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Abstract—We demonstrate the viability of using 2D LIDAR
data as the sole means for accurate, robust, long-term road-
vehicle localization within a prior map in a complex, dynamic
real-world setting.

We utilize a dual-LIDAR system - one oriented horizontally,
in order to infer vehicle linear and rotational velocity, and one
declined to capture a dense view of the surrounds - that allows
us to estimate both velocity and position within a prior map.
We show how probabilistically modelling the noisylocal velocity
estimates from the horizontal laser feed, fusing these estimates
with data from the declined LIDAR to form a dense 3D swathe
and matching this swathe statistically within a map will allow
for robust, long-term position estimation.

We accommodate estimation errors induced by passing ve-
hicles, pedestrians, ground-strike etc., by learning a positional-
dependent sensor model - that is, a sensor-model that varies
spatially - and show that learning such a model for LIDAR
data allows us to deal gracefully with the complexities of real-
world data. We validate the concept over more than 9 kilometres
of driven distance in and around the town of Woodstock,
Oxfordshire.

I. I NTRODUCTION

In this paper we consider long-term navigation using
�xed 2D LIDARs, as an extension to the work in [1]. We
consider how localization algorithms based on scan-matching
- commonly used in indoor environments - are prone to
failure when exposed to a challenging real-world outdoor
environment. The driving motivation behind this work is
to produce a simple, robust system that can be utilized
repeatedly over a long period, rather than being forced to
repeatedly map the working environment.

Fixed 2D LIDARs have several inherent advantages over
3D sensors (for example the Velodyne), in particular hav-
ing lower mechanical complexity and a smaller physical
footprint. Crucially in our approach, one of the lasers is
oriented downwards, intentionally sampling the road surface
and surrounds. This rich 3D model, built as a result of
motion of the vehicle through the environment, is matched
statistically within a prior map in order to generateSpecial
Euclidean(SE2) poses (position and orientation).

Given the �uid, complex nature of the world, we assert that
one-shot 2D planar maps lack the required descriptiveness
to enable accurate, long-term localization. In this work we
leverage the accurate relative short-term consistency of scan-
matching to providelocal velocity estimates, which are
then integrated with the declined LIDAR data, building a
rich map swathe that is then used in an information-based
map-matching algorithm that allows for repeatable, global
localization in a prior map (note that we are not considering
the SLAM problem). Figure 1 shows an example target
environment:

Fig. 1: An overview of the route driven in Woodstock, Oxfordshire.
The route passes through a number of very different environments -
suburban housing (highlighted in red, eastern section), a region with
dense foliage and steep gradients (green, north) and a town-centre
with a large number of pedestrians and vehicles (blue, western
and southern section). Accurate navigation in these very different
environments is a dif�cult task. (Must be viewed in colour.)

We propose a framework that will make use of the relative
consistency of scan-matching, coupled with a dense 3D
retrospective swathe in a map-matching algorithm that will



be robust to long-term scene changes. Simultaneously,
we learn a positionally-dependent sensor model - that is, a
sensor-model that has intrinsic properties that vary spatially -
and show that doing so is necessary for successful robustness
to short-term scene change. As validation of the concept, We
show that this LIDAR-only system can provide accurate pose
estimates over 9.5 kilometres of real-world data.

II. RELATED WORK

Laser-based outdoor localization of road vehicles is most
often addressed with the use of the Velodyne 3D LIDAR
unit [2][3]. The authors in [4] and [5] utilize a Velodyne
in addition to GPS and odometry data to generate a precise
of�ine map, which is then matched against at run-time with a
particle �lter. In [6] the authors develop a system that gener-
ates multi-level surface maps, representing the environment
with a 2.5D structure - again with a Velodyne. In this work,
we relax the requirement for an expensive, complex actuated
sensor like the Velodyne.

The authors in [7] make use of a �xed 2D LIDAR -
attached to a helicopter platform - and utilize a scan-matching
algorithm to generate high-quality 3D maps. Although this
work is similar in spirit, the authors make use of GPS and
compass data, which is not the case for our framework.

[8] et. al. utilize a robust ICP [9] algorithm to good
effect, generating a robust histogram-feature representation
to do local submap matching. Although in this work we
make use of an ICP-derivative, it is solely in an open-loop
capacity in order to infer relative vehicle motion. We do not
attempt to use ICP to produce localization estimates directly,
given the noise introduced into the LIDAR fan from ground
strikes, vehicles and so on. The literature is replete with other
2D-LIDAR scan-matching implementations, from feature-
based approaches [10], association by means of a polar
representation [11], and a number of others [12][13][14][15].
In this work, we focus on learning a contextual sensor �lter
for any arbitrary scan-matching approach, as opposed to the
development of a new scan-matching variant.

A comparable vision-based system from the vision com-
munity is Visual Teach and Repeat [16]. In this work, a
stereo-camera is used to build a manifold world representa-
tion consisting of previously-visited submaps (teach), which
is then used in subsequent revisits for localization (repeat).
Due to the limited view of the camera, this approach can
suffer from relatively small convergence basin, which is not
the case in this approach.

III. L OCALISATION

We assume that we have access to a previous run through
the workspace by a survey vehicle - a vehicle equipped
with 3D mapping and accurate pose-estimation capabilities -
and that it is possible to produce a 3D point-cloud that we
term P. We seek to localize ourselves with respect to the
trajectory and point-cloud - de�ned by this prior survey -
with a run-time point-cloudQ - produced by developing the
motion of the vehicle over anN -second retrospective window
[tk ; tk � N ]. At run-time, we have access solely to LIDAR data

from sensors mounted horizontally, and vertically. Figure 2
shows the layout of the sensor suite on the test vehicle, and
Figure 3 depicts sample scans from this sensor layout, in
addition to the run-time point-cloud:

Fig. 2: The reference frames of the on-board sensors, withf x; y; zg
in red,green, and blue respectively.F h corresponds to the horizontal
LIDAR, F v to the declined LIDAR. Example sweeps from these
LIDARs are shown in Figure 3.

Fig. 3: A perspective view of a typical run-time generated point-
cloud (Q), with the vertical and horizontal lasers highlighted in
blue and green respectively. The motion of the vehicle - generating
the swathe data as it moves through the environment - is indicated
by the arrow. Clearly visible in the swathe are the window frames
and building edges. The inset image shows the view of the scene
from the front bumper of the vehicle. This run-time cloud will be
matched within the prior mapP to provide anSE2 pose estimate.

The tracking problem is - given the point-cloudP, and
the swathe developed during runtime,Q - to establish a
transformationT that best aligns the clouds. This procedure
is broken down into two components - building the run-time
cloud Q from the observed data (Section III-A), and using
this cloud in conjunction with the previous experienceP to
generateSE2 poses (Section III-B).

A. GeneratingQ

In order to generate the swatheQ (as visualized in Figure
3) at runtime, we need to be able to reconstruct the relative
motion of the vehicle over the windowing period. The system
state equation is:

_x(t) = v(t)
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(1)

where v(t) is the velocity in the vehicle frame, and! (t)
is the vehicle rotational velocity. By integrating the state



equation over the window period, we will be able to generate
the relative vehicle motion - however we do not have direct
access to either rotational or linear velocity data.

To estimate these velocities, we utilize the Iterative
Closest-Surface (ICS) algorithm [17] - a variant of the stan-
dard Iterative-Closest Point [9] algorithm - to perform scan-
matching between successive laser scans in the horizontal
laser. Our focus in this paper is not on improving the
performance of ICS, as we are using it in an open-loop
capacity to estimate point-to-point velocities only.

Shown in Figure 4a is the linear velocity of the vehicle
in metres per second as estimated by ICS (blue) and as
measured by the on-board INS1 (dashed red) for two minutes
of driving. Similarly, Figure 4b shows the estimated (green)
and actual (red) yaw velocities:

(a) (b)

Fig. 4: Estimates of both the linear(m=s) and rotational(rad=s)
velocities of the vehicle over two minutes of driving, with ICS es-
timates (in blue and green, respectively) and ground-truth (obtained
from the on-board INS) in red.

As can be seen from this �gure, both linear and rotational
velocities are well estimated, but noisy. We seek to model the
underlying velocities in a probabilistic regression framework,
a natural choice of which is the Gaussian Process (GP) [18].
If we consider the input dataX as time, and the outputy
as the velocity (linear or rotational), then the GP de�ned for
test inputX ? is de�ned to be:

f ? j X; y ; X ? = N ( �f ?; cov(f ?)) (2)

where �f ? andcov(f ?) are the mean and covariance functions:

�f ? , E[f ? j X; y ; X ?]

= K (X ?; X )[K (X; X ) + � 2
n I ]� 1 (3)

cov(f ?) = K (X ?; X ?)�

K (X ?; X )[K (X; X ) + � 2
n ]� 1K (X; X ?) (4)

where � is a hyperparameter for the given kernel function.
Figure 5 shows a GP trained - by maximizing the marginal
log-likelihood - over a portion of the rotational velocity data
in Figure 4.

Although it is computationally expensive to maintain sep-
arate processes for both the linear and rotational velocities,
the windowing property renders the entire algorithm constant

1The INS system used is an Oxford Technologies dual-antenna 3042
unit with OmniStar HP corrections, with quoted sub-decimeter accuracy.
However, as shown in [1], this bound is regularly violated.

Fig. 5: The mean function of a GP (trained by maximizing the
marginal log-likelihood) over a section of the rotational velocity
data shown in Figure 4. Shown are the1� bounds, and the mean
function (solid blue). Comparing the ground-truth data (dashed-red)
we see that the GP mean function captures the behaviour of the
rotational velocity.

complexity (O(1)). Now that we can estimate the vehicle
velocities, we turn our attention to generating the point-cloud
Q. We de�ne a laser-scan at timet to be:

s(t) = f r 1; : : : ; r541; i 1 : : : i 541g (5)

wherer n is the laser range reading (in meters) for beamn
of scans(t), i n is the intensity, andS = f s(1); : : : ; s(n)g is
a set of scans. Given the estimates of the velocities from the
GP mean, we can now integrate the state equation (Equation
1) to produceSE2 poses -x s(t) - for each scan. We can
then project the laser data pointsS(t) from x s(t), thereby
generating the swatheQ. The transformation that best aligns
Q with P will be the current pose,x(t). We now turn to the
localization procedure itself.

B. Localisation within the prior map

We provide here an overview of the localization procedure,
outlined fully in [1]. Once we have developed the swathe over
the window period, we need to determine the alignment with
the survey point-cloudP. We seek the transformation̂T that
brings the point-cloudsP and Q into optimal alignment by
minimizing an objective functionf :

T̂ = argmin
T

f (P; !; v; T ) (6)

The swathe referenced within the survey, is a function of
angular and linear velocity pro�les, LIDAR data and the
transformation we are estimating. It is factored as:

Q 7! g(!; v; S) � T (7)

where Equation 7 generates the swatheQ, and uses the trans-
formation T to project it into a global frame. SinceP and
Q are distributions of points in space, the Kullback-Leibler
divergence is a natural probabilistic method of comparing
the similarity of such distributions. We develop the following
cost function:

f (P; Q) =
NX

i =1

H(Q)( i )log
H(Q)( i )
H (P)( i )

(8)



Fig. 6: A plot of the error in linear velocity from the scan-matching algorithm over the course of the Woodstock run, as compared to the
commercial-grade INS system on the vehicle. In some locations, the error is in excess of6m=s. Typical causes of these errors - detailed
in Figures 7a through 7c - are ground-strike induced from pitch and roll (dotted-dashed, top-right, top-centre), oncoming vehicles (dashed,
top-left) and vehicles on the road-ahead (dotted, bottom-left). We seek to develop a positional scan-matching �lter that can deal with these
erroneous velocities.

whereH(:) is used to represent the histogramming operation,
and N is the cardinality of the distribution. Note that if we
only require a translation and rotation then we can simply
project points down into the globalXY plane in order to
generate the histograms. The entire localization procedure is
outlined in Algorithm 1.

Algorithm 1 Localization Procedure

1: procedure RUNLOCALISATION(P )
2: T̂  T init

3: loop
4: fS h ; Sv g  (sh

1 ; : : : ; sh
n ); (sv

1 ; : : : ; sv
n )

5: V ; 
  EstimateV elocities (Sh )
6: Q  BuildSubmap(V ; 
 ; Sv )
7: Tguess  P redictNextP ose(T̂ ; V ; 
)
8: T̂  SolveF orT ransformation (P; Q; Tguess )
9: end loop

10: end procedure

The algorithm is seeded with an initial pose guess,T ,
at system initialisation. It is then run continuously, taking in
new horizontal and vertical scan data (Sh ; Sv ). The horizontal
scan data is then used to estimate the linear and rotational
velocitiesV and 
 by running an ICS-based scan-matcher.
Once we have an estimate of the velocities, it is possible
to build the local submapQ, that is then used in the pose
estimation step to solve for the current best pose estimateT .

The objective function is minimized by considering the
KL-divergence between theXY -projected probability distri-
butions of the 3D points of the swathe vs. the prior point-
cloud. This information-theoretic approach allows for a more

robust estimator in the face of drastic long-term scene change
- the approach is fully detailed in [1].

Unfortunately, the above framework is not robust to highly
dynamic environments. Figure 6 shows a velocity error plot
over the entire Woodstock run, obtained by comparing the
velocity from the INS system against the velocity obtained
from the scan-matching algorithm.

Visible are a number of regions that cause the scan-
matching algorithm to perform poorly. Typical reasons for
errors are from vehicle pitch/roll (Figure 7a), oncoming
vehicles (Figure 7b) and cars in front of the vehicle (Figure
7c). In all these �gures, estimated velocity is in (solid) blue,
and ground-truth velocity in (dashed) red.

This of course leads us to believe that we require a sensor
model that is capable of �ltering out areas of the environment
that are in motion, relative to the vehicle (traf�c, people, and
ground-strike as it appears in LIDAR ranging data). As an
example of this, Figure 8 shows two scans - separated by one
second - from the horizontal LIDAR overlaid into a common
frame using the INS data.

As we can see from the �gure, the majority of the scene
is static in the period between the two LIDAR scans, and
this is apparent from the point overlap. However, the relative
velocity of the van in front leads to matching dif�culties -
this manifests itself in the underestimate of the true velocity
in the adjacent plot of Figure 7c. To prevent this degenerate
behaviour, we seek to learn apositionally-dependentsensor-
model - that is, a model that will enable us to �lter incoming
scan-points, given what we know about our position in the
world.



(a)

(b)

(c)

Fig. 7: (a) Velocity errors arising from ground-strike after traversing
a raised pedestrian crossing, (b) velocity errors arising from the
relative velocity of oncoming vehicles, (c) velocity errors arising
from the relative velocity of preceding vehicles.

Fig. 8: A LIDAR-view of the scenario depicted in Figure 7c. Here
the relative motion between moving objects - the police van, vehicle,
and scene background cause points in consecutive scans to shift
substantially, introducing matching dif�culties. Points from one-
second separated scans (red and blue, respectively) are overlaid into
a global frame, and correspondences for the van are highlighted
in green. As the relative velocity between the van and vehicle is
less than the true velocity, velocity estimates are correspondingly
suppressed, as is visible in Figure 7c.

IV. POSITION-DEPENDENT SENSOR MODELS

To correct the aberrant behaviour in Figures 7a, 7b and 7c,
we need to learn a probabilistic �lter that will allow us to

remove points from scans that degrade the performance of the
scan-matching algorithm. We seek a way of probabilistically
�ltering points in scans that would be good match candidates,
given where we are in the world. We do notrequire a model
for every transient obstacle that we encounter - only a way
of determining good vs. bad regions of incoming scans.

We therefore introduce the notion of a position-dependent
sensor model. Consider a functionf that maps an input value
� to some output space:

f (� ) 7! �; � 2 Rm ; � 2 Rn (9)

Given that we are traversing a road network, a natural
representation of this mapping is a cubic spline, which will
map a �oating-point value to a global UTM (x; y) position
(R 7! R2).

If we consider data from the LIDAR as points in a polar
representation(�; r ), we seek to learn a masking probability
distribution p(X j � ; r ; � ), whereX i is a binary variable
denoting thetransiency of laser data observed in a discrete
f �; r g cell in the scan plane. To make the problem tractable,
we will learn such a model for discrete locations along the
spline parameterization, and therefore need a way of learning
the joint distributionp(X j � ; r ) for each discretization. This
measure captures how reliable sensor data from a certain cell
will be. Figure 9 depicts this model:

Fig. 9: A graphical representation of the model used to estimate
the transience of areas in the LIDAR scan plane, given a certain
location in the world,� . The unobserved latent states,X , constitute
the underlying transience of a certain location in the beam plane of
the LIDAR. The observed valuey are noisy estimates from training
data, estimated by observing point misalignment in consecutive laser
scans.

This transiency measure allows us to determine, prob-
abilistically, how much we can trust LIDAR data from a
particular point in the world. We observe - during training -
noisy estimates of the transiency of scan cells by overlaying
points from consecutive scans using DGPS-corrected INS
data. We then generate point correspondences across scans
using a nearest-neighbor search and culling points closer than
a certain threshold. The remaining points must therefore have
moved substantially between consecutive scans. The results
of this process can be seen in Figure 10.

We then histogram these observations to produce counts of
per-cell transience -z, which are then mapped into a (noisy)
observation of cell transience via the following process:

yi = � 1 +
2

1 + e�  j zi � � j
(10)



(a) (b)

Fig. 10: The transiency observations for the area shown in Figure 8.
By fusing INS and LIDAR data during the initial run, we can isolate
areas in the environment that exhibit a high degree of transience. In
addition to vehicles, ground strike (left-hand side) is also detected
- this is sensible, as ground-strike can be characterized as a fast-
moving obstacle. Some static structures are incorrectly observed as
transients - however, the number of these observations small. Figure
(b) shows a section of the approximating spline (grey) and the model
domain for a particular� value. (Must be viewed in colour.)

where Equation 10 is a generalized logistic function.zi

constitutes an observation of celli in which points from
consecutive laser scans differ by a certain tolerance, and
and � are scaling factors. This mapping function produces a
value in the rangef +1 ; � 1g, and encodes our belief that the
more motion we observe in a cell, the less likely that cell
is to be a good source of static scan-match candidates. By
modeling the joint distribution of latent and observed tran-
siency as a Markov Random-Field (MRF) we seek to learn
the joint distribution given some parametersp(X ; y j � ):

E (X ; y j � ) = � 1

X

i

X i � � 2

X

i;j

X i ; X j � � 3

X

i

X i ; yi

(11)

p(X ; y j � ) =
1
Z

expf� E(X ; y j � )g (12)

whereX are the set of binary labels (transient/not transient),
y are the noisy observations and Equations 11 and 12 are
the energy and joint probability terms as appear in [19].Z
is the partition function, ensuring that Equation 12 is a valid
probability distribution.

Given a set of parameters for the model, we can then
apply Iterated Conditional Modes (ICM) [19] - a greedy
optimization procedure - in order to infer the most probable
set of labels. Given the assumption that we can factor the
joint distribution as:

p(y j X ; � ) =
Y

i

p(yi j X i ; � ) (13)

we can, under the Markov assumption, write the distribution
for latent variableX i as:

p(X i j yi ; X nf i g) / p(yi j X i ) p(X i j X nf i g) (14)

where the notationX nf i g denotes all values ofX excluding

i . ICM, from a given initial labelling greedily changes indi-
vidual latent variable states until Equation 14 is maximized.
We do not focus here on the parameter estimation problem -
show that even with a set of sub-optimal parameters set we
can perform robust localization - it is not a limiting factor.
For the data gathered over the location in Figure 10 the most
probable labelling ofX is shown in Figure 11.

Fig. 11: The resulting locally maximalX given by applying ICM to
the observed data for the location shown in Figure 10 over the model
depicted in Figure 9. Note how the road has been learned to be an
unreliable place for scan-matching, given the presence of vehicles.
Also, the entryway between two buildings has also been classi�ed
as transient - this is due to repeated induced roll experienced by the
vehicle at that particular point.

Note - crucially - that we have not explicitly encoded
a vehicle model, but we have learned that roads are poor
places to utilize scan match points. We havealso learned
that ground strike is also undesirable - Figure 11 classi�es a
region between two buildings as a source of transient LIDAR
data. This is due to the repeatedly observed ground-strike
arising from vehicle roll in that particular area.

We now use this distribution at run-time to �lter out
LIDAR points that have a high probability of originating
from a transient object - be it a vehicle, or ground-strike from
the rolling/pitching motion of the vehicle. We show how this
allows us to localize the vehicle within a prior map over a
testing real-world route.

V. RESULTS

These results were obtained after running the algorithm
over a 9.5km of trajectory around the Woodstock loop
(depicted in Figure 1). Figure 12 shows the tracking results
over the route length of 2.7 kilometres (which is traversed
multiple times to obtain the 9.5km run) As can be seen from
this �gure, the system has managed to stay localized over the
length of the route, despite the large number of transients in
the environment as well as the pernicious effect of copious
ground at certain places.

Figure 13 contrasts the original ICS-based velocity - shown
in Figure 7c - with the correspondingly �ltered output using
the model in Figure 11.



Fig. 12: Tracking results around Woodstock. The estimated trajec-
tory is shown in red, with equally-spaced samples over time from
the ground-truth INS data in blue (denser areas correspond to slower
velocities - visible on the left-hand side of the image). The system
stays fully localized over the length of the route. (Must be viewed
in color)

Fig. 13: A comparison of the original (blue) and �ltered (green)
velocity estimates for the scenario depicted in Figure 7c, using
the described procedure. Learning a spatially-varying �lter that can
isolate regions of the environment that typically generate poor scan-
matching candidates leads to better velocity-estimation.

This �gure clearly shows that �ltering out transient LIDAR
data leads to better velocity-estimation, and hence localiza-
tion. The noise of the �ltered signal is somewhat higher than
the original - however, this is an artefact of the hard-masking
process, and is easily accommodated by using a proportional-
weighting approach. This issue is not critical, as the GP
regression deals comfortably with the slightly higher noise
ratio.

To further illustrate the advantages of this system, we
use the same measurement metric as in [1]. We de�ne the

Fig. 14: Relative displacements of estimated trajectories for both
the INS system (blue, solid) and the described system (red, dashed)
against a reference trajectory over 2.7km. As can be seen from
the �gure, our system shows a lower displacement to the reference
trajectory (apart from an initialization period, shown in the �gure).

displacement function for a posex(t) in a trajectory as:

� (x(t)) = jj x(t) � x̂S jj (15)

wherexS is de�ned to be the closest point in the trajectory
that de�ned the initial survey. This metric will capture both
the true deviation from the initial trajectory, as well as the
localization error for both the INS and the described system.
The crucial insight here is that, although we don't traverse
exactlythe same route twice, the trajectories are close enough
that Equation 15 will allow us to quantitatively compare
the performance of our system against a high-performance
INS system. Figure 14 shows the comparison of trajectory
estimates - relative to the survey trajectory - for both the
INS and the described system over one loop (2.7km) around
Woodstock.

As can be seen from Figure 14, the relative displacement
using our system is consistently lower than the INS - apart
from an initialization error - over the course of the route.
This con�rms our intuition that we will not suffer from the
same long-term drift as the INS (as detailed in [1]). Figure
15 shows the averaged relative displacement over the entire
9.5km route for both the INS and the Dual-LIDAR system:

This statistic shows that on average, the Dual-LIDAR
system exhibits less displacement to the reference trajectory
on multiple loops than the INS.

VI. CONCLUSIONS

We have presented a system based solely on 2D LIDAR
data that is capable of accurate localization within a prior map
over an extended outdoor route. We have shown how using
local velocity estimates from a scan-matching algorithm
fused with 3D point data carved out through vehicle motion
we are able to produce good localization estimates for a
9.5km run in challenging environs. We have shown that
learning a spatially-varying sensor model is a prerequisite
for allowing us us to estimate velocities in a much more
robust fashion, leading to correspondingly better positional
estimates. We quantitatively verify the performance of our



Fig. 15: Averaged displacement to a reference trajectory for both
the INS and Dual-LIDAR system over the same 9.5km route. This
box-plot shows that - on average - the Dual-LIDAR system exhibits
less displacement.

system using a displacement metric against a commercial-
grade INS, and show that the resulting pose estimates from
our system exhibit a lower displacement to a reference
trajectory over the driven route.

VII. F UTURE WORK

In this work we have focused on learning apositional
sensor-model - however, we are free to fold in other ex-
ogenous cues that inform the algorithm about context. For
example, we could make use of one of the many vision-
based car-detection frameworks as an extra input into our
probabilistic �lter (at the cost of adding additional sensors).

We have focused exclusively on the use of LIDAR for
both velocity and positional estimates, in order to develop a
stand-alone system. However, we could make use of vehicle
odometry when available in order to re�ne our velocity
estimates in degenerate areas.

In addition, we seek to learn how the probabilistic �lter
changes over time - for example, the effect of seasonal
changes on LIDAR data and temporal changes in traf�c �ow
- and this forms the basis for future work.
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