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Abstract

It is difficult to detect intersections between maps
using only geometric information. We propose a novel
technique to solve this correspondence problem using
a visual similarity matriz. Given sequences of images
collected by robots, subsequences of visually similar im-
ages are detected. Since every image is time-stamped,
we can extract from each robot the portion of the lo-
cal geometric map that was built when the sequence of
images was captured. Using standard scan matching,
an alignment of corresponding geometric submaps is
determined. The local maps can then be joined into a
single global map. Crucially, the algorithm does not
depend on the knowledge of relative poses between the
robots or mutual observation. A statistical assessment
of significance in the visual alignment score of the sub-
sequence of images is used to prevent false triggering
of joint map detection. We present results of combin-
ing four local maps into a single map over 180m in
length traversed, through the detection of the intersec-
tions using the proposed algorithm.

1 Introduction

The approaches of current collaborative multi-robot
map building algorithms can be broadly classified into
three main categories: (1) merging sensory data from
multiple robots with known data association between
features in local maps built by different robots [1] (2)
detecting other robots to determine relative position
and orientation between local maps [2, 3] or assuming
relative poses between robots are known [4] (3) deriv-
ing the transformation between robots’ coordinate sys-
tems through the matching of landmarks [5, 6]. Gener-
ally, algorithms with strong assumptions about known
data association or relative poses have been limited to
theoretical experiments or highly engineered experi-
ments. The algorithms that have worked with real
world data with weaker assumptions have been lim-
ited to those that rely on detection of other robots.

This approach means that the robots might duplicate
each other’s work by exploring the same environment
for long periods of time without being aware of each
others’ poses. Otherwise, the robots have to hypothe-
size their relative positions and try to congregate at a
hypothesized meeting point. This allows the robots to
determine accurately each others’ relative poses but
distracts them from the task of exploration [3]. A
more exploration efficient way of joining local maps is
to detect similar intersections between local maps and
align the local maps given the relative orientation of
the similar intersections.

This work proposes the use of visual appearance to
detect “similar” intersections between local maps built
by multiple robots. These common intersections can
be used to align the maps. A visual similarity ma-
trix is constructed, which is composed of similarity
scores between images taken from a camera on each
robot. Each element M(i,j) in the visual similarity
matrix is a measure of similarity between image i and
image j. No prior knowledge of the pose of individ-
ual robot is required. It builds upon work done in [8]
to detect loop closure by image matching using visu-
ally salient features. Despite the highly discriminative
nature of photometric information, false positives still
exist because repetitive entities occur frequently in ur-
ban environments eg. windows. To resolve the issue
of repetitive visual images, [9] takes into consideration
spatial information as well as visual information. A
contribution of this paper is to exploit the topological
structure of the visual similarity matrix to enhance
robustness in the detection of intersections between
maps. The idea is simple; by matching subsequences
of images captured from topologically linked locations,
the probability of false positives is greatly reduced.

2 Related Work

As discussed in [6], a common problem overlooked
by many papers on multi-robot mapping is data as-
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Figure 1: Local maps of different parts of the same building built by distributed robots. There is an overlap
between each of the maps but as can be seen, it is very difficult to distinguish the overlap using only 2D geometric

information.

sociation. The paper attempted to tackle this ques-
tion by introducing an algorithm that aligned local
maps into a global map by a tree-based algorithm
for searching similar looking landmark configurations.
The landmark configuration consists of relative dis-
tances and angle between a triplet of adjacent land-
marks. Another landmark-based algorithm for map
matching was described in [5], which combined topo-
logical maps of indoor environments. Landmarks such
as corners, T-junctions, ends-of-corridor and closed
doors were stored in the search space for correspon-
dences. However, spatial configuration of three land-
marks or simple geometric primitives are not very dis-
criminative features.

A vision-based approach was used in [7] to combine
maps built by a team of robots in the same worksite.
Images described by color histograms are compared
against each other to find the best matching image
pairs. In the experimental setup, only images of pla-
nar surfaces are captured. Therefore, an inter-image
homography can be calculated for selected image pair.
If the homography is supported by a sufficiently high
number of corners, intersection is found and robot
paths can be registered with respect to one another.
However, the use of a single image pair for matching
is prone to false positives - particularly in urban en-
vironment containing repetitive entities, as described
in [9]. Importantly, none of the algorithms described
above have any mechanism to determine that two lo-
cal maps have no common overlap. They simply find
the ‘best’ alignment possible between the two.

Figure (1) shows that the correspondence of over-
laps between these local maps is very difficult to be
determined using geometric information alone. In the
next section, we propose a method using discrimina-

tive photometric information to solve the correspon-
dence problem.

3 A Visual Similarity Matrix

A system to detect loop closure was developed in [8],
by matching the most recently captured image against
every single image the robot has captured previously
and stored in a database. Each image is described
by visually salient features, which are used for im-
age similarity comparison. In contrast to [8], the only
interest point detector that we adopt to extract fea-
tures from images is the detector developed in [11],
which finds “maximally stable extremal regions” or
“MSERs”. MSERs offer significant invariance under
affine transformations. Having found image features,
we encode them in a way that is both compact to al-
low swift comparisons with other features, and rich
enough to allow these comparisons to be highly dis-
criminatory. For this, we use the SIFT descriptor [12]
which has become immensely popular in global visual
localization applications [13].

3.1 Assignment of weights to descriptor

Previously in [8], a saliency detector [14] was used
to assign binary weight to each SIFT descriptor based
solely on local photometric information. In this work,
various weights are assigned to different SIFT descrip-
tors based on their frequency of occurrence or rarity
within the image database. The underlying concept
is the more rare a descriptor is within a database,
the more significance or weight should be attached to
matching the descriptor.

The vector space model [15] which has been success-
fully used in text retrieval is employed in this work.
Each image can be considered as a document consist-



ing of visual words. In this case, each SIFT descriptor
is a visual word. Construction of a visual vocabulary
is achieved by clustering similar SIFT descriptors (in
terms of euclidean distance) into visual words that can
be used for inverted file indexing. An agglomerative
clustering algorithm is used. Weights, W;, are assigned
to each SIFT descriptor, D;, (word) according to the
frequency of the occurrence of the visual word in the
image database. This is based on the inverse docu-
ment frequency [16] formulation: W; = log,o(N/ny)
where N is the number of images stored in the image
database and ns is the number of occurrences of the
descriptor in the database. The collection of images is
represented by an inverted index for efficient retrieval.
To further enhance the retrieval speed, we employ a
k-d tree to search for the visual words.

3.2 Similarity Scoring Function

Figure 2: A visual similarity matrix constructed from
comparison between two image sequences collected by
two robots. Cells with high similarity scores are col-
ored in bright red while cells with low similarity scores
are colored in dark blue. The bright line highlights
the sequence of images that are similar to each other
- indicating that there is an overlap in the two envi-
ronments explored. The bright ”square” in the visual
similarity matrix is a result of a visually similar region
in the environment such as a long fence.

To measure the similarity between two images, I,
and I,,, we employ the cosine similarity method. Since
each image is represented as a vector of words with
different weights, we can measure their cosine similar-
ity by the inner dot product of the two image vectors
as shown in equation 1. The scoring for a match of
a term is based on the weights from the inverse docu-
ment frequency. If the images have different number of
visual words, imaginary visual words with no associ-

ated weights are inserted into the smaller image vector
so that the sizes of both image vectors are equal.

ZZ’:I Uj;.V; (1)

iy w2 (2, o))
where I, = [ug - uy], I, = [v1---vy,] and u; and v;
are visual words from the respective images.

Consequently, we can construct a visual similarity
matrix between two image sequences using the cosine
similarity function. Each element M;; of the simi-
larity matrix is the similarity score between image i
from robot 1 and image j from robot 2. Every image
from robot 1 is compared with all images from robot
2. When there is an overlap between the local maps
of the robots, there will be a connected sequence of
elements with high similarity scores found within the
visual similarity matrix. This is shown by the bright
line in Figure 2. The next section will describe the
method employed to find this local sequence alignment
within the visual similarity matrix.

Sy, Iy) =

4 Local Sequence Alignment

Local sequence alignment is a widely used tool in
computational molecular biology, which finds the best
alignment from a similarity matrix constructed from
comparing two DNA or protein sequences. We adopt
a similar approach [17] in finding the best alignment
between two image sequences. The algorithm finds
regions of similarity between protein and nucleic acid
sequences that may have little overall similarity but
the shared pattern may have biological significance.
Similarly, local maps built by distributed robots may
have little overall similarity due to mapping of different
areas as shown in figure (1) but the intersection is
important. Finding a matching pair of subsequences of
images between the robots’ image sequences is a strong
indicator of overlap of their maps. The detection of
visually similar subsequences of images is therefore the
precursor of map joining.

4.1 Local Alignment Algorithm

Our local alignment algorithm is a modified version
of the Smith-Waterman algorithm [17], which is a dy-
namic programming algorithm. Given two sequences
such that A = ay,as,---,a, and B = by, by, -+, b,
a similarity function S(a;,b;) gives a similarity score
between sequence elements a; and b;. A similarity ma-
trix of scores is calculated in [17] by comparing each
element from one sequence to every other element in
the other sequence - the same way our visual simi-
larity matrix is constructed. In order for the Smith-
Waterman algorithm to work, the similarity function



It | Iy | Iz | Tpa | Ips | Ite
I, | -10 | 0.35 | -10 -10 -10 | -10
I,5 | -10 | -10 -10 -10 | 0.32 | -10
Ioa | -10 | -10 | 0.26 | 0.37 | 0.26 | -10
I,3 | -10 | 0.21 | 0.27 | 0.33 | -10 | -10
I, | -10 | 0.32 | 0.25 | 0.18 | -10 | -10
I,1 | -10 | -10 -10 | 0.15 | -10 | -10

It | To2 | s | Tpa | Ins | Ine
I 0 | 0.35 0 0 0 0
1.5 0 0 0 0 161 | O
T4 0 0 0.85 | 1.29 | 1.55 0
1,3 0 | 053 | 0.59 | 0.92 0 0
1.0 0 | 0321057 | 0.75 0 0
1.1 0 0 0 0.15 0 0

Table 1: The matrix above is an example of a visual
similarity matrix where each cell is the similarity score
between the corresponding images. The bottom ma-
trix is the corresponding H-matrix calculated from the
visual similarity matrix shown above. The sequence
alignment selected is underlined.

must give a negative score when two elements are very
dissimilar. In our implementation, image pairs with a
similarity score that falls below a given threshold are
deemed to be dissimilar and are rescored with a fixed
negative value.

To find a pair of subsequences of images with high
degrees of similarity, a matrix H is constructed. Each
element, H;;, is the cumulative similarity score of a
subsequence starting at ap and b; and ending in a;
and b; in the visual similarity matrix.

The formula for H;; follows by considering the
possibilities for ending the subsequence at a; and b;.
Amongst S(a;—1,b;-1),S(a;,b;—1) and S(a;_1,b;):

o if S(aj_1,bj—1) has the greatest similarity score:
Hijj = Hi1,j-1+ S(ai, by)

o if S(a;,bj_1) has the greatest similarity score:
Hij=H;j-1+ S(a;, b))

e if S(a;_1,b;) has the greatest similarity score:
Hij=Hi;+ S(ai,b))

e A zero is included to prevent negative cumulative
similarity score, indicating no similarity up to a;

and bj

The maximum value in the H-matrix, the maximal
alignment score, is therefore the endpoint of a subse-
quence of images with the greatest similarity. No other

Figure 3: Left: A 3D visual similarity matrix between
two image sequences that have overlapped intersec-
tion. Right: A 3D visual similarity matrix between
two image sequences that have no overlapped inter-
section.

pair of subsequences has greater similarity. From the
H-matrix at the bottom of figure 4.1, the maximal
alignment score is H(Iy5, Ips), which is an accumula-
tion of similarity scores of the subsequence of under-
lined elements from S(I,2, Ip2) to S(Igs, Iys).

To take into account that the robots might have tra-
versed through the same area in opposite directions,
the order of one robot’s image sequence is reversed
and the algorithm is repeated for that sequence order.
The larger of the two maximal alignment scores is cho-
sen. To determine which images have contributed to
the maximal alignment score, the algorithm stores a
pointer at each cell in the H-matrix, to indicate which
previous cell contributed to its value. From the ma-
trix element of H with the maximal alignment score,
we are able to sequentially trace back the path of the
other matrix elements that contributed to this max-
imum value. This yields the best matching pair of
image subsequences.

5 Statistical
Alignment

Significance of Local

Given a visual similarity matrix, the local alignment
algorithm will produce the maximal alignment score
along with the pair of image subsequences for that par-
ticular matrix. When the maximal alignment score ex-
ceeds an experimentally set threshold, potential map
overlap is detected. The key question is whether the
selected pair of subsequence of images is really due to
an overlap of local maps. In other words, what value
should a maximal alignment score be so that it is sta-
tistically significant enough to suggest that there is
actually an overlap. On the left-hand side of Figure 3
shows the similarity matrix for image sequences that
have significant overlap and the right-hand side shows
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Figure 4: Typical distribution of maximal segment
scores from 1000 random shuffles of similarity matrix.

a similarity matrix with no overlap between image
sequences. Maximal alignment scores resulting from
searching with a query subsequence against a whole
sequence can be well described by the extreme value
distribution [18] expressed in equation 2. This p.d.f
can be used to judge the significance of the maximal
alignment score for the pair of matching image subse-
quences.

T—p
z—

P(z) = 1 exp 7 exp” P 7 (2)
B

where z is the maximal alignment score, u is the
mean of the distribution and 3 is the standard devia-
tion of the distribution.

Adopting the approach in [19], we randomly shuffle
the visual similarity matrix 1000 times and obtain the
maximal alignment score each time. This results in
a distribution such as that shown in Figure 4. This
process is time consuming but it is only triggered
when the alignment score exceeds an experimentally
set threshold. The distribution parameters p and
are estimated from the histogram of maximal align-
ment scores and we can calculate the probability of
the particular alignment score happening by chance.
It is a topic of future research to determine the num-
ber of shuffles required as a function of the size of the
similarity matrix, to produce an accurate estimate of
the distribution parameters. In our implementation,
an alignment is only considered significant if the maxi-
mal alignment score lies outside 5 standard deviations
from the mean.

6 Results

To illustrate the effectiveness of our approach we
choose to employ a simple delayed state [21], laser
based scan matching [20] SLAM algorithm for each
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Figure 5: Pairs of image subsequences that match.
Along with a pair of subsequence of images are the
corresponding local submaps that should match each
other as well.

robot. This choice is made entirely without prejudice
- any SLAM algorithm could have been used. We pro-
ceed as follow. For every 0.5m the robot traverses
and for every 15 degrees change in heading of the
robot, an image is captured. The camera orientation
toggles after capturing an image, between 60 degrees
left of robot’s heading and 60 degrees right of robot’s
heading. Every image and laser scan captured is time
stamped.

In our experiment, four robots start exploring from
different locations of the same building. Each robot
builds its own local map as shown in figure (1). By
comparing the image sequences collected by robot 1
and robot 2, a 114 by 146 visual similarity matrix is
constructed. The time complexity of the local align-
ment algorithm is O(nm) where n and m are the
lengths of the respective sequences. For the size of
this particular similarity matrix, the local alignment
algorithm takes less than 0.3 second to find the opti-
mal alignment using a Pentium 4, 2.40GHz CPU. The
time complexity of comparing an image from one se-
quence against all the images in the other sequence is
O(log(p)) where p is the number of visual words stored
in the database. The average time to compare one im-
age against a sequence of 146 images is 0.269 second.
When the maximal alignment score as described in
subsection 4.1 exceeds an experimentally set thresh-
old, joint map detection is triggered. The statistical
significance of the alignment score is assessed accord-
ing to the approach described in section 5 to prevent
false detection.

Figure 5 shows typical pairs of image subsequences
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Figure 6: A combined map in a single coordinate frame
that was formed by aligning the four local maps shown
in figure 1

found by the local alignment algorithm. Since each im-
age and laser scan is time-stamped, we can extract the
portion of the local map that correspond to when the
images were taken as shown in figure (5). A crude esti-
mated transformation is used to bring the two local ge-
ometric submaps into close proximity. From here, scan
matching produces accurate map to map transforma-
tions, allowing the four maps to be fused together as
shown in figure (6). Without relying on detection of
other robots, we have successfully aligned four local
maps into a single, big map by using visual appear-
ance to reliably detect intersections.

7 Conclusion and Future Work

A novel method for detecting and aligning similar
intersections of local maps built by multiple robots
has been demonstrated to work well in an indoor en-
vironment covering a distance of over 180m. A more
extensive experiment mapping a larger area is under-
way. To further enhance the robustness of the similar-
ity matrix, we can incorporate spatial descriptors as
well as visual descriptors to describe the local environ-
ment as was done in [9]. Furthermore, we can improve
upon our algorithm to find best ”"gapped” alignments.
A gap in a subsequence of images may be possible due
to poor measurements of one image (For example in
the extreme case when a human walks very close to the
camera and covers the whole field of view). We envi-
sion using this algorithm to combine local maps built

by a single robot from different missions over many
days. This will allow a large map to be incrementally
enlarged from each map building session in an offline
fashion.
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