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Abstract— Within the context of Simultaneous Localisation
and Mapping (SLAM), “loop closing” is the task of deciding
whether or not a vehicle has, after an excursion of arbitrary
length, returned to a previously visited area. Reliable loop
closing is both essential and hard. It is without doubt one of
the greatest impediments to long term, robust SLAM.

This paper illustrates how visual features, used in con-
junction with scanning laser data, can be used to a great
advantage. We use the notion of visual saliency to focus the se-
lection of suitable (affine invariant) image-feature descriptors
for storage in a database. When queried with a recently taken
image the database returns the capture time of matching
images. This time information is used to discover loop closing
events. Crucially this is achieved independently of estimated
map and vehicle location.

We integrate the above technique into a SLAM algorithm
using delayed vehicle states and scan matching to form
interpose geometric constraints. We present initial results
using this system to close loops (around 100m) in an indoor
environment.

Index Terms— Mobile Robotics, SLAM, Loop Closing,
Saliency, Visual Features

I. INTRODUCTION AND MOTIVATION

The SLAM research community has made good progress
in the past years on the SLAM-estimation problem. We
now have a set of methods capable of simultaneously esti-
mating vehicle location and building a workspace map —
itself used in the localization task. Particular progress [25],
[17], [31], [8] has been made with regard to the scaling
problem — how to prevent the runaway computational cost
with workspace size seen in early SLAM algorithms [33],
[7]. Yet with all this progress we still do not have the kind
of SLAM-enabled systems hoped for. This issue is clear -
SLAM systems lack robustness. The core problem is Data
Association — the task of placing measurements into one
of the following categories:

• associated with as yet unknown regions of workspace
• associated with already known (mapped) region
• association Pending - not enough evidence to make a

decision
• spurious.

It is common practice to use the estimates produced by
the SLAM algorithm itself to aid this decision. The naive
approach adopted in early SLAM work [7] simply performs
a nearest neighbor statistical gate on the likelihood of the
current measurements given map and pose estimates. This
method fails catastrophically just when it is needed most.
If the pose estimate is in gross error (as is often the case
following a transit around a long loop), while in reality

the vehicle is in an already mapped area, the likelihood
of measurements being explained by the pose and map
estimate is vanishingly small. The consequence of this is
that loop closure is not detected. Previously visited areas
are re-mapped, but in the wrong global location, error
accumulates without bound and the robot is, for all intents
and purposes, lost — probably for good.

The problem here is that the likelihood used is not
independent of vehicle pose. More sophisticated techniques
offer some degree of robustness against global vehicle
error. For example, by looking at the relationship between
features in the local area [26] or continually trying to relo-
cate in a bounded set of sub-maps [3] that are expected to
have some non-empty intersection with the true local area.
However these methods still struggle when the estimated
vehicle position is in gross error.

It seems hard, yet important, to step out of the dubious,
self-referential circle of using a potentially erroneous es-
timate (pose) to make a decision regarding the fusion of
measurements — the outcome of which will affect the very
estimates that are being used to make the decision in the
first place.

The hard part about loop closing is not asserting the
presence of a loop but detecting when loop closure is even
a possibility. To do this one needs to decide when and
where to look. Searching only in the neighborhood of the
vehicle is not robust in the face of gross vehicle error. Note
that a gross vehicle pose error does not imply a gross error
of judgement was made. A small heading error over long
linear traversals quickly leads to substantial position errors.

It is possible to integrate out the dependence on vehicle
pose and search over all possible vehicle poses - essentially
solving the kidnapped robot problem as often as possible.
For example in [27] a solution to the kidnapped robot
problem is proposed that is linear in the number of mapped
features. Another very attractive proposal is to eschew the
need to make hard and fast, one-time-only data association
decisions and instead use a mechanism that allows past
decisions to be revoked or changed and their effect to be
vanquished from the state estimates. [13][29]. While this
policy takes the sting out of making the wrong decisions
and would undoubtedly have a substantial effect on the
overall reliability of SLAM systems, it does not negate or
depreciate the advantages in making better decisions in the
first place.

In [9] hyper-priors are learnt off-line typifying the geo-
metric and topological structure of regions (corridors and



intersections) commonly found in indoor settings. As the
robot(s) moves through its/their environment, local scene
observations are combined with the initial hyper-prior to
produce a modified posterior. This distribution is used as
a generative model for the observations of the local scene
and used to calculate the probability of new measurements
being “in or out-of-map”. Although this method does
offer substantially improved robustness and performance
its success is predicated upon good structural priors which
are applicable to the entire workspace.

In this paper we argue that if SLAM is to become
the robust tool it should be, then we should not rely
on using the same source of geometric measurements for
mapping, localizing and data association — something else
is needed. We should look to use sensorial information
that is outside the central SLAM estimation loop. The
use of a camera to provide this out-of loop information
is an obvious choice. Cameras are cheap, ubiquitous,
passive and information rich. Given this enviable list of
properties one might question why cameras should not be
the central sensor in a SLAM system. Unfortunately, it
remains disproportionately hard to use a camera (a bearing
only sensor) for SLAM on a mobile vehicle. Even though
great progress is being made in realtime, single-camera
SLAM (for example [6][15][21]), the quality of maps and
efficacy of algorithms obtained using scanning lasers over
very large areas still surpasses the state-of-the-art in vision
based SLAM. Nevertheless, we show in this paper how a
judicious and selective use of visual information can greatly
improve the performance of a laser-based SLAM system.

In [14], a camera was used to capture images of
assumed-planar quadrilaterals and transformed under a ho-
mography to remove perspective distortion. These images
were matched using Harris interest points matching and
used for navigation on a mobile robot. In [30] camera
and laser information are used in combination to localize
and build a map consisting of planar facets. In this paper,
however, we place no constraint on the geometry of the
vehicles environment.

II. VISUAL FEATURE PROCESSING

We propose that for visual features to aid the Loop
Closing task they must be salient, wide-baseline-stable and
descriptive. This section discusses motivation for each of
these requirements and the methods we employ to meet
them.

A. Saliency

This criterion is central to our case and is a key differ-
ence between the work presented here and [21]. We seek
image regions that are locally distinct and “stand out” from
their immediate background.

Commonly in contemporary SLAM work, each measure-
ment coming from “geometric-range” sensors like scanning
laser, radar and sonar is either stored with only minimal
further processing (scan-matching techniques [18] ) or is
tested against one of a set of geometric models in the
map describing the workspace (feature-based SLAM [1] ).

Rarely is enough consideration given to the distinctiveness
of the feature and/or aspects of the local region (how-
ever [4] presents an interesting case of using topological
saliency).

Visual saliency is a broad term that refers to the idea that
certain parts of a scene are “pre-attentively distinctive”[28].
The Scale Saliency algorithm we use here was proposed by
Kadir and Brady [16] and was based on earlier work by
Gilles [11]. Salient regions within images are defined as a
function of local image complexity weighted by a measure
of self-similarity across scale space. Entropy,H , is a natural
choice to measure image complexity. Consider a region D
containing n pixels described as (d0 . . . dn). At some scale
s we can write the entropy HD of the region D around a
pixel at position �x as a function of s and �x:

HD(s, �x) = −
∫

i∈D

PD(s, �x) log2 PD(s, �x).di (1)

Here PD(s, �x) is a pdf built from the image data in
the region (parameterized by s) D surrounding a pixel at
�x which encodes the probability of descriptor di within
D. For a given �x particular choices of s, call them S =
{s0 . . . sk}, which cause HD to peak are interesting.

Sharp peaks imply a rapid change in entropy around a
given scale whereas shallow peaks imply a large degree of
self similarity and so are less interesting. This preference
for “interesting scales” is implemented by weighting the
entropy according to the rate of change of the statistics of
PD(S, �x) with s.

Hence by defining an entropy vector HD(S, �x) with one
element for each element of S a saliency metric Y(�x, S)
can be written as

YD(S, �x) = HD(S, �x) ×WD(S, �x) (2)

and the weighting function for an element of S, WD(s, �x)
is given by:

WD(s, �x) = s.

∫
i∈D

| ∂

∂s
PD(s, �x)|.di (3)

The term YD(S, �x) is calculated for all pixels in the
image resulting in a cloud of points in �3 –(x, y, s). Finally
these points are clustered into groups with similar x and y
positions.

The left hand column of figure 1 shows some results
of running this algorithm over two images taken from a
mobile robot as it moves down a corridor and passes an
opening into an office.

This form of saliency detection was also suggested in
[10] but without demonstration of a successful implementa-
tion in a SLAM algorithm. In contrast to this work we also
actively seek regions which are likely to be wide-baseline
visible. This will now be discussed.

B. Wide-Baseline Stability

The saliency detector just described selects image re-
gions that are interesting in the context of a single image. In
addition to being salient we wish to detect image features



Fig. 1. Two indoor images grabbed two seconds apart from a mobile robot trundling down a corridor. The first column of images highlight the salient
regions detected scale saliency algorithm described in Section II-A with light circles. The middle column illustrates maximally stable extremal regions
described in Section II-B. The last column of images highlights the matching of salient, MSER, interest points described with SIFT descriptors. It
should be noted that the matching lines are not parallel because the interest points are not found on a planar surface. Under a variation in viewpoint,
the interests point undergo differing translations in the image plane.

that are robust to changes in view point. The motivation
for this is as follows. The vehicle camera is unlikely to
have the same pose when the host vehicle revisits an area
as it did when it first encountered it. However, if the
same world-entity is being observed albeit from a different
position and angle it is clearly advantageous to be able to
re-detect it. The task is to find a detector that offers such
wide-baseline performance. One such detector [23] finds
“maximally stable extremal regions” or “MSERs” which
offer significant invariance under affine transformations.

Consider an image consisting of pixels taking on values
in the range D = {dmax . . . d0}(for example 8-bit intensity
in the range [0:255] ). Set an index i to 0 and for simplicity
assume only one pixel, q has value dmax (D[0]) , this pixel
is placed in a set R. The method proceeds by incrementing
i and examining all connected neighbors of R (which at this
point contains only q) and adding them to R if their value is
D[i]. The algorithm then iterates once more, incrementing
i and this time testing all neighbors of the enlarged R.
The set R is classified as an MSER when its size remains
constant w.r.t i - in other words the region has stopped
growing and there is a discontinuity of pixel values all
around its perimeter. The use of the “union-find” algorithm
allows fast implementation of the set operations involved
(for example when two regions merge). For further detail
the reader is referred to [5], [23]. The reason for the
wide-baseline stability of the technique lies in the fact
that connectivity (which is essentially what is detected) is
preserved under reasonable affine transformations.

Fig. 2. The combination of MSER regions and SIFT descriptors leads to
good wide-base line matching (This is particular true for planar surfaces).
Here lines indicate the correspondences found between features in very
different views of a poster.

C. Feature Descriptions

Having found image regions that fulfil the above two
criteria (wide-baseline stable and falling within a salient
region ) we need to encode them in a way that is both
compact, to allow swift comparisons with other regions,
and rich enough to allow these comparisons to be highly
discriminatory. A sensible choice here is the SIFT descrip-
tor [20] which has become immensely popular in computer
vision applications [32] and used with good effect in SLAM
in [21]. To summarize the approach, we take the salient
MSE regions and place a 4 × 4 grid over them. For each
of the 16 cells in the grid, a pixel gradient magnitude is
calculated at 45o intervals. This yields a 4 × 4 × 8 = 128
dimensional descriptor vector for each processed region.
Figure 2 shows the typical wide baseline performance we
achieved on planar surfaces.

III. APPLICATION TO LOOP CLOSING

We are now in a position to use the above three
techniques to close loops in a SLAM problem. As the



vehicle moves around its environment and explores new
areas it occasionally (every few seconds or meters of driven
path) takes a picture through an onboard camera. These
pictures are passed through a saliency-MSER-descriptor
pipeline and incrementally a database of descriptors is
built. Each image will produce a whole set of descriptors
which are stored alongside the time at which the image
was captured. The data base can be queried every time a
new image is acquired (before adding it to the database) or
asynchronously. The mechanism we employ to perform the
query is simple but has a complexity linear in database size
(this is something we propose to improve upon in future
work). The query image IQ generates nq descriptor vectors
Vq. For each stored candidate image IC in the database
with nc descriptors Vc a nq × nc adjacency matrix Mq,c

is created where the (i, j)th entry Mq,c(i, j) is the L2

norm || Vq(i) − Vc(j) ||. These distances are thresholded
resulting in nqc matched descriptors between the query
image and the candidate image in the database. 1 When
all images have been compared those candidates producing
the largest number of feature matches nq,c are selected as
wide-baseline matches. In particular the times at which the
image was captured can be used for loop closing.

Consider the case when a new image is added to the
database and a correspondence is found between that and
an image taken much earlier in the SLAM session. One
field of the query result contains the time tm at which
the earlier image was taken. Under reasonable assumptions
(which will be discussed later) this match makes a strong
assertion that the vehicle is now once more close to where
it was at time tm. Note that the database stores only visual
and temporal data. We do not store the estimate of the
position of the vehicle in the database because by the time a
match is found other loop closing or estimation events may
have rendered this estimate invalid. By keeping an external
journal of position and time (which must be updated if the
SLAM algorithm employed makes substantive changes to
old position estimates) a search can be initiated to relocate
the vehicle near where it was at time tm or to make a
concerted effort to associate current measurements with
components of the map built earlier at tm. Note we are
not using the estimated state to make decisions about when
loop closing should occur. We only use it to process the
event.

IV. EXPERIMENTAL RESULTS

A. A SLAM Implementation

To illustrate the effectiveness of our approach we choose
to employ a simple, single coordinate frame, non-constant
time, laser based scan matching SLAM algorithm. This
choice is made entirely without prejudice - any SLAM
algorithm could have been used. We choose to use this
particular method because it is simple to explain and offers
good performance in our chosen environment. The SLAM

1Each descriptor is a 128D vector and so we had little trouble in
selecting a threshold that worked in a variety of scenarios, however the
automatic setting of this threshold is a topic of research.

technique described below is in spirit close to [22],[18]
uses the delayed state ideas in [19][24] and is similar to
one of the SLAM schemes employed in [3] although here
we use a different scan matching technique.

The estimated quantity is a state vector x(i|j) which
initially contains a single vehicle x, y, θ pose xv(0|0).
Associated with it is a covariance matrix P(0|0). Here
we are adopting the common notation that the quantity
x(i|j) is the estimate of the true state x at time i given
measurement up until time j.

At some time k + 1 the vehicle is subject to a noisy
control vector u(k + 1) such that the new position of the
vehicle can be written as a function of the control and the
last state estimate.

xv(k + 1|k) = xv(k|k) ⊕ u(k + 1) (4)

Where ⊕ is the transformation composition operator as
used originally in [33] which has the following two ja-
cobians associated with it:

J1(x1,x2) � ∂(x1 ⊕ x2)
∂x1

J2(x1,x2) � ∂(x1 ⊕ x2)
∂x2

These allow the second order statistics of x (k+1—k)
following a control input to be written as

Pv(k + 1|k) = J1(xv,u) P(k|k) J1(xv,u)T +

J2(xv,u) U J2(xv,u)T

where the (k|k) and (k+1) indices have been dropped from
v and u respectively for clarity and U is the covariance of
the noise process in control u.

We employ a delayed state model in which at every time
step the state vector is augmented as follows:

x(k + 1|k) =
[

x(k|k)
xv(k|k) ⊕ u(k + 1)

]
(5)

=




xv(0|0)
...

xv(k|k)
xv(k + 1|k)


 (6)

The state vector is simply a vector of previous vehicle
poses. Similarly the augmented covariance matrix P can
be written as:

P(k + 1|k) =
[

P(k|k) Pvp(k + 1|k)
Pvp(k + 1|k)T Pv(k + 1|k)

]
(7)

It should be noted that k is not incremented at every
iteration of the algorithm. The odometry readings of the
vehicle are compounded until the overall change in pose
is significant (for example in our implementation around
50cm). This overall, compounded transformation becomes
u(k) and the k is incremented and the above described state
project step undertaken. In this way the state vector grows
linearly with the exploration path length and not with time.

The scan-matching part of the algorithm works as fol-
lows. Consider two poses at times i and j. Each pose has



an associated laser scan Li and Lj each containing ni and
nj set of x, y points in the vehicle frame of reference.
The scan-matching algorithm works on the assumption that
there is a large overlap between the surfaces sampled in
these two scans. It finds a transformation T parameterized
by the vector zij = (x, y, θ) such that

η =
∑

k=1:nj

Φ(Li, T (Lk
j , zij)) (8)

is minimized. The function Φ(Li, T (Lk
j , zij)) returns the

unsigned distance between the kth point in scan j trans-
formed by zij , and all of scan i. Note that we are not
performing point to point associations as is common in
ICP [2] like algorithms. In our implementation Φ uses
the distance transform of Li and uses the coordinates
of the transformed points of Lj to look up the distance
to the template scan Li. The further details of the scan
matching procedure are beyond the scope of this paper.
However two important points must be made. Firstly, the
scan-matcher needs to be seeded with an approximate
initial estimate of zij . Our current implementation has a
convergence basin for typical indoor environments (labs,
offices and corridors) of around +/- 30 degrees and +/- 5
meters and takes 40 ms to compute. The need for a ball-
park initial estimate is not surprising as scan-matching is a
non-linear optimization problem and as such is vulnerable
to the presence of local minima. Secondly, as Lu and
Milios [22] described scan matching can be used to provide
constraints or “measurements” of the relationship between
poses. In this case the output of the scan matcher is the
transformation between pose i and pose j in the state
vector. For example matching between scan k + 1 and k
allows the following measurement equation to be formed:

xv(k + 1|k) = xv(k|k) ⊕ zk,k+1 (9)

There are several ways to use this observation. It could
simply be stored and used (in linearized form) as an
observation in a sparse bundle adjustment as proposed
in [18]. Or, as we choose here, it can be used in a
minimum mean squared error update step. Essentially we
linearize the equation and use it as an observation in a
non-linear Kalman filter which explains the observation as
a function of just the last two pose entries in the state
vector. Nevertheless it is important to note the update will
alter the entire state vector (which is the vehicle’s past
trajectory).

B. Loop Closing

This choice of SLAM algorithm described in Section IV-
A makes loop closing events particularly easy to handle.
Imagine an oracle provides an observation zi,k where
i << k — i.e. relates the current pose (end of state vector)
to a pose dropped a long time ago (perhaps somewhere
in the middle). This may well be a loop-closure event.
All we need do to use the measurement is rewrite the
measurement equation 9 in terms of pose states k and i
and proceed as before with a standard EKF update (O(n2)).

 

Fig. 3. A snapshot of the SLAM algorithm just before loop closing
takes place. The vehicle poses stored in the state vector are shown in red.
The performance of the SLAM algorithm is just as would be expected.
Global uncertainty (gray ellipses) increases as the length of the excursion
from the start location increases. A poor scan match at the bottom right
introduced a small angular error which leads to a gross error in pose
estimate when in reality the vehicle has returned to near its starting
locations (top right). The inset images are the two camera views used in
the loop-closing process. The left hand image is the query image and the
right hand one the retrieved, matching image. The poses that correspond
closest in time to the two images are indicated with arrows.

 

Fig. 4. A close up of the region close to the point of loop-closure. The
pre-closure trajectory and uncertainties are shown in faint ink. Note how,
as expected, the insertion of a loop-closing constraint between two poses
that are temporally very distant causes a marked reduction in uncertainty
(blue ellipses) in the recent poses.



Because the whole trajectory is stored in the state vector,
all previous pose states will be adjusted in proportion to
their uncertainty in order to accommodate the loop closure
assertion.

The question now is how do we build such an oracle?
We propose to use the database of visually salient features
described in section II. If the current view from the camera
is matched to a previous view, and we have confidence
that the matching process is highly discriminative, as is
certainly the case with the visual saliency scheme in use
here, then it is highly likely that the vehicle is in the
neighborhood of the earlier pose. The scan matcher can
be run (with an initial seed zero transformation ) to find
the transformation between the two proximate poses.

The algorithm proceeds as follows. We do not look for
loop closing between the most recent pose, k, and some
historical pose. Rather we use a pose q = k−n/2 where n
is some small number such that the set of recent poses and
attached scans from [(k−n) : k] represents a scan patch as
proposed in [12]. If the query image at pose time q matches
an image taken at the time associated with pose m, then
another scan patch is produced around m. The query and
match scan patches are described with respect to the pose
frames q and m respectively. The motivation for the use
of the patches - essentially simulating a multi-viewpoint
scanner - is, as suggested in [12], to decrease the interpose
ambiguity during the scan matching process. Finally the
scan-matcher is run to produce a transformation between
pose m and q. An estimate of the uncertainty in this match
is derived by fitting a quadric to the error surface near the
optimized transformation. From this quadric the hessian
can be derived and hence a suitable covariance matrix.

C. Experimental Scenario

A small ATRV-Jnr mobile robot was driven around a
building containing a large loop of around 100m length.
We note that this is by no means a large loop or an ex-
tremely challenging environment for contemporary SLAM
algorithms. However the accumulated spatial error is sig-
nificant and serves to highlight the effectiveness of using
salient, wide-base-line image patches to close loops without
recourse to geometry.

The vehicle camera kept a constant orientation in vehicle
coordinates –looking forward and slightly to the right.
Every two seconds an image was grabbed and written
to disk. The vehicle was equipped with a standard SICK
laser, the output of which was also logged along with the
odometry from the wheel encoders.

Each image was time stamped, processed and finally en-
tered into a database as a collection of feature descriptors.
The simple SLAM algorithm described in section IV-A was
run using only the raw laser data and odometry. Figure 3
shows and describes the state of the algorithm just before
the first loop closing event occurred. Figure 6 shows the
system state just after the loop-closure constraint has been
applied.

The top row of Figure 5 shows the correspondences

Fig. 5. View of the feature to feature correspondences found between the
two images (top right and top left) used in the loop closing event shown
in figure 3. The lower two images show similar images in the database
that were successfully discriminated against.

found between the loop-closing images 2. Note how most of
the lines are parallel but not all. This apparent mismatching
is a peculiarity in the scene — by chance, the images are
of a poster which itself contains multiple, small highly
self-similar pictures (of a remarkable luminous green,
gloved hand). Nevertheless we remain confident that the
probability of a false positive is low given the number of
correspondences found. The lower two images in Figure 5

2In our initial implementation it takes around one second to process a
640 x 480 image

Fig. 6. A complete map of the test area just after loop closing



Fig. 7. Threshold setting is arbitrary (and unsatisfactory). Here the
salient white plate is matched to a similar plate in a different location in
a remarkably similar scene. This false positive was removed by requiring
(for the results presented in this paper) at least 3 descriptor matches in
an image.

show two other similar images in the database for which no
correspondences were found. In all, the database comprised
250 images and the vehicle drove twice round the loop
shown in Figure 6. In this initial test no false-positive
matches were produced.

Finally, Figure 6 shows the final map after applying
the loop closing constraint. As expected the marginal
covariances on each vehicle pose decrease and a crisp map
results - as would be the case for any choice of SLAM
algorithm. Although it is incidental to the focus of this
paper, it is worth noting that the multiple-pose formulation
used here does have the problem of not being able to refine
the map over multiple passes without dropping more and
more vehicle states. A pure feature-based approach does
not have this issue, however it falls short of fully utilizing
the richness of the laser data by limiting the map to a
collection of often restrictive geometric primitives.

V. CONCLUSIONS, ISSUES AND FUTURE WORK

This paper has presented some initial results concerning
the use of salient image features in laser based SLAM
work — in particular in detecting possible loop closure
events in a manner which is independent of estimated
vehicle pose. We suggest that this last point is central in
achieving robustness — measurement decisions should be
made independently of internal SLAM states.

While this initial fusion of ideas from the robotics and
vision literature appears successful, we now identify and
discuss some areas which should be either extended or
improved upon.

Firstly, we use two image capture times to seed a scan-
match correspondence search under the assumption that
the two images were grabbed from spatially close poses.
This is a reasonable assumption in the majority of indoor
environments. However the scale invariance inherent in
the saliency and SIFT feature descriptors means that in
outdoor environments this assumption is not valid — the
same feature occurring at markedly different scales in two
images implies they were taken at very different locations.
To remedy this we anticipate augmenting the image data
base with local area laser scans to disambiguate scale.

Secondly, the setting of the number of feature matches
required for a positive image to image association is
arbitrary, and as shown in Figure 7, setting it too low can

result in false positives. This is a catastrophe if it results
in erroneous loop closing in a SLAM algorithm without
an “undo” option. We are currently investigating ways in
which this parameter could be learnt for a given workspace
— initially with supervised learning. In a similar vein we
are working towards anchoring the decision process in a
probabilistic framework in which we calculate a probability
of loop closure given previous images and a current view.
We see this as an important goal.

We intend to take more of an active vision approach to
camera control and use saliency detection to initialize a
track on a region of space. This will allow active testing of
wide-baseline visibility of image features before entering
them in the visual database — again with the aim of
increasing overall robustness.

We conclude that augmenting laser-based systems with
vision systems can lead to a marked increase in perfor-
mance. The techniques we have presented here are well
suited for achieving robust loop closing – a key requirement
in SLAM-enabled systems.
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