A, and
the Mel-frequency cepstrum coefficients (MFCCs). MFCCs
are an approximation of the envelope of the short-term
power spectrum of a sound and are the most widely used
representation in acoustic event detection tasks [6]. In this
case, we use the first 13 coefficients together with their first
and second derivatives. The results obtained for different
numbers of neighbours k are shown in Table III. We can
see that the use of EBMs improves overall classification
with respect to the other feature selections. Table IV reports
the confusion matrix (averaged across different values of
k) for all classes, using the full gammatonegrams (GTGs)
and the MFCCs. We can observe that the EBMs provide
good performance for all the classes considered, while the
GTGs and the MFCCs demonstrate imbalanced performance:
they yield good results with pedestrian traffic lights, but
they are less reliable with regards to horns and sirens. We
attribute this difference to the fact that the pedestrian traffic
light samples are generally characterised by less background
noise (when the traffic light beeps, cars are generally not
moving) compared to sirens and horns. This suggests that,
while GTGs and MFCCs are sensitive to noise, the specific
nature of the EBMs makes them more suitable for acoustic
event classification in realistic noisy scenarios. Furthermore,
these results highlight the necessity and the accuracy of the
noise-removal technique presented in the paper and foresees
the benefits of using the resulting representation for sound
event detection and classification in noisy environments.

3) Unknown Anomalous Sounds: As we do not expect that
every possible anomalous sound can be considered a priori,

k EBMs GTG MFCC

(ours)

1 0.82 0.77 0.67

5 0.80 0.76 0.62

10 0.81 0.76 0.61

25 0.83 0.75 0.60

40 0.83 0.74 0.61

Average 81.8 ± 1.30 75.6 ± 1.14 62.2 ± 2.77

TABLE III. Average classification performance (across all classes) varying
the number of neighbours k and using different feature representations: the
Empirical Binary Masks proposed in this paper, the full Gammatonegrams
(GTG) and the Mel-frequency cepstrum coefficients (MFCCs).

Predicted Class

GTG MFCC

Class Siren Horn PTL Siren Horn PTL

Siren 0.72 0.28 0 0.69 0.06 0.25

Horn 0.37 0.55 0.07 0.31 0.21 0.48

PTL 0 0.1 0.99 0.04 0 0.96

TABLE IV. Confusion Matrices (averaging across the different number
of neighbours k) obtained using different feature representations: the full
Gammatonegrams (GTG) and the Mel-frequency cepstrum coefficients
(MFCCs). The average classification rate for all classes is shown along
the diagonal of the matrix.

we also analyse the ability of our framework to recognise as
unknown the anomalous sounds that are different from any
sound provided in the training phase. Specifically, we use
randomly chosen samples from other two classes available
in the USD: street music and drilling. Several techniques
have been proposed in the literature to handle these cases in
a k-NN classification framework, such as [35] and [36]. We
compare three different techniques: Mean Distance Factor
(MDF) (described in [37]), k-th Distance Factor (KDF) (pro-
posed in [38]) and Class Dependent Distance Factor (CDDF).
The latter one is an adaptation of common clustering-based
anomaly detection techniques (e.g. [39]) to a k-NN context.
In case of MDF, a sample is considered to be an outlier (it
does not belong to any of the classes we used to train the k-
NN classifier) when the average distance of its k neighbours
is higher than a given threshold. In case of KDF, a sample
is considered to be an outlier when the distance from its
kth neighbour is higher than a given threshold. Both these
approaches do not take into consideration the density of the
different classes (k-NN Global Anomaly Detection). In the
case of the CDDF, instead, we first compute the centroid
for each of the classes in the training set. We then define
as Dtrain

i , i ∈ {1, 2, 3} the average distance between the
centroid of class i and the training samples of the same
class. For each sample in the testing set, we compute the



(a) Segmentation (b) EBMtarget (c) EBMnoise (d) EBMclean

Fig. 6. Different steps to build the Empirical Binary Masks from the sound frames to use as feature representation for classification. The figure shows the
case of a sound frame related to a horn. The original gammatonegram (Figure 3c) is treated as one-channel image and k-means segmentation is applied (a).
The cluster containing the most powerful time-frequency bins is kept (b) and compared with the EBM related to the average gammatonegram of normal
sounds (c) for additional noise removal. Final EBM used in the k-NN classifier is shown in (d).

distance Dtest
i from the centroid of the class i it has been

assigned to, according to the k-NN classifier. The sample is
then considered an outlier when the ratio Dtest

i /Dtrain
i is

higher than a certain threshold. In all these methods, we use
the Hamming distance. The performance obtained with the
three algorithms, in case of k = 40 is shown in Figure 7.
The figure provides the ROC curves obtained employing the
MDF, KDF and CDDF. The area under the curves (AUC) is
given in the legend.
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Fig. 7. ROC curve obtained applying the Mean Distance Factor (MDF)
[37], the k − th Distance Factor (KDF) [38] and the Class Dependent
Distance Factor (CDDF) methods. The legend reports the AUC for all three
cases. Best viewed in colour.

D. Waveform Reconstruction for Sound Source Localisation

When the gammatonegram of the mixture signal (target
signal and background noise) and a binary mask able to sep-
arate the two are available, it is possible to re-synthesise the
waveform of the target signal. The idea is to reconstruct the
waveform by inverting the gammatonegram representation
of the mixture signal, using the binary mask to weight the
contribution of each time-frequency bin. Following [24], we
first remove any across-channel phase difference. Then the
phase-corrected output from each filter channel is divided
into time frames, and the resulting time-frequency bins are
multiplied by the correspondent weight in the mask. The re-
synthesised waveform is obtained by summing the weighted
filter outputs across all channels of the filterbank. Several
works (e.g. [24] and [33]) have demonstrated that sound
source separation using binary masks and following signal
reconstruction through gammatonegram inversion provides
accurate results. Quantitative evaluation is generally carried
out by comparing the signal-to-noise ratio (SNR) before and
after the segregation procedure. However, this requires the
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Fig. 8. Gammatonegrams of the re-synthesised signals after segregation.
Original gammatonegram of the sound mixture is provided in Figure 3b.

knowledge of the premixing sound sources (target signal and
background noise separately), which is not available when
dealing with realistic scenarios, such as the ones analysed
in this paper. Alternative methods are based on listening
tests and on visual examination of the re-synthesised sounds
(both noise and target signal). An example of the latter is
provided in Figure 8. The original gammatonegram of the
sound mixture is given in Figure 3b. We can observe that
the majority of the noise present in the sound mixture has
been removed.

If more than one microphone is available, as in our system,
the waveform of the target signal can be reconstructed for
both channels and the relative sound source localised, using
one of the methods described in the literature (for a review,
see [40]).

V. CONCLUSIONS

In this paper we present a framework for alerting sound
event detection and recognition in a driving scenario. The
goal is to provide smart vehicles with the capability to
interpret the urban soundscape and to react accordingly
to specific acoustic events, which cannot be perceived by
different sensing modalities. As we are dealing with realistic
scenarios, characterised by non-stationary unstructured noise,
we introduce a new noise-removal technique to obtain noise-
free representation of the signals to use for classification.
This representation relies on the idea of extracting the
target signal, by processing the visual appearance of the
mixture spectrogram. When compared to traditional feature
representations such as Mel-frequency cepstrum coefficients,
our framework shows an improvement up to 31% in the clas-
sification rate. Moreover, differently from the other methods,
our approach provides a high classification accuracy that



is balanced across all classes considered. Future investiga-
tions could focus on the development of place-dependent
soundscape models leading also to the detection of other
anomalous sounds. Moreover, the auditory information could
be combined with the visual appearance of the sound source
for multi-modal detection and recognition.
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