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Abstract— Recent successful approaches to autonomous ve-
hicle localisation and navigation typically involve 3D LIDAR
scanners and a static, curated 3D map, both of which are
expensive to acquire and maintain. In this paper we propose
an experience-based approach to matching a local 3D swathe
built using a push-broom 2D LIDAR to a number of prior
3D maps, each of which has been collected during normal
driving in different conditions. Local swathes are converted
to a combined 2D height and reflectance representation, and
we exploit the GPU rendering pipeline to densely sample the
localisation cost function to provide robustness and a wide
basin of convergence. Prior maps are incrementally built into
an experience-based framework from multiple traversals of the
same environment, capturing changes in environment structure
and appearance over time. The LIDAR localisation solutions
from each prior map are fused with vehicle odometry in a prob-
abilistic framework to provide a single pose solution suitable for
automated driving. Using this framework we demonstrate real-
time centimetre-level localisation using LIDAR data collected
in a dynamic city environment over a period of a year.

I. INTRODUCTION

Autonomous consumer vehicles have progressed from
a distant goal a decade ago at the first DARPA Grand
Challenge [1] to a common sight in some parts of the
world, with Google and other research groups demonstrating
fully autonomous prototypes that have driven hundreds of
thousands of miles [2], [3], [4]. The most successful of these
prototypes combine 3D LIDAR scanners with high-accuracy
GPS+INS systems to localise with centimetre-precision in
curated, globally consistent 3D prior maps [5].

A major obstacle preventing widespread deployment of
autonomous road vehicles is the prohibitive cost of the sensor
systems. At over £160,000 at the time of writing, a typical
autonomous vehicle sensor suite consisting of a Velodyne
3D LIDAR scanner [6] and an Applanix POS-LV GPS+INS
system [7] remains far beyond the price range of sensors
for consumer vehicles. This high cost has lead researchers
to investigate cheaper sensor alternatives such as cameras;
however, despite recent advances in exploiting consumer
cameras for autonomous vehicle localisation [8], [9], [10],
[11], many challenges remain before a truly reliable vision-
based localisation system is available for widespread use.

A secondary cost not often considered in the domain
of automated driving is the costs involved in building and
maintaining maps suitable for autonomous vehicle operation.
While Google Street View [12] serves as proof that it is
possible to produce 3D street-level maps on a truly global
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Fig. 1. Experience-based 2D push-broom LIDAR localisation in changing
city environments. A single 2D LIDAR is mounted to the rear bumper
of the car (top). Using odometry, a local 3D swathe (green) can be
produced (middle), which can then be simultaneously matched to multiple
prior experiences (bottom) collected over the lifetime of the vehicle. New
experiences are continuously collected in areas of high uncertainty, such
as in the presence of dynamic objects or changing structure, maintaining
localisation performance in complex city environments over time-scales of
multiple years.

scale with dedicated survey vehicles, these surveys only
capture the structure and appearance of the environment
once every few years. Surveying environments of this scale
at a rate required to capture scene variation relevant for
autonomous driving (such as changes in road surface, build-
ings, parked vehicles, local vegetation and seasonal variation)
would be prohibitively expensive for a map provider, and any
economic benefits of selling automated driving systems may
be offset by the constant need to re-survey the environment
that these autonomous vehicles operate in.

Instead, we propose that an “experience-based” approach



[13], as shown in Fig. [I] is a natural method of dealing
with environmental change over time in the domain of
autonomous vehicles. Rather than defining a single static
global map that all vehicles must use (and that must be
updated frequently), each vehicle independently builds and
maintains a set of “experiences”, capturing representations
specific to its operating environment. As the vehicle traverses
a route a number of times, it will intrinsically capture richer
representations of more dynamic locations as required -
since map creation is driven by the task-oriented metric
of localisation performance, it will record only the infor-
mation necessary to maintain consistent accuracy across all
locations. Once sufficient experiences are accumulated, the
autonomous vehicle may be sufficiently confident to, for
example, offer to take over control on certain sections of
a frequently-traversed route.

In this paper we present a probabilistic experience-based
approach to localisation with 2D push-broom LIDAR sen-
sors. We adapt the approach of [14] and build locally metric
3D “swathes” using odometry information, eliminating our
requirement for a 3D LIDAR. We use low-cost GPS ob-
servations as a “weak localiser” to find the most relevant
experiences for the current swathe, then localise the swathe
within the experience with a robust sample-based method.
If the current swathe is not matched to any experience with
sufficient accuracy, a new experience is created to capture
more detail of the environment in difficult localisation con-
ditions. We present a GPU implementation that can provide
real-time localisation at SHz and pose estimates at 40Hz, and
demonstrate large-scale localisation using over 50km of data
collected in a dynamic city environment over a period of a
year.

II. RELATED WORK

LIDAR-based localisation for autonomous vehicle appli-
cations has been addressed by several authors in the past
decade. Early approaches using a traditional horizontal pla-
nar 2D LIDAR configuration [15], [16] produced impressive
localisation performance at medium scales, but suffered from
out-of-plane effects such as ground-strike. Later approaches
[17] actuated the 2D laser to produce local 3D pointclouds
for localisation, to avoid the limitations of a fixed planar
LIDAR configuration.

The availability of 3D LIDAR sensors for the DARPA
Urban Challenge [18] enabled larger-scale robust localisation
approaches. In [19], a Velodyne LIDAR was used to build
a 2D orthographic reflectivity map of road surfaces, and
centimeter-accurate localisation was achieved using a particle
filter. This approach was extended in [20] to incorporate
reflectivity variance across multiple scans in a probabilistic
framework. A similar approach presented in [21] used a
2D height-map representation for navigating in a multi-level
parking garage.

To reduce the sensing cost of a LIDAR-based localisation
system for autonomous vehicles, [14] presented an approach
based on a 2D LIDAR in a push-broom configuration. By
integrating vehicle odometry over a short window, multiple

2D laser scans were combined to form a 3D representation
of path the vehicle has recently traversed. This local 3D
map was compared to a global 3D map using a grid-based
histogram approach, yielding centimetre-level accuracy and
increased robustness in comparison to a GPS+INS system.
This approach was extended in [22] to use 2D LIDARs for
both vehicle odometry and localisation relative to a prior
map.

The methods mentioned so far all localise relative to a
single static global map, either incrementally constructed
using a SLAM framework or offline using an optimisation
approach. However, environments for autonomous vehicles
contain highly dynamic objects (vehicles, pedestrians) as
well as features that change gradually over time (parked
vehicles, construction, seasonal changes), and a static global
map will fail to capture this variation. Rather than attempting
to combine multiple distinct representations of the same
environment into a single static map, the experience-based
framework of [13], [23] simply stores these representations,
dubbed “experiences”, and attempts to localise relative to
multiple experiences simultaneously. This approached pro-
duced impressive localisation performance over a 3-month
period at different times of day and in different weather
conditions, however still suffers from the limitations of
stereo-camera-based approaches, namely strong dependence
on scene illumination and a narrow convergence basin [24].

III. MAP AND SWATHE CONSTRUCTION

In this section we present our approach for local 3D
pointcloud construction from a 2D LIDAR sensor for the
purposes of localisation against a prior 3D map. We define
a 2D LIDAR scan s (t) at time ¢ as follows:

s(t)={dy...dm,r1..."m} (D

where d; is the laser distance measurement (in metres) for
beam ¢, and r; is the corresponding reflectance measurement
in the infrared spectrum. S = {s(¢p)...s(t)} describes a
collection of such scans over the time period [tg, t]. To com-
pose the 2D LIDAR scans S into a local 3D representation,
we must estimate the trajectory of the vehicle over a short
time period as follows:

cos fti W, (t) dt)

sin ( [, - (t) dt )
sin ( [ 1y (t) dt

X (t) = b (t)

where © (), (t) are the translational and rotational veloc-
ities of the vehicle estimated using inertial sensors, wheel
odometry or visual odometry. By integrating X (¢) over the
period [to,t], we produce the estimated continuous SE(3)
pose X (t). We then define the “swathe” Q as the local 3D
pointcloud produced by projecting 2D scans S along the
continuous-time trajectory X (¢) as follows:

Ql, =g (d,%,8)];, 3)
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Fig. 2. Local 3D swathe construction from 2D laser scans and vehicle trajectory. (a) By integrating vehicle velocities over a short period, a local SE(3)
estimate of the vehicle trajectory can be made over a short window. (b) Recent push-broom LIDAR scans are then projected at locations along the trajectory,
forming a locally consistent 3D point cloud of the environment. (c) For matching on the GPU, successive push-broom LIDAR scans are stitched together

forming a local 3D mesh representation.

where the operator ¢ (.) defines the pointcloud projection
function along the trajectory. Fig. [2illustrates the process of
building the 3D pointcloud from 2D scans along the vehicle
trajectory X (t).

For localisation, we require a prior 3D pointcloud against
which we can compare the swathe Q. In contrast to other
methods [20], [11] which construct a globally consistent 3D
map of the environment, we only require locally consistent
maps to compare the swathe against. Hence, we can ap-
ply the same process as above to construct swathes using
historical data. We denote each of these historical swathes
as an individual map m’ = (Q’,z"), where z' is the GPS
observations recorded along the trajectory used to construct
Q. The collection of all maps M is as follows:

M:{ml...m”} €]

By storing multiple maps of the same environment gath-
ered in successive traversals, we can simultaneously localise
against multiple “experiences” of the environment under
different conditions, increasing robustness at the cost of
additional storage space. Although each map is not globally
consistent, swathes built from short time periods [tg, t] are
sufficient for relative localisation against prior trajectories,
which enables teach-and-repeat [24] and relative-frame plan-
ning approaches.

IV. LOCALISATION

Given a swathe Qj built at the discrete update interval
k and a set of prior maps M, we can frame the process
of estimating the pose of the vehicle X; as a maximum-a-
posteriori estimation problem as follows:

X = arg max p (Xp [Xg—1, Uk, 2k, M, Qi) %)
X

where x5 is the pose of the vehicle at the previous interval
k—1, uy is the motion experienced between update intervals
and z; is the GPS observation (if available) at interval k.
Applying Bayes’ rule yields the following relationship after
removing unnecessary conditionals:

p(xk |Xk_1,Uk,Zk,M, Qk) X
P (X |Xk—1,uk7zk)Hp (Qk |x},,m") . (6)
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The first term p (xy |Xg—1, Uk, 2Zx ) is the location prior,
which models the likelihood of a pose using incremen-
tal odometry and GPS observations. The second term
p (Qi |x§, m") is the observation likelihood, which models
the likelihood of producing the observed swathe Qy, given a
hypothesised pose x within the prior map m’. The product
of the observation likelihood term for all ¢ permits the
simultaneous comparison to multiple prior maps m‘’. The
two terms will be examined in detail below.

A. Location Prior

The location prior term from Equation [f] can be further
expanded as follows:

P (X |Xk717ukazk) o p (X |Xk:717uk)Hp (Zk |x}'€71)

)
where p (X |Xx—1,uy ) is the motion model of the vehicle
and p (zj, |x}_, ) is the GPS observation likelihood for each
previous pose x;,_; in the local frame of map m* (which will
be discussed further in the following section). The odometry
update uy can be computed by integrating the continuous-
time vehicle velocity from Equation [2] as follows:

tr
u, = / % (t) dt (8)
th—1

where t;_; and {j; are the timestamps at update intervals
k — 1 and k respectively.

B. Weak GPS Localisation

The GPS observation likelihood term in Equation [7] is
not intended to provide centimetre-accurate location priors;
rather, it is used as a weak localiser, providing information
on which maps m® will be relevant for the current swathe
Q. By making use of occasional, inaccurate GPS observa-
tions when they are available, we sidestep the need for loop
closure algorithms to deal with global initialisation and the
“kidnapped robot” problem, but equally we do not rely on
GPS for accurate location estimates for path planning and
vehicle behaviour.

As our maps are only locally metric, both localisation
accuracy and map quality decrease as the distance between
the current pose estimate in the map x; and the location



of the GPS observation zj; increases. To represent this,
we approximate the GPS observation as a Gaussian with
covariance matrix X, then further inflate the covariance
based on the measurement as follows:

So= 5+ [z — h(x_p,m?)] [z — b (xf_,m')]"

. ©
where ¥, is the new covariance of the GPS location
estimate for map m’ and the function h (x};_l, mi) produces
the expected GPS observation at location xj,_; in map m’.
Therefore, only maps m’ containing prior GPS observations
z' close to the current GPS observation z;, will yield accept-
ably low location prior uncertainties, making them relevant
for swathe-based localisation as discussed below.

C. Swathe Localisation

While the location prior and weak GPS localisation alone
may yield an acceptable localisation solution for some ap-
plications, true centimetre-level accuracy can be obtained by
making use of 3D map and swathe information. However,
existing methods for comparing 3D pointclouds are often
computationally expensive [25], highly susceptible to ini-
tialisation noise and data association errors [26], [27], or
a combination of the two. Instead, we follow the approach
of [19], [21], [14] and project our 3D pointcloud onto a 2D
plane, yielding a 2.5D height and reflectance representation.

The x-y plane on which to perform the 2D projection can
be extracted in a number of ways: by fitting a ground plane
to laser data, transforming the pointcloud relative to the local
gravity vector using an inertial measurement unit or simply
assuming the vehicle is locally horizontal. More important
is the consistency of the method, such that the same ground
plane is used each time the vehicle revisits a location.

We can factor the observation likelihood term from Equa-
tion [6] by sampling from the swathe Q as follows:

P (Qi|xi,m’) = []p (qj [x}, m’) (10)
J
where each sample q; = (h;,r;) and h;,r; are the height
and reflectance sampled from location j. The sample likeli-
hood term p (q; |x}, m") can then be directly computed in
log-likelihood form as follows:

— log [p (qj ‘x;,mi)] o

[m—m@wwr

Oh r

. . 2

where the functions H; (.) and R; (.) produce the expected
height and reflectance values at sample location j in the
map, and o, 0, are the standard deviations of height and
reflectance respectively, based on intrinsic sensor noise from
the LIDAR scanner. Note that in contrast to methods that use
either reflectance only [19], [20] or height only [21], [14],
we combine both sources of information into a single cost
function to improve robustness.

D. Localisation Covariance

While the localisation problem in Equation [5] could be
solved using an optimisation-based approach to yield a
maximum likelihood estimate for the vehicle pose Xj, for
autonomous driving applications it is often desirable to also
know the uncertainty of the localisation estimate in order
to influence vehicle behaviour (e.g. reducing speed in areas
of high uncertainty, or reverting control to the driver of the
vehicle). Inspired by [28], we further sample the observation
likelihood term p (Qg |x}, m’) at a series of poses xéj)
to produce a mean offset pose X and uncertainty E_J}; as
follows:

_ 7 1T 7 7
K= Zx(j)x(j)p (Qk ‘X(jwm )

J

w= foj)p (Q’f ’Xl(j)’mi)
J
= 30 (Qu )
j

1 o1 1
x;:gu, S =K — T (12)

s 52
The resulting covariance matrix X% captures both the
intrinsic noise of the sensor and swathe representation as
well as the uncertainty in data association between swathe
and map. This serves to provide a realistic estimate of the
localisation uncertainty of the vehicle and a wide basin of
convergence, but at the cost of increased computational com-
plexity during sampling. The computational cost is addressed
in Section [V]

E. Map Update

Although the use of multiple maps allows us to robustly
localise against multiple representations of the same environ-
ment under different conditions, there will come occasions
when no map is sufficiently similar to the current swathe
to provide an acceptable localisation estimate. Indeed, this
will occur whenever the vehicle traverses a previously un-
mapped location. Rather than attempting to generalise from
existing maps, we simply add the current swathe and GPS
observations to the set of maps M according to the following
condition:

det (f]k> > pmax © M (Qy, z1) (13)
where f]k is the current localisation uncertainty and ppax
is a threshold for the maximum acceptable uncertainty. By
dynamically adding live sensor data to the map only when
localisation performance is insufficient, we are performing
“experience-based” navigation [13]; this ensures we capture
sufficiently rich representations of dynamic environments
without map storage requirements that are linear with op-
eration time.
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GPU-accelerated swathe-based localisation process. The prior 3D map (a) and local 3D swathe (b) are both converted to a mesh representation

and copied to GPU memory where they are both rasterised to 2D reflectance (c) and height (d) images using a top-down orthographic projection. The
prior map is rasterised at slightly higher resolution, and the swathe is rasterised at a number of orientation offsets 6 . ..60,. The height at each pixel of
the reflectance images is extracted from the z-buffer at no additional rendering cost. A tiled cost image (e) is formed by computing the squared difference
between reflectances and heights of the map and swathe at a series of additional translational offsets (z1,y1) ... (Zn,yn). The tiled cost images are
reduced to low-resolution cost images (f) using a mipmap reduction, where each pixel in the cost image equals the average cost of the entire tile at a
particular x, y, 6 offset. Finally, the cost images are stacked to form a cost volume, and a mean and covariance is fit to the volume (g), forming the swathe

localisation estimate.

V. GPU IMPLEMENTATION

While the sampling methods presented in Equations [I0]
and [12] produce high-quality likelihood and uncertainty es-
timates, they require a significant computational cost to
evaluate. However, since the samples are independent, it is
possible to exploit modern GPU processors to simultaneously
evaluate a large number of observation likelihoods in parallel.
In particular we exploit the mipmap reduction pipeline [29]
to efficiently reduce large tiled cost images with as many as
2M pixels to low-resolution reduced cost images (typically
16 x 16 pixels) in under a millisecond, where each pixel
represents the cost of a specific (z, y, #) offset. The following
steps outline the process of efficiently computing X}, and i};:

1) Compute 30 bounds for z,y,0 from % .

2) Convert the sparse map and swathe pointcloud to a
dense mesh representation.

3) Project the swathe mesh at a series of orientations
0y ...0, covering the 30 bound.

4) Rasterise the map and swathe to form 2D orthographic
height/reflectance images.

5) Compute the likelihood p (q; |xj, m’) for each pixel
in the height/reflectance images for a series of index
offsets (x1,y1)...(zn,yn) covering the 30 bound,
forming a tiled cost image.

6) Reduce the tiled cost image to a stacked reduced cost
image using an efficient mipmap reduction.

7) Fit a mean and covariance to the tiled cost image as
per Equation [12] to yield X} and i .

This process is illustrated in Fig. 3] For the above process,

implemented in OpenGL and running on a 2012 MacBook
Pro with an Nvidia GT650M GPU, swathe localisation can

be performed at SHz for each map in parallel, providing a
corrected odometry signal at 40Hz.

VI. EXPERIMENTAL SETUP

In this section we present our experimental approach to
demonstrating long-term localisation with an experience-
based 2D push-broom LIDAR approach.

A. Experimental Data

Our experimental platform is the Oxford University Robot-
car, an autonomous Nissan LEAF, depicted in Fig. m The
LEAF is equipped with a SICK LMS-151 laser scanner in
push-broom configuration mounted unobtrusively on the rear
bumper. Vehicle odometry is provided by shaft encoders on
each wheel, providing velocity estimates at 40Hz. Low-cost
GPS observations were simulated by querying the NovAtel
SPAN-CPT GPS+INS system for the raw, unfiltered GPS-
only position estimates at 1Hz.

The experimental dataset consists of six traversals of a an
approximately 8km route through central Oxford collected
between July 2013 and August 2014, illustrated in the map
section of Fig.[7} The traversals were made on public roads
at different times of day (from Sam to 7pm) and in different
traffic conditions. GPS signals were significantly degraded
in areas of tree cover and narrow streets. There is some
variation in the route over time, as different routes became
available or were closed due to construction work.

Ground truth position estimates for experiments of this
duration is challenging even for a tightly-coupled GPS+INS
system, as noted in [20]. Instead we make use of a stereo
camera mounted on the vehicle, and perfom an offline multi-
session pose graph optimisation combining visual odometry



(a) GPS+INS

(b) Ground truth

Fig. 4. Local 3D swathe (green) projected on to a map using (a) the
location from the GPS+INS system and (b) the metric ground truth derived
from a globally optimised pose graph based on hand-corrected stereo
visual odometry. Over a period of days or weeks, the GPS+INS position
estimate can drift by several metres, rendering it unsuitable for both online
autonomous driving and an accurate ground truth for offline localisation
benchmarking.

TABLE I
LOCALISATION ALGORITHM PARAMETERS
Symbol Parameter Value
t—to Swathe Period 10s
o GPS Covariance Smin z,y
Oh Height Std Dev 0.5m
or Reflectance Std Dev 100
n Number of x,y, 0 offsets 16
Pmax Max Uncertainty Threshold 0.1

and loop closures provided by FAB-MAP [30] to form
a globally consistent ground-truth metric map. While this
produces superior results to the GPS+INS system as illus-
trated in Fig. [ it is an expensive offline process requiring
manual verification of many loop closures and is thus only
suitable for generating ground-truth poses for benchmarking
an online localisation algorithm.

B. Localisation Algorithm Details

For localisation, we use the push-broom SICK LMS-151
LIDAR in combination with wheel odometry (to estimate
vehicle velocities o (t) ,w (t)) and GPS observations derived
from the SPAN-CPT. Table [[| lists the parameters used for
the localisation algorithms:

VII. RESULTS

In this section we examine the localisation performance
and number of experiences recorded while driving in a
changing city environment over a period of a year.

A. Localisation Accuracy

Of chief importance for autonomous driving is the accu-
racy of the localisation estimate. Fig.[3]shows the localisation
error distribution relative to metric ground truth for the
final traverse, demonstrating low longitudinal (0.38m), lat-
eral (0.07m) and heading (0.43°) RMS errors. Additionally,
the localisation performance of the GPS+INS system (with
inertial filter) was evaluated relative to metric ground truth,
illustrating that even high-cost inertial navigation systems are
subject to gradual drift over long periods of time, rendering
them unsuitable for long-term autonomy over multiple years.

For autonomous driving applications it also important that
the localisation uncertainty estimate does not underestimate
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Fig. 5. Longitudinal, lateral and heading error distributions relative
to metric ground truth for the localisation system on the final traversal.
The GPS+INS system (blue) maintains heading accuracy but is subject to
significant translational drift, rendering it useless for autonomous driving.
The swathe-only solution (red) is most accurate but only provides updates at
SHz. The 40Hz filtered solution (green) maintains accuracy while providing
high frequency updates. Due to the structure of the road the longitudinal
errors (0.38m RMS) are higher than the lateral (0.07m RMS) and heading
(0.43° RMS) errors, but all are sufficiently low for autonomous driving.

the true error, as this may lead to over-confident vehicle
behaviour in uncertain environments. To evaluate the covari-
ance estimates of the swathe-based localisation algorithm, we
use the normalised estimation error squared (NEES) [31],
which characterises the consistency of a state estimator. The
NEES score ¢, is computed as follows:

€L — (Xk — )A(k)T 2;1 (Xk — )A(k) (14)
where X;, and ) . are the estimated location and uncertainty
at update k£ and xj is the true location from ground truth.
Over all k the set of NEES scores ¢ will follow a chi-squared
distribution, and 3 can be deemed a conservative estimate
of the uncertainty if the following condition is satisfied:
Ele] < dim (x). (15)
For the SE(2) localisation problem, the expected NEES
score F [e] must fall below the state vector dimension of
3 for it to yield conservative estimates of the uncertainty.
Fig. |6| shows the distribution of NEES scores for the swathe
localisation experiment. The expected NEES score of 1.13
indicates that the localisation uncertainty estimates provided
by the filtering framework slightly overestimate the true
error, and therefore are conservative.



2013: Traversal 1

2014: Traversal 6

1 2 3

Number of Experiences

4 5 6

Fig. 7. Test environment with number of experiences recorded for each location after six traversals, along with example experiences in more dynamic parts
of the environment. Although a single experience is sufficient for many locations, many parts of the environment require between two and five experiences
to represent change over time, including short-term variation such as parked cars (left), pedestrians and vehicle traffic, as well as long-term changes in the
environment such as the construction of buildings (right). Images logged by onboard cameras are shown for illustration purposes only. Note that the only
location with six experiences is in fact the starting point of the trajectory; the filter reports a high localisation uncertainty when initialising using GPS (and
thus records a new experience) but quickly converges once the first swathe localisation is made.
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Fig. 6. NEES distribution for the final traversal relative to metric ground
truth. The expected value of 1.13 is well below the state dimension of 3,
therefore the estimated localisation uncertainty is consistently conservative,
and unlikely to confidently assert that the vehicle is in an incorrect location.

B. Experience-based Localisation

For each traversal of the environment, new experiences
were recorded at locations where the current set of ex-
periences did not sufficiently match the local 3D swathe.
Fig. [7] shows where experiences were recorded along the
trajectories, illustrating selected dynamic locations where
more experiences were required.

Table [ lists statistics for each successive traversal of the
test environment, including the cumulative distance travelled,
the longitudinal, lateral and heading RMS errors relative
to metric ground truth, the average NEES estimate, and
the percentage of the route retained as new experiences.
As expected, the entire first traversal is recorded as new
experiences for all locations in the environment. Each sub-
sequent traversal records fewer experiences, indicating that
the set of accumulated experiences yield sufficiently rich
representations of the environment to provide consistently
good localisation performance over the entire traversal.
Additionally, since the solutions from multiple maps are
combined in the filtering framework, the RMS localisation

TABLE I
EXPERIENCE-BASED LOCALISATION PERFORMANCE

Traversal | Cumulative | Xrms | Yrms | Orms | E[€] New
’ Distance ‘ Experiences

1 8.02km - - - - 100%
2 16.98km 0.49m | 0.32m | 1.51° | 1.96 38.14%
3 25.59km 0.44m | 0.25m | 047° 1.62 22.71%
4 34.57km 0.55m | 0.27m | 0.67° 1.75 14.08%
5 43.47km 0.45m | 0.16m | 0.61° | 1.28 7.34%
6 51.64km 0.38m | 0.07m | 0.43° | 1.13 1.09%

errors decrease from 0.5m, 0.3m and 1.5° after the first
traversal to 0.4m, 0.07m and 0.4° after the sixth traversal.
Finally, the expected NEES score E [¢] remains consistently
below the state dimension of 3, indicating that the localisa-
tion uncertainty estimate remains conservative and does not
become over-confident over time; a crucial requirement for
long-term operation in dynamic environments.

VIII. CONCLUSIONS

Dealing with structural change in an environment is
critical requirement for long-term operation of autonomous
vehicles in cities. The range of variation, from pedestrians,
vehicles, parked cars, seasonal change and even construction
of new buildings is something no static map approach could
adequately represent. In this paper we demonstrated real-
time, continuously-improving, centimetre-accurate localisa-
tion with low-cost 2D LIDAR sensors, with large-scale
experiments spanning a year of operation in a dynamic
city environment. We presented a probabilistic method of
combining localisations from multiple prior maps to improve
accuracy, and an efficient implementation that runs in real-
time on commodity GPU hardware. We believe that learning
from experience is the key to enabling true life-long auton-
omy for mobile robots in complex, changing cities.
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