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Abstract

In this thesis, we present three main contributions to laser-based detection and

tracking of dynamic objects, from both a model-based point of view and a model-

free point of view, with an emphasis on applications to autonomous driving. A

segmentation-based detector is first proposed to provide an end-to-end detection of

the classes car, pedestrian and bicyclist in 3D laser data amongst significant back-

ground clutter. We postulate that, for the particular classes considered, solving a

binary classification task outperforms approaches that tackle the multi-class prob-

lem directly. This is confirmed using custom and third-party datasets gathered of

urban street scenes. The sliding window approach to object detection, while ubiq-

uitous in the Computer Vision community, is largely neglected in laser-based object

detectors, possibly due to its perceived computational inefficiency. We give a second

thought to this opinion in this thesis, and demonstrate that, by fully exploiting the

sparsity of the problem, exhaustive window searching in 3D can be made efficient.

We prove the mathematical equivalence between sparse convolution and voting, and

devise an efficient algorithm to compute exactly the detection scores at all window

locations, processing a complete Velodyne scan containing 100K points in less than

half a second. Its superior performance is demonstrated on the KITTI dataset, and

compares commensurably with state of the art vision approaches. A new model-free

approach to detection and tracking of moving objects with a 2D lidar is then pro-

posed aiming at detecting dynamic objects of arbitrary shapes and classes. Objects

are modelled by a set of rigidly attached sample points along their boundaries whose

positions are initialised with and updated by raw laser measurements, allowing a

flexible, nonparametric representation. Dealing with raw laser points poses a signifi-

cant challenge to data association. We propose a hierarchical approach, and present

a new variant of the well-known Joint Compatibility Branch and Bound algorithm to

handle large numbers of measurements. The system is systematically calibrated on

real world data containing 7.5K labelled object examples and validated on 6K test

cases. Its performance is demonstrated over an existing industry standard targeted

at the same problem domain as well as a classical approach to model-free tracking.



Statement of Authorship

This thesis is submitted to the Department of Engineering Science, University of

Oxford, in fulfilment of the requirements for the degree of Doctor of Philosophy.

This thesis is entirely my own work, and except where otherwise stated, describes

my own research.

Dominic Zeng Wang, St John’s College

Funding

The work described in this thesis was in large funded by the Clarendon Fund. The

author was also in receipt of funding from Nissan Motor Co., Ltd. for the past year.



Acknowledgements

First, I would like to say my biggest “thank you” to my supervisors Professor

Paul Newman and Professor Ingmar Posner. During the course of the past four

years, there were moments of joy and moments of bitterness. It is their never-

ending support and encouragements that provided me with the confidence to pursue

directions to my heart’s desire. Without their guidance, I could never have hoped

to achieve what I have today.

I would also like to pass my thanks to all the lovely folks at the Mobile Robotics

Group where I worked, lived and laughed in the past four years, including both the

veterans, the past members and the new comers. It is a great pleasure and honour

to work amongst such a fun and ingenious bunch of people. It is a place filled with

fresh ideas.

Finally, thanks to my wife Yurika, for her love and support, especially when

the writing of this thesis coincided with such an important moment of our lives.

Without her help and understanding, I may never have glimpsed the light at the

end of this tunnel. Thanks also go to my mother, who traveled all the way from

the other side of the globe to provide help during the last days of my writing when

I needed it the most. Also, it is the long-term love, support and understanding of

my family during all these years behind the scenes that have given me the chance

to devote myself to my passion. Thanks to you all.



Contents

1 Introduction 1

1.1 The Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Common Approaches . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Variation on Sensor Modalities . . . . . . . . . . . . . . . . . 2

1.2.2 Variation on Methods . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Object Detection and Tracking 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Image-Based Object Detection . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Laser-Based Object Detection in 3D . . . . . . . . . . . . . . . . . . . 12

2.4 Laser-Based Object Detection and Tracking in 2D . . . . . . . . . . . 14

2.4.1 Model-Based Approaches . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Model-Free Approaches . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Conclusions and Discussions . . . . . . . . . . . . . . . . . . . . . . . 16

3 Segmentation-Based Detection 19

3.1 What Could Move? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Graph-Based Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 21

i



CONTENTS

3.2.1 EMST-Based Clustering Algorithms . . . . . . . . . . . . . . . 23

3.2.2 The RANSAC Paradigm . . . . . . . . . . . . . . . . . . . . . 25

3.2.3 The EMST-RANSAC Clustering Algorithm . . . . . . . . . . 26

3.3 Supervised Foreground Extraction . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2.1 Robust Normal Estimation . . . . . . . . . . . . . . 29

3.3.2.2 Linking . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3 Patch Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3.1 The EGBIS Segmentation Algorithm . . . . . . . . . 30

3.3.3.2 Application of EGBIS to Patch Segmentation . . . . 32

3.3.4 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.4.1 Spin Images . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.4.2 Shape Distributions . . . . . . . . . . . . . . . . . . 35

3.3.4.3 Shape Factors . . . . . . . . . . . . . . . . . . . . . . 35

3.3.4.4 Bounding Box Dimensions . . . . . . . . . . . . . . . 37

3.3.5 Patch Classification . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Evaluation of Three Segmentation and Classification Strategies . . . . 37

3.4.1 Three Different Schemes . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Patch Classification . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.3 Overall System Evaluation . . . . . . . . . . . . . . . . . . . . 42

3.4.3.1 Failure Cases . . . . . . . . . . . . . . . . . . . . . . 44

3.4.4 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Conclusions and Discussions . . . . . . . . . . . . . . . . . . . . . . . 47

4 Efficient Sliding Window Object Detection in 3D 49

4.1 The Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ii



CONTENTS

4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Linear SVM versus Nonlinear SVM . . . . . . . . . . . . . . . . . . . 54

4.5 The Duality between Sparse Convolution and Voting . . . . . . . . . 55

4.6 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 Non-Maximum Suppression . . . . . . . . . . . . . . . . . . . . . . . 64

4.7.1 Efficient Computation of Overlap between Extruded Boxes . . 66

4.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8.2 Evaluation Strategy . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8.3 Detection Performance . . . . . . . . . . . . . . . . . . . . . . 74

4.8.4 How Useful are the Features? . . . . . . . . . . . . . . . . . . 78

4.8.5 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.8.6 Comparison with the Segmentation-Based Approach . . . . . 84

4.8.7 A Practical Comparison with State of the Art Vision Methods 86

4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Model-Free Tracking of Dynamic Objects 90

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 The Challenge and Our Approach . . . . . . . . . . . . . . . . . . . . 91

5.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 An Unusual State Representation . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Sensor Pose Representation and Related Matters . . . . . . . 96

5.4.2 Model-Free Object Representation . . . . . . . . . . . . . . . 96

5.4.3 Static Background Representation . . . . . . . . . . . . . . . . 98

5.4.4 The Complete State Structure . . . . . . . . . . . . . . . . . . 98

5.5 Detection and Tracking of Dynamic Objects . . . . . . . . . . . . . . 99

iii



CONTENTS

5.5.1 Sensor Pose Prediction on Odometry Measurement . . . . . . 101

5.5.2 Dynamic Object Motion Prediction . . . . . . . . . . . . . . . 104

5.5.3 Observation Models for Raw Laser Measurements . . . . . . . 106

5.5.3.1 Boundary Points of Static Background . . . . . . . . 107

5.5.3.2 Boundary Points of Dynamic Objects . . . . . . . . . 107

5.5.4 Track Initialisation and Merging . . . . . . . . . . . . . . . . . 109

5.6 Hierarchical Data Association . . . . . . . . . . . . . . . . . . . . . . 112

5.6.1 Coarse Level Data Association . . . . . . . . . . . . . . . . . . 113

5.6.2 Fine Level Data Association . . . . . . . . . . . . . . . . . . . 115

5.6.2.1 Individual Compatibility . . . . . . . . . . . . . . . . 117

5.6.2.2 Joint Compatibility . . . . . . . . . . . . . . . . . . . 117

5.6.3 The JCBB-Refine Algorithm . . . . . . . . . . . . . . . . . . . 118

5.6.4 Recursive Updates in Triangular Form . . . . . . . . . . . . . 119

5.6.5 EMST-EGBIS Clustering . . . . . . . . . . . . . . . . . . . . 122

5.7 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.7.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.7.2 Evaluation Metric and System Training . . . . . . . . . . . . . 127

5.7.3 Test Case Performance : a Quantitative Evaluation . . . . . . 131

5.7.4 Test Case Performance : a Qualitative Evaluation . . . . . . . 134

5.7.5 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.7.6 An Evaluation of the JCBB-Refine Algorithm . . . . . . . . . 143

5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 Conclusions and Discussions 146

6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 146

6.1.1 Model-Based 3D Object Detection . . . . . . . . . . . . . . . 146

6.1.1.1 Segmentation-Based Object Detector . . . . . . . . . 146

iv



CONTENTS

6.1.1.2 Sliding Window Object Detection in 3D . . . . . . . 147

6.1.2 Model-Free Tracking with 2D Laser . . . . . . . . . . . . . . . 148

6.2 Discussions and Future Research . . . . . . . . . . . . . . . . . . . . 149

6.2.1 On the Sliding Window 3D Object Detector . . . . . . . . . . 149

6.2.2 On Improving Tracking Performance . . . . . . . . . . . . . . 150

6.2.3 On Combining Sensor Modalities . . . . . . . . . . . . . . . . 151

A Preliminaries 153

A.1 The Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . 153

A.2 Precision, Recall and F -measures . . . . . . . . . . . . . . . . . . . . 155

v



List of Figures

1.1 Research platforms deployed in this thesis: the Wildcat and the

RobotCar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 A toy example illustrating the concepts of weighted undirected graphs,

spanning trees and minimum spanning trees . . . . . . . . . . . . . . 23

3.2 Conceptual illustration of the EMST-RANSAC clustering algorithm . 26

3.3 An example scene segmentation with the EGBIS algorithm . . . . . . 33

3.4 Schematic illustration for spin image computation . . . . . . . . . . . 34

3.5 Precision-Recall curves for the three proposed schemes at the patch

classification level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Confusion matrices for the N-class scheme . . . . . . . . . . . . . . . 41

3.7 An representative system output of the F/B N-class scheme . . . . . 43

3.8 Challenging scenarios where detection may fail . . . . . . . . . . . . . 46

4.1 An illustration of the detection process for the sliding window 3D

detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Figures illustrating the duality between sparse convolution and voting 56

4.3 Motivation for shape factors in sliding window detection in 3D . . . . 63

4.4 An illustration of two intersecting extruded boxes . . . . . . . . . . . 66

4.5 Examples of labelled car instances from the training set of different

difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vi



LIST OF FIGURES

4.6 Precision-Recall curves for three different training strategies evalu-

ated on the test dataset at the three different difficulty levels . . . . . 76

4.7 Precision-Recall curves for three different training strategies evalu-

ated on the test dataset at non-inclusive difficulty levels . . . . . . . . 77

4.8 Relative importance values of the chosen feature set on the task of

detecting cars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.9 A comparison of variants of the detector trained with different selec-

tions of features evaluated at the moderate and easy difficulty levels . 80

4.10 An empirical analysis of the computational efficiency of the proposed

sliding window object detector . . . . . . . . . . . . . . . . . . . . . . 82

4.11 A comparative study with the segmentation-based detector proposed

in Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.12 A qualitative comparison with state of the art vision-based car detec-

tors evaluated on the KITTI dataset . . . . . . . . . . . . . . . . . . 87

5.1 Some motivating examples of real 2D laser scans illustrating the chal-

lenges faced by a moving object detector . . . . . . . . . . . . . . . . 91

5.2 An illustration of frame conventions and variable definitions . . . . . 95

5.3 An illustration of the bicycle model followed for sensor motion pre-

diction based on odometry measurements . . . . . . . . . . . . . . . . 101

5.4 Example frames from the datasets used for training and testing, high-

lighting the variety of challenging scenarios they cover . . . . . . . . . 126

5.5 The generation of the Precision-Recall curve for the proposed system,

and placed on common axes with Precision-Recall curves for the two

baseline systems for comparison . . . . . . . . . . . . . . . . . . . . . 128

5.6 An experiment to provide insights to the importance of Bayesian pa-

rameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

vii



LIST OF FIGURES

5.7 A comparative study of system performance as detection range varies,

and a look at the instantaneous performance at different places of the

test set for the proposed, and two baseline systems . . . . . . . . . . 133

5.8 Examples of the challenging but successful cases . . . . . . . . . . . . 135

5.9 Examples of common failure cases, both the recoverable and unrecov-

erable cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.10 Examples of cases where performance of the proposed and two base-

line systems differs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.11 An empirical analysis of the computational efficiency of the proposed

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.12 Comparison with a variant of the proposed system using Randomised

JCBB as a drop-in replacement for JCBB-Refine . . . . . . . . . . . . 144

viii



List of Tables

3.1 Details of the evaluation set for patch classification . . . . . . . . . . 38

3.2 Overall system performance by class of the three proposed schemes

for comparison at the detection level . . . . . . . . . . . . . . . . . . 45

4.1 Data splits for training and testing . . . . . . . . . . . . . . . . . . . 70

5.1 Details of datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Quantitative comparison on the test dataset between the proposed

and the two baseline systems . . . . . . . . . . . . . . . . . . . . . . . 131

ix



List of Algorithms

4.1 Computing score array as voting . . . . . . . . . . . . . . . . . . . . . 60

4.2 Non-maximum suppression . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Intersection test for extruded boxes . . . . . . . . . . . . . . . . . . . . 67

4.4 An algorithm for calculating the volume of intersection of two extruded

boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 An algorithm for calculating the volume of union of two extruded boxes 68

5.1 On new measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 On new laser measurement . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Coarse level data association . . . . . . . . . . . . . . . . . . . . . . . 114

x



Chapter 1

Introduction

1.1 The Challenge

Autonomous driving has become a prominent application domain for robotics re-

search. This is witnessed by a cornucopia of publications in this area (McNaughton

et al., 2011; Levinson et al., 2007; Huang and Teller, 2010). The success of the

DARPA Grand- (Thrun et al., 2006) and Urban Challenges (Urmson et al., 2008) as

well as Google’s endeavour to promote autonomous driving (Fairfield and Urmson,

2011) has heightened expectations that autonomous cars will be able to operate

in environments of realistic complexity. Our community’s aspiration to create self-

driving cars has further served to highlight the importance of – and to focus efforts

within – environment understanding.

Much research effort is being expended on the detection and classification of ob-

jects pertinent to navigating a realistic road environment, both using vision and laser

data. In particular, it is absolutely critical to be able to identify and subsequently

predict the motion states of dynamic objects on the road for an autonomous vehi-

cle to make safe decisions and traverse successfully through the busy urban streets

today.

1



1.2 The Common Approaches

Common players on the road such as cars, pedestrians and bicyclists exhibit

a large variety of motion patterns. Their appearance changes constantly as they

manoeuvre in the environment, interacting with neighbouring objects in a complex

manner. Even within a single object category, the intra-class variation is significant

– consider the diversity of human body shapes and the colours and appearance of

the clothes they wear, or the different sizes and designs of cars. Even for a single

object instance, non-rigid objects such as pedestrians may deform giving rise to a

changing appearance regardless of what sensor modality they are being observed in.

The challenge is greater in the context of autonomous driving because in this

scenario, the sensors mounted on the vehicle are themselves moving through the

environment, making all observations to any objects relative to the moving sensor.

In addition to making motion estimation of objects challenging without an estimate

of the sensor’s own motion, this also creates large changes to the appearance of static

objects due to viewpoint changes and occlusion, exhibiting dynamic-like behaviours.

This leads to significant ambiguity for dynamic object detection.

1.2 The Common Approaches

Existing approaches to the detection and tracking of dynamic objects differ signifi-

cantly in the sensor modality used, the emphasis on detection or tracking, and the

specific underlying method used.

1.2.1 Variation on Sensor Modalities

The most popular and most successful sensor modalities for object detection and

tracking deployed in the robotics community are arguably cameras and lasers. Camera-

based detection methods benefit greatly from the large body of work studied in the

Computer Vision community of generic object detection and tracking. The advan-

2



1.2 The Common Approaches

Velodyne 
HDL-64E S2

Bumblebee 2

SICK LDMRS

(a) (b)

Figure 1.1: Our research platforms deployed in this thesis. (a) The Bowler Wildcat
research platform, equipped with a Velodyne HDL-64E S2 3D scanner (highlighted
in red), and a Bumblebee 2 stereo camera (highlighted in green). (b) The RobotCar
autonomous driving platform equipped with a SICK LDMRS laser range finder
(highlighted in cyan).

tages in vision lie in the fact that objects are described by dense texture information,

making appearance a rich cue to suggest object locations. However, the projective

nature of the image forming process means information loss is inevitable. In par-

ticular, it is challenging to recover the scale and depth of a given object from a

single image alone. Methods using stereo cameras such as the Bumblebee 2 camera

depicted in Figure 1.1(a) may recover depth and scale by triangulation, however the

reconstruction becomes noisy as the distance to the camera increases. Hence track-

ing is usually constrained to the projected motion within the image plane. Because

of these limitations, vision methods tend to focus on the problem of object detection.

A laser measures the environment by directing a beam of light (usually in the

infrared range of spectrum) at a particular angle, and observing the amount of time

for the light to bounce back from a solid surface. Based on the time of travel, the

distance to the reflecting surface can be obtained, together with the reflectivity of

the surface calculated based on how much light that has been bounced back. The

laser beam may then sweep through a set of different angles to give a complete scan.

Each scan is thus composed of a set of angle and range pairs (also possibly with

3



1.2 The Common Approaches

the reflectance value), from which point locations (in cartesian frame if so desired)

can be worked out. A laser scanner is thus commonly referred to as a range-and-

bearing device. An example laser scanner is the highlighted SICK LDMRS scanner

in Figure 1.1(b).

If multiple beams are placed at different angles of elevation, and rotated around a

common vertical axis, points gathered by each laser beam in a single revolution may

be combined to form a 3D laser scan. The Velodyne HDL-64E S2 scanner is one of

such 3D scanners as depicted in Figure 1.1(a). The Velodyne HDL-64E S2 scanner

has 64 vertically spaced laser beams. The 3D laser scan formed is a collection of

points in the 3D space, and is sometimes referred to as a “point cloud”.

Because distances are directly measured in laser data, depths and scales are

explicit, making tracking a dynamic object’s motion in the 3D world more readily

achievable. However, compared with vision methods, laser data is inherently sparse,

the only appearance information available is the reflectance value of the reflecting

surface, which is far less descriptive than the dense, full colour texture information

available in an image. Because of these difficulties, laser-based methods tend to

focus on shape information, and operation directly on segments of points.

1.2.2 Variation on Methods

Methods on dynamic object detection and tracking may be broadly divided into two

categories. The model-based methods, and model-free methods.

In model-based methods, a set of object classes is first identified, for exam-

ple, cars, pedestrians and bicyclists. Then for each class, class-specific patterns

are extracted, either by a supervised machine learning approach to learn shape- or

appearance-based object detectors, or derive class-specific motion models for accu-

rate prediction of object motion.

In model-free methods, on the other hand, no prior knowledge is assumed on

4



1.2 The Common Approaches

the object being sought after, other than that they move. Thus detection is purely

motion-driven. In this case, successful detection relies on a good motion estimate.

Thus model-free methods tend to focus on object tracking.

Both model-based and model-free methods have their advantages. Model-based

methods, because detection is usually based on shape or appearance cues (rather

than motion), are able to detect both instantaneously moving objects and stationary

objects of the specified class which may potentially move. Model-free methods, on

the other hand, because of the lack of a semantic model, cannot identify stationary

objects.

Given the knowledge of the object class being sought after, the detection sys-

tem may actively look for the existence of such an object, reducing the chance of

missing an object because of, for example, segmentation error. Also, a sophisticated

motion model specifically designed for the object class may be used for tracking to

achieve better motion prediction. Model-free methods, in the absence of semantic

knowledge, have to resort to generic segmentation algorithms and generic motion

models.

However, model-free methods detect and track dynamic objects regardless of

their identities. The users of the road are far from common classes such as cars,

pedestrians and bicyclists, for examples, buses, trucks, motorcycles are also abun-

dant. To name all possible dynamic objects one may encounter in an urban driving

scenario including the most unexpected cases is challenging if not impossible, not

alone designing class-specific models to each of them. The model-based approaches

when faced with such a real-life diversity of object classes, soon become unscal-

able. This is the main advantage of model-free methods over their model-based

counterparts.
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1.3 Our Approach

The ability to tell the precise distance to a moving object, and estimate its velocity

in the 3D world with relative ease is an important requirement of an autonomous

driving system. While the 3D reconstruction accuracy of stereo vision-based meth-

ods is working their way to being commensurate with laser measurements, lasers

remain to be the most reliable modality for object detection and tracking in this

application domain. For this reason, in this thesis, we restrict our attention to

laser-based methods.

Figure 1.1 shows our research platforms deployed in this thesis: the Bowler

Wildcat equipped with a Velodyne HDL-64E S2 3D laser scanner, and the RobotCar

– a modified Nissan LEAF – equipped with the SICK LDMRS multilayer 2D laser

scanner designed for object tracking on automotive platforms. The works described

in this thesis cover our contributions to both the model-based and model-free ends

of dynamic object detection and tracking.

There are three parts to the main contributions of this thesis:

1. An end-to-end pipeline is proposed that, when fed by a raw 3D laser scan,

produces distinct clusters of points corresponding to object instances of the

classes car, pedestrian and bicyclist. In contrast to other segmentation-based

methods, we do not rely on a correct segmentation to be given, instead, we

start with an over-segmentation, and group the segments into distinct object

instances once their identities are known. In particular, we postulate that, for

the specific classes considered, solving a binary classification task (i.e. sepa-

rating the data into foreground and background first) outperforms approaches

that tackle the multi-class problem directly. This is confirmed using custom

and third-party datasets gathered of urban street scenes. We also present a

new variant of clustering algorithms based on the Euclidean Minimum Span-
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ning Tree with a RANSAC-based edge selection criterion for robustly grouping

segments to object instances.

2. A novel sliding window object detector in pure 3D is proposed. We demon-

strate its feasibility by taking full advantage of the sparse nature of 3D point

clouds, and prove the mathematical equivalence of sliding window detection

with linear classifiers and voting on a sparse feature grid. We then show both

its efficiency and superior performance on a large scale public benchmark-

ing dataset, and compare its performance quantitatively with the previously

proposed segmentation-based detector and qualitatively with the best vision-

based detectors to-date on the car class. To the best of our knowledge, this is

the first time the sliding window approach to object detection is taken to 3D

data.

3. A new approach to detection and tracking of moving objects with a 2D laser

scanner is presented. Objects are modelled with a set of rigidly attached

sample points along their boundaries whose positions are initialised with and

updated by raw laser measurements, thus allowing a nonparametric represen-

tation that is capable of representing objects independent of their classes and

shapes. In addition, we propose a hierarchical data association algorithm to

assign raw laser measurements to potential state updates, and present a vari-

ant of the Joint Compatibility Branch and Bound (JCBB) algorithm (Neira

and Tardos, 2001) that is suitable for associating a large number of measure-

ments, and derive an alternative set of recursive update rules based on the

triangular form representation of positive definite matrices for its efficient and

numerically stable computation.
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1.4 Thesis Outline

The thesis is structured as follows. First, we review existing approaches to object

detection and tracking in Chapter 2, including both vision-based and laser-based

methods, from both the model-based and model-free perspectives. Then, we take a

look at model-based detection of potentially moving objects. The most important

players on the road are cars, pedestrians and bicyclists. Our proposed segmentation-

based system for their detection will be the subject of Chapter 3.

The sliding window approach to object detection is arguably the most popular

method for object detection in the Computer Vision community (as will be discussed

in Section 2.2). However, it received little attention for laser-based object detection,

possibly due to its perceived computational inefficiency. We argue in Chapter 4 that

by exploiting the sparsity of the problem, the sliding window approach can be made

efficient for object detection in 3D, and demonstrate its superior performance.

To raise the situational awareness of the autonomous vehicle beyond the classes

car, pedestrian and bicyclist, we turn our attention to model-free tracking of all

moving objects in Chapter 5, and propose a nonparametric object representation

that is capable of representing objects of arbitrary shapes and classes.

Finally, in Chapter 6, we conclude the thesis, summarise our contributions, and

point at possible future directions to take advantage of the insights gained in our

studies for further improvements.

1.5 Publications

The material presented in Chapter 3 has been published in (Wang et al., 2012). The

model-free approach to dynamic object detection and tracking described in Chap-

ter 5 has been presented at the International Symposium on Robotics Research

(ISRR) 2013 as (Wang et al., 2013a), and was subsequently invited for submission
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to the ISRR 2013 Special Issue of the International Journal of Robotics Research

(IJRR). The journal submission titled “Model-Free Detection and Tracking of Dy-

namic Objects with 2D Lidar” is currently under review. A publication based on

the material covered in Chapter 4 is under preparation.
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Chapter 2

Object Detection and Tracking

2.1 Introduction

In this chapter, we survey existing approaches to object detection and tracking,

including both successful approaches to image-based object detection and laser-

based object detection and tracking. Again, our emphasis in this chapter will be

the detection and tracking of dynamic objects.

By dynamic objects, we include both potentially moving objects and the objects

that are actually moving. The potentially moving objects are inevitably defined in

a semantic sense, i.e. objects of certain classes that are dynamic in nature such as

the classes car, pedestrian and bicyclist. Even instantaneously stationary, the state

of these objects may change unexpectedly, therefore it is important to be aware of

them in all situations. The potentially moving objects, given the semantic nature of

their definition, are more suited to model-based methods.

On the other hand, the actually moving objects include anything that has some

instantaneous absolute speed (either linear or rotational), independent of shapes and

classes. Thus this class of moving objects are more suited to model-free methods.
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2.2 Image-Based Object Detection

Image-based object detectors commonly involve sliding a detection window through

the image at a set of possible object locations. Because of the ambiguity to the

object scale due to the projective nature of the image forming process as discussed

in Section 1.2.1, the searching process has to be repeated at each possible object

scale.

The human face detectors proposed by Sung and Poggio (1998) and Viola and

Jones (2001) are among the earliest examples of sliding window object detectors.

Sung and Poggio (1998) train a model for face patterns and a model for non-face

patterns by fitting a fixed number of Gaussian clusters to the training data with a

modified K-means algorithm. Then each window location is converted to a feature

vector by computing two distance measures for each of the clusters in the face and

non-face models respectively. The feature vector is then passed through a neural

network to classify whether the current window contains a face or not. Viola and

Jones (2001), on the other hand, apply the AdaBoost algorithm to select weak

classifiers based on simple features extracted from example face and non-face image

patches during training. A window is then slid across all locations and scales during

testing to use the trained AdaBoost classifier to detect faces. The features are defined

as differences of sums of rectangular subregions in the local patch, the Integral Image

is proposed for the first time to compute the features efficiently. Both methods

handle scale ambiguity by passing windows of different scales through the test image.

Dalal and Triggs (2005) propose a novel dense feature referred to as the His-

tograms of Oriented Gradients (HOG) for human detection. Here each test image

is first converted into a dense feature grid, and a linear SVM classifier is used to

classify each window location for the existence of a human or not. Felzenszwalb

et al. (2010) extend this work to include deformable parts attached to the central

11
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object window. Locations of the the deformable parts are included as latent vari-

ables and optimised away when computing the detection score for the central object

window. In both works, searching through object scales are taken care of by scaling

the image in contrast to scaling the detector compared with the methods to face

detection above.

Finally, we mention an important approach to object detection different to the

commonly encountered sliding window approach in vision. Variants of the Implicit

Shape Model (ISM) proposed by Leibe and colleagues (Leibe et al., 2008; Lehmann

et al., 2011) take a feature centric point of view. During training, sparse features

are extracted around the object with an interest point detector, then a codebook of

visual words are built. In addition, for each word, the relative location and scale of

the object at each occurrence of the word in the training set are noted. Then when

presented with a new test image, the image is first processed with the same interest

point detector to extract sparse features, and the features are then matched to the

codebook. Each matched feature then places “votes” in the continuous search space

of all possible object locations and scales based on the remembered object locations

and scales relative to the visual word that has been observed in the training set

before. The object in the image (if any) are finally found by a mode finding algorithm

(e.g. mean shift) from the distribution of the votes cast by the matching features in

the image as the object location and scale that have the most support.

2.3 Laser-Based Object Detection in 3D

In this section we turn our attention to object detection methods in 3D laser data.

Existing work on object detection and recognition in 3D laser data can be coarsely

divided into two categories.

The first commonly assumes that point clouds representing entire objects have
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already been segmented out of the data and, therefore, focus mainly on classifica-

tion. Examples include (Teichman et al., 2011), who in addition assume not only

the availability of segmented object clusters but that the segments are also correctly

tracked across frames and classifies a complete track of an object into one of the car,

pedestrian, bicyclist and background classes, and have later extended the framework

into a semi-supervised set-up (Teichman and Thrun, 2011). Lai et al. (2011b) com-

bine advantages of both shape and appearance with a Kinect-style sensor to classify

indoor objects using sparse distance metric learning with a Group-Lasso regulariser.

In this case the segmentation task is facilitated by the controlled environment the

objects are placed in (see (Lai et al., 2011a) for a description of their dataset). En-

dres et al. (2009) on the other hand take an unsupervised approach to discover object

categories in the presented segments using Latent Dirichlet Allocation (LDA).

The segmentation of desirable objects from amongst an often large amount of

background clutter in 3D laser data is a pivotal precursor to such systems. Existing

work includes that by Douillard et al. (2011), where the existence of a ground plane

is assumed and object segments are derived in an unsupervised fashion from non-

ground data only. Klasing et al. (2008) perform clustering based on Euclidean

distance between individual laser points, implicitly assuming that objects are not

connected by scene clutter.

The second class of methods label a scene directly into regions belonging to

object classes (with possibly a background class), but do not distinguish separate

object instances. Anguelov et al. (2005), for example, take a supervised approach

based on a Markov Random Field (MRF) using local features computed at individ-

ual data points to produce globally consistent labels. Triebel et al. (2010) follow

an unsupervised approach, where a scene is first over segmented, and the result-

ing segments are taken as the basic elements of manipulation. Then two graphs

are constructed in the Euclidean space and feature space (with one feature vector

13



2.4 Laser-Based Object Detection and Tracking in 2D

extracted per segment) respectively. Then probabilistic inference is performed on

the graph in feature space by the use of a Conditional Random Field (CRF), the

results are in turn used to perform a second inference stage in the Euclidean space

to determine the final class labels. The scene segmentation obtained often represent

object categories that correspond to repeated patterns.

Both classes of approaches are notably different to common practices in vision-

based object detection surveyed in the previous section. Object detection in 3D

laser is largely driven by segmentation.

2.4 Laser-Based Object Detection and Tracking

in 2D

In this section, we survey the bodies of work covering object detection and tracking

in 2D laser data, and focus on approaches with an emphasis on dynamic objects.

Whereas the detection frameworks discussed in the previous sections fall largely

within the class of model-based methods, the approaches we examine in this section

cover both the model-based and model-free classes of methods.

2.4.1 Model-Based Approaches

In a model-based approach to object detection and tracking, the class of the objects

to be detected is known a priori, and objects are first detected based on a parametric

model of its shape and then tracked as separate entities. Examples of this class of

methods include the work by Granström (2012), who detects and tracks rectangular

and elliptical targets with a Probability Hypothesis Density (PHD) filter. The line

of works by Arras et al. (2007, 2008) focus on people detection. They train a

boosting classifier to detect legs of people and the detected legs are grouped into
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individual persons and tracked with a Multi-Hypothesis Tracker (MHT). The work

by Schulz et al. (2001) is similar in that they also identify legs of people in 2D range

scans and apply the Joint Probabilistic Data Association Filter (JPDAF) for robust

tracking. However, in their work, only moving persons are considered. Topp and

Christensen (2005) extend the work by removing this restriction, and extends the

model for a person to also include people whose legs are not directly visible. Zhao

and Thorpe (1998), on the other hand, restrict their attention to vehicles. In their

work, an Interactive Multiple Model (IMM) filter is proposed for vehicle tracking

that consists of three different motion models to cover a full range of motions for the

tracked vehicles. Another example of model-based vehicle detection and tracking

is the work presented by Vu and Aycard (2009), where a box model for vehicles is

assumed, and detection and tracking are solved simultaneously by optimising over

the best trajectories of the vehicles over a temporal sequence of laser scans using a

Data-driven Markov Chain Monte Carlo (DDMCMC) algorithm.

2.4.2 Model-Free Approaches

In a model-free approach, detection is based on motion cues. Examples of model-free

dynamic obstacle detection and tracking include systems deployed in the DARPA

Urban Challenge (Leonard et al., 2008; Mertz et al., 2013), which usually function by

first segmenting measurements from multiple laser range finders, and then extracting

geometric features from the segments. These geometric features are used to compile

a list of object hypotheses, dynamic objects are then extracted as objects having

a significant manoeuvring speed. Another body of work jointly estimates a static

map of the environment alongside the detection and tracking of moving objects.

Examples include Toyota’s tracking system (Miyasaka et al., 2009) and Wang’s sys-

tem (Wang et al., 2003) (later extended by Montesano et al. (2005) and Vu et al.

(2007)) that combines SLAM with dynamic object tracking. Both approaches take
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an occupancy grid representation of the environment, and use knowledge of occu-

pancy probabilities from the map to propose likely moving object detections. Biswas

et al. (2002) also take an occupancy grid representation, and detect non-stationary

objects by map differencing. The individual objects are then identified with an EM

algorithm. Wolf and Sukhatme (2005) keep two occupancy grid maps, one for the

static part and one for the dynamic part of the environment. However, the focus

there is mapping in dynamic environments, dynamic objects are not tracked as sep-

arate entities. Yang and Wang (2011) propose a system that jointly estimates the

vehicle pose and moving object detections using a variant of RANSAC, and track

merging and splits are handled via a decision tree based on spatiotemporal consis-

tency tests. Work by Tipaldi and Ramos (2009) and van de Ven et al. (2010) focuses

on the detection part of the problem, and formulates it under a joint Conditional

Random Field (CRF) framework for solving both the data association and moving

object detection problems. Finally, the work by Hahnel et al. (2003) is also relevant

where the authors formulate an EM algorithm to solve for a set of hidden indicator

variables for each laser point to determine whether it is static or dynamic.

2.5 Conclusions and Discussions

The detection and tracking of dynamic objects is a challenging problem. Existing

state of the art approaches tackle different aspects of its full complexity by making

simplifying assumptions. For example, most of the model-based approaches de-

scribed above assume dynamic players of the world fall within a set of fixed object

classes, and their appearances are captured by a set of fixed canonical models. In an

environment where the assumptions taken by a perception system hold with high

probability, the system is expected to function well. In a different environment,

different assumptions need to be made to handle the specific situation at hand. For
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example, a deer detector (Zhou and Wang, 2011) is required if deer are frequently

occurring enough to warrant attention. In a model-free approach, simplifying as-

sumptions are usually made to the motion of the objects. For examples, objects

are usually assumed to follow motions independent of each other. Without the

knowledge of the object class, complex interactions between the objects are usually

difficult to capture.

In the first parts of the thesis, we make the assumption that the dynamic objects

of interest in an urban driving scenario are dominated by a set of fixed semantic

objects such as the classes car, pedestrian and bicyclist, and focus on their detec-

tion. Existing approaches for object detection with 3D laser sensors taking similar

assumptions commonly follow a segmentation-based approach. In Chapter 3 we

contribute to the state of the art by studying the effectiveness of running multi-class

classification at the level of pre-segments, and document our findings that a binary

classification at the segment-level performs better for the task because segments

(parts) of objects do not contain enough information to reveal its class identity.

Segmentation-based approaches commonly fail of segmentation errors due to

unmodelled close interactions between objects. Chapter 4 provides a solution to

this problem by bypassing the segmentation step all together – the object location

is search exhaustively in the 3D space. In addition, we show that this apparently

expensive operation can be done very efficiently.

In Chapter 5, we make the assumptions that objects consist of anything that

has an absolute motion, and that their motions are constrained on the 2D ground

plane, and, finally, objects can be well-modelled as 2D rigid bodies. We contribute

to the state of the art by giving a novel representation of objects based on raw sensor

measurements under these assumptions that models well the variety of shapes and

classes of objects in a generic fashion.

Other authors focus on other aspects of the problem that fall outside the as-
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sumptions we make in this thesis. For example, the aforementioned work by Zhou

and Wang (2011) focuses on the detection of deer. Work by Luber and Arras (2013)

focuses specifically on the modelling of pedestrians, pedestrian groups and their in-

teractions. A large body of recent approaches study the interactions between objects

(Pellegrini et al., 2009; Yao and Fei-Fei, 2012; Koppula and Saxena, 2013; Sun et al.,

2014), which are not modelled explicitly by the methods described in this thesis.
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Chapter 3

Segmentation-Based Detection

3.1 What Could Move?

In this chapter, we take a model-based point of view, and focus on detecting po-

tentially dynamic objects – that is objects which could move – since their presence

and potential change of state will influence the planning of actions and trajectories.

We present an end-to-end system that detects instances of cars, pedestrians and

bicyclists from a raw stream of 3D laser data for autonomous driving applications.

The point detections produced by a 3D laser scanner is often unstructured, and

at its raw data stream format is merely a collection of three-dimensional position

values that do not contain any semantic information about the scene. It is important,

therefore, to be able to extract semantic information from such collections of point

locations by examining the shape of local point distributions. We wish to infer the

existence and location of operational-critical objects in the scene, achieving the aim

of detection.

However, before determining the identity of a particular subset of points con-

tained in the scene that may correspond to an object of interest, the interesting

subset itself must first be identified from the unstructured collection of points pro-
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duced by the sensor which may contain a large amount of background clutter that

is irrelevant to the system. Thus before solving the classification problem, the seg-

mentation problem needs to be addressed.

While a significant body of work targeted at the classification task exist, they

often assume (explicitly or otherwise) that a suitable segmentation of the 3D point

cloud into complete entities of interest is already available (Teichman et al., 2011)

or is straight-forward to obtain (Lai et al., 2011b). However, obtaining such a

segmentation is widely acknowledged to be a hard problem (Teichman et al., 2011;

Lai et al., 2011b; Endres et al., 2009) since the number of objects in the scene is

commonly not known and only a small proportion of the data contain relevant class

information.

In this chapter, we restrict ourselves to the detection of cars, pedestrians and bi-

cyclists directly from an unstructured stream of 3D laser data obtained from sensors

commonly deployed on autonomous vehicles, using shape information alone. Our

objective here is to group salient subsets of the raw data stream into contiguous

and complete entities corresponding to objects of interest without prior knowledge

of the number and location of the objects present. Since we have knowledge of the

object classes of interest (and the set of them is comparatively small) we employ a su-

pervised approach. We investigate the application of graph-based techniques to the

problem, and establish that, for the specific classes considered in this work, solving

a binary classification task (i.e. separating the data into foreground and background

first) outperforms approaches that tackle the multi-class problem directly.

First, we introduce the graph-based clustering algorithm used in this work in Sec-

tion 3.2. A system pipeline for the extraction of foreground data from a stream of

raw 3D laser points is then detailed in Section 3.3. After that, the performance of

the proposed system is evaluated in Section 3.4 and finally we conclude the chapter

in Section 3.5.
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3.2 Graph-Based Clustering

For the purposes of detection, each instance of objects (entities) of interest must be

correctly identified in the scene. However, the number of such objects existing in

a single scene is often unknown a priori. In this section we formulate this problem

as a clustering task and present an algorithm that adapts a popular approach in

the literature to cluster the scene into instances of single entities independent of the

number of objects contained in the scene.

Unsupervised data clustering has been an active area of research for decades

and many methods exist which circumvent the lack of prior information, such as

the number of clusters present. Variational Bayesian methods (Bishop, 2006), for

example, provide an attractive mechanism but are often plagued with convergence

issues. Jenssen et al. (2003) use an information theoretic measure for model selection

to determine the optimal number of clusters from amongst various possibilities.

The graph-based segmentation algorithm developed by Shi and Malik (2000) in

its basic form solves a binary clustering problem by optimising a measure called

the normalised cut, which is a normalised measure of inter-cluster similarity. It

is shown (Shi and Malik, 2000) that minimising this measure of normalised cut

simultaneously maximises a corresponding measure of intra-cluster similarity. The

proposed algorithm optimises the normalised cut approximately via a generalised

eigen-decomposition of the Laplacian matrix of the graph. Although in its basic

form, the Normalised Cut algorithm clusters points into two partitions, an extension

of the algorithm to the N -clusters case functions by recursively applying two-way

partitions starting from the full point set until the normalised cuts of the sub-

partitions reach a certain maximum allowed value (Shi and Malik, 2000). Although

in this form, the Normalised Cut algorithm handles the clustering of a point set into

an unknown number of clusters, the recursive nature of the process may introduce
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undesirable computational burdens.

An alternative set of popular graph-based clustering methods based on graph

cuts (Kolmogorov and Zabin, 2004; Isack and Boykov, 2012) formulates clustering

as an energy minimisation problem. The basic form again deals with partitioning

of a point set into two clusters. The insight to efficient optimisation of such energy

functions in the bipartitioning case lies in realising that, under certain conditions

(sub-modularity (Kolmogorov and Zabin, 2004)), by introducing additional fictitious

nodes to the point set (including a source s and a sink t), finding the global minimum

of the energy function corresponds exactly to solving the minimum cut problem of

the constructed graph, thus allowing the global minimum to be found in polynomial

time. Unfortunately, an extension to the N -partition problem is NP-hard (Kol-

mogorov and Zabin, 2004). The α-Expansion algorithm proposed by Boykov et al.

(2001) is an effective algorithm for finding a local minimum of the energy function

in such a scenario. The PEARL algorithm (Isack and Boykov, 2012) builds on α-

Expansion to fit multiple models to a point set in the presence of a significant level

of outliers, given geometric models for the clusters sought after. Unfortunately, to

take advantage of the algorithm, one needs to define geometric models for the classes

of interest car, pedestrian and bicyclist, which is far from a straightforward task.

Another popular approach to graph-based clustering uses a Euclidean Minimum

Spanning Tree (EMST) constructed from the data (Duda et al., 2000). EMST-based

techniques made their appearance in the literature in as early as the 1970’s (Zahn,

1971) and are often used when cluster boundaries are expected to be irregular.

We build upon this class of clustering algorithms by combining its strengths and

simplicity with the RANSAC paradigm (Fischler and Bolles, 1981), to effectively

tackle the lack of prior information on the number of objects in the scene.

Before we introduce the proposed clustering algorithm for entity segmentation,

we first briefly review the EMST-based clustering algorithms and the RANSAC
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Figure 3.1: (a) A simple example of a weighted undirected graph G. (b) A spanning
tree of the graph G. (c) The Minimum Spanning Tree of the graph G. In all cases,
numbers in circles denote nodes in the graph, and numbers on edges specify the edge
weights.

paradigm in the following sections.

3.2.1 EMST-Based Clustering Algorithms

An undirected graph is defined by an ordered pair G = (V , E) where V is a finite set of

vertices (nodes) and E is a set of unordered pairs (i.e. subsets of size 2) of the elements

of V that forms the edges on the graph. Figure 3.1(a) shows a simple example of

a graph. A spanning tree over a graph G is defined as a subgraph G ′ = (V , E ′) of

G that is connected and contains no cycles. If a weight function w : E → R is

defined over the edge set, for each possible spanning tree of a graph G, an overall

weight for the entire tree can be defined as the sum of the edge weights contained

in the tree. Then amongst all possible spanning trees of G, the one with the least

overall weight is termed the Minimum Spanning Tree (MST). Thus Figure 3.1(b) is

a spanning tree of the graph in Figure 3.1(a) but not the MST. The MST for the

graph in Figure 3.1(a) is given by the graph in Figure 3.1(c).

Given a finite point set P ⊂ Rd, EMST-based algorithms first compute the

Minimum Spanning Tree over the complete graph G = (V , E) where V = {i : pi ∈ P}

and E = {{i, j} : pi ∈ P , pj ∈ P , i 6= j}, with edge weights given by the pairwise
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Euclidean distances (thus the terminology Euclidean Minimum Spanning Tree). Let

us denote T ⊂ E as the edge set of the computed MST. A subset S ⊂ T is then

selected from T and removed from the tree. The resulting clusters are given by the

disconnected components of the graph (V , T \S).

Variants of the EMST-based clustering algorithms differ in the way S is formed.

For example, it was shown in (Asano et al., 1988) that, by removing the K − 1

longest edges in the EMST, a clustering is obtained which maximises the minimum

inter-cluster distance in the space of all possible disjoint partitions of the point

set into K groups. That is, if an arbitrary partition of the node set V into K

disjoint subsets is denoted by P = {Ci : i ∈ N, i ≤ K} where Ci ⊂ V denotes

individual components of the partition, taking S to be the set containing the K − 1

longest edges in T produces a partition (clustering) P ∗ that maximises the measure

mini,j min{||pk − pl|| : k ∈ Ci, l ∈ Cj}. When K is unknown, as in our case,

heuristics are used to determine which edges to remove.

For example, Zahn (1971) defines inconsistency measures using local statistics

of the edge weights in the MST and removes edges which violate any one of a set

of consistency criteria. Grygorash et al. (2006) propose a sequence of edge removal

operations such that the standard deviation of the edge weights is minimised. The

optimal number of clusters is found as the first local minimum in the standard

deviation reduction.

We explicitly take advantage of the characteristics of the sensor to select the edge

set S to be removed from the tree. For this purpose we need a popular paradigm

for robust model fitting and outlier detection which we review briefly in the next

section.
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3.2.2 The RANSAC Paradigm

Random Sample Consensus (RANSAC) is a paradigm introduced by Fischler and

Bolles (1981) to effectively tackle the problem of model fitting in the presence of

outliers (i.e. samples arising from a different distribution to that generated by the

model).

The paradigm assumes that the majority of data is dominated by a single model

M from which the data was generated with noise (e.g. points that lie within a

plane), within which embedded outliers arising from different physical processes or

systematic errors (e.g. matching errors for a Computer Vision application).

For each iteration, a hypothesis generation phase is carried out. First, a minimum

number of data points that uniquely determine a model are randomly sampled from

the data. For the example of plane fitting in R3, this is three non-colinear data

points. This minimum set is then used to generate uniquely a hypothesis Mh of

the modelM. Inliers ofMh are given by the data points that fall within a support

width w of Mh determined with a defined distance function from a data point to

the model Mh. Again, taking plane fitting as an example, an appropriate distance

measure would be the distance from the data point to the hypothetical plane.

This process of hypothesis generation is then repeated, and the hypothesis with

the greatest inlier support (the number of inliers to the hypothetical model Mh) is

chosen, whose inliers are taken as the true inliers contained in the data.

Finally, a robust estimator is applied only to the inliers found in the data to

produce the final model estimateM∗. In the example of plane fitting, this could be

a least squares fit to the inliers found.

The benefits of RANSAC not only include estimating robustly the model M

given data in the presence of both noise and outliers, but it also finds the set of

outliers in the data as a by-product of the process. This is the key for its application

to our clustering problem.
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Figure 3.2: The output of the EMST-RANSAC clustering algorithm when applied
to a synthetic scene containing fours objects of interest: a car, two pedestrians and
a bicyclist (all examples from real data). Different colours denote different clusters
produced. Cyan line segments show edges in the EMST.

3.2.3 The EMST-RANSAC Clustering Algorithm

For the particular case of our application, we observe that, as a result of the forma-

tion process of the MST, edges connecting points of the same object instance tend

to be of similar lengths (up to sensor noise) corresponding to the sample width of

the sensor. Edges linking individual object instances, on the other hand, tend to be

comparatively long.

Figure 3.2 conceptually illustrates this situation, where clustering is performed

on a synthetic scene containing a car, two pedestrians and a bicyclist (all examples

from a real dataset).

Hence we adopt a model M for the edge weights within object instances to be

we = const , (3.1)

where we denotes the weight of edge e ∈ T , and apply the RANSAC technique to

the set T of edges contained in the MST. The resulting set of outliers are taken as

the set S to be removed from T .
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3.3 Supervised Foreground Extraction

In subsequent sections we refer to this clustering algorithm as the EMST-RANSAC

algorithm. It can be used to segment a point cloud into multiple entities without

prior knowledge of the number of objects contained in the scene. However, since

the algorithm clusters data based on Euclidean distance, unwanted points belonging

to background clutter (i.e. anything other than the object classes of interest) must

be removed before the algorithm can be applied. In the next section, we formulate

this removal of background clutter as a supervised classification task. As a closing

remark, we note that the procedures we are about to describe are agnostic to the

specific clustering algorithm chosen, however the EMST-RANSAC algorithm is pre-

ferred for clustering 3D laser data under clutter-free conditions for its simplicity and

effectiveness.

3.3 Supervised Foreground Extraction

3.3.1 Overview

Assume we are given a set of points P ⊂ R3 generated by a 3D laser scanner. In

order to apply the EMST-RANSAC algorithm described in the previous section to

recover instances of objects of interest, the objects have to be separated by distances

greater than the sensor’s spatial sample width to be correctly identified as outliers.

However, this is not the case in a real 3D scan, where points belonging to background

clutter connect the individual objects.

Therefore it is necessary to split P into the set of foreground data, Pf ⊂ P – i.e.

those belonging to object classes of interest – and its complement, the set of back-

ground data Pb = P\Pf . Then the EMST-RANSAC algorithm will be applicable

on Pf to recover object instances.

We employ a bottom-up approach, starting by preprocessing the point cloud to

obtain an over-segmentation in the form of a set of point cloud patches. While we
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3.3 Supervised Foreground Extraction

do not require the segmentation to be perfect, it is necessary for each segment to

span no more than a single class of interest. Features are then extracted for each

patch and later used for classification of each patch into either belonging to Pf or

Pb. The steps in the pipeline described can be summarised as:

• Pre-processing to prepare for patch segmentation.

• Over segmentation of data input into patches.

• Extract features from each patch to project it into a fixed dimensional feature

vector.

• Classify the feature vectors into either the foreground class or the background

class.

We describe each of the steps of the system in detail in the following sections.

3.3.2 Preprocessing

In common with other works we perform an off-the-shelf pre-segmentation step

based on point normal estimates in the point cloud to obtain a set of super-voxels1

as atomic inputs for our entity segmentation approach.

The super-voxel segmentation algorithm requires as input an estimate of the

normal to the local surface at each data point and also requires the points P be

linked to form a graph (see Section 3.3.3 for details of the segmentation algorithm).

1The term “super-voxels” derives from the corresponding concept of “super-pixels” in the Com-
puter Vision community, where an image is over segmented into regions that become the atomic
elements of manipulation in later stages of processing. Since it replaces the role of ordinary pixels
as atomic elements of manipulation but is a sort of “super set” of the pixels, they are termed
“super-pixel” segments. Use of the word “voxel” here is appropriate because in the 3D space,
points span a volume.
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3.3 Supervised Foreground Extraction

3.3.2.1 Robust Normal Estimation

A popular approach for normal computation finds the local set of N nearest neigh-

bours for each datum pi and then, assuming local planarity, performs a least squares

fit to the neighbourhood.

Specifically, let us denote the set of N nearest neighbours of point pi by Ni.

Assuming the size of the local neighbourhood is sufficiently small that local surface

curvature can be ignored, the points pj ∈ Ni lie on a plane

P : n>p = c s.t. n>n = 1 . (3.2)

Then defining a distance function from a datum pj to the plane P by

d2(pj, P ) = (n>pj − c)2 , (3.3)

the normal ni at point pi is estimated as

(n∗i , c
∗) = arg min

n,c

∑

pj∈Ni

d2(pj, P ) s.t. n>n = 1 . (3.4)

By using a Lagrange multiplier, it can be shown that the solution to Equa-

tion (3.4) is given by an eigenvalue decomposition of the sample covariance matrix

Mi =
1

N

∑

pj∈Ni

(pj − p̄)(pj − p̄)> , (3.5)

where p̄ denotes the sample mean of pj ∈ Ni, and n∗i is given by the (normalised)

eigenvector of Mi corresponding to the least eigenvalue.

This approach has been shown empirically to perform best in terms of the trade-

off between robustness and computation overhead (Klasing et al., 2009).
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3.3.2.2 Linking

The segmentation algorithm we use for producing point cloud patches (super-voxel

segments) is a graph-based algorithm (see Section 3.3.3 for a detailed description).

Thus an edge set is needed for the algorithm to determine the connectivity of data

points that will also capture spatial relationships of the data (i.e. the existence of

an edge represents a sense of spatial closeness between its end nodes).

For these reasons, we employ N nearest neighbour linkage. That is

E = {{i, j} : pi ∈ P , pj ∈ NN
i } , (3.6)

where NN
i denotes the set of N nearest neighbours of the point pi, excluding the

point itself. So every point is connected to its N nearest neighbours.

3.3.3 Patch Segmentation

To obtain the initial patch segmentation, we follow the approach proposed by Triebel

et al. (2010) who adapted the popular segmentation algorithm introduced by Felzen-

szwalb and Huttenlocher (2004) to operate on normal estimates for points in P . We

review briefly this segmentation algorithm in the next section.

3.3.3.1 The EGBIS Segmentation Algorithm

The Efficient Graph-Base Image Segmentation (EGBIS) algorithm introduced by

Felzenszwalb and Huttenlocher (2004) takes as input a weighted undirected graph

G = (V , E), with the edge weights representing a dissimilarity measure between

adjacent points. The vertex set V is the set to be segmented, and the edge set E

represent likely similarities between nodes to be considered for segmentation.

If the weight function on E is denoted by w, then given a segmentation of V

into components Ci ⊂ V (Ci being non-empty, disjoint and
⋃
Ci = V), an internal
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difference for a given component Ci is defined as

Int(Ci) = max
e∈MST(Ci,Ei)

w(e) , (3.7)

where Ei = {e ∈ E : e ⊂ Ci} is the subset of E that fall within the vertices covered by

the component Ci, MST(Ci, Ei) denote the Minimum Spanning Tree of the subgraph

of G formed by Ci and Ei. Thus the internal difference for a component is given by

the maximum edge weight on the MST computed over the component.

A difference between two components Ci and Cj is also defined, and is given by

Dif(Ci, Cj) = min
u∈Ci,v∈Cj ,{u,v}∈E

w({u, v}) , (3.8)

that is, the minimum edge weight over all edges connecting the two components.

The algorithm starts with each vertex v ∈ V as a single segment, and traverses

the edges in order of non-decreasing weight, if the edge currently under consideration

is denoted by e = {u, v}, and the components the nodes u and v currently belong

to by Ci and Cj, then if Ci 6= Cj (that is, if u and v are not already in a single

component) they are merged into a single component if the criterion

w(e) ≤ MInt(Ci, Cj) (3.9)

holds. MInt(Ci, Cj) is the minimum internal difference between Ci and Cj defined

by

MInit(Ci, Cj) = min(Int(Ci) + k/|Ci|, Int(Cj) + k/|Cj|) , (3.10)

where k is the (only) parameter of the algorithm for controlling the coarseness (the

average size of a component) of the resulting segmentation.

It is proved in (Felzenszwalb and Huttenlocher, 2004) that the output of the

algorithm is one that is optimal in the sense that there is evidence of a boundary
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between any pair of components in the segmentation, and any refinements of the

segmentation by subdividing any of its components result in a segmentation that

violates the above statement. Evidence of a boundary between a pair of components

Ci and Cj is defined by the condition

Dif(Ci, Cj) > MInt(Ci, Cj) . (3.11)

The resulting segmentation often represent regions where the dissimilarity mea-

sure is uniform or slowly varying. Region boundaries often occur at abrupt changes

of the dissimilarity measure.

3.3.3.2 Application of EGBIS to Patch Segmentation

We follow the approach proposed by Triebel et al. (2010) to apply the EGBIS seg-

mentation algorithm in the case of laser data, and produce segmented patches of

the point cloud to serve as atomic units of manipulation in foreground extraction.

Consider the set of vertices V = {i : pi ∈ P} and the set of edges E as given

by Equation (3.6). The dissimilarity measure (edge weight function) w is defined by

w({i, j}) = 1− |ni · nj| , (3.12)

where ni denotes the normal estimated at point pi. Intersections between smooth

surfaces will thus give rise to segmentation boundaries. A sample result of applying

the EGBIS segmentation algorithm on the graph structure defined above is shown

in Figure 3.3.
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3.3 Supervised Foreground Extraction

Figure 3.3: Patch segmentation result for a sample scene. Points are coloured by
segment label. Segment colours were selected at random.

3.3.4 Feature Extraction

In order to determine if a given patch belongs to the foreground class or the back-

ground class, features have to be extracted from it that are invariant to translation,

rotation about the vertical axis, sampling density (due to the fact that laser detec-

tors are range-bearing devices, structures that are further away to the sensor tend to

be sampled more sparsely than those that are closer), and sensor noise. Thus each

patch in a training set is projected down into a point (vector) in the D-dimensional

feature space. By using invariant features, each patch, hence each feature vector in

the training set, serves as an example for a large class of similar patches seen from

different viewpoints and at different distances to the sensor so that their class can

be determined correctly from their proximity to the training example.

Therefore, for each patch, we construct a 120-dimensional feature vector by con-

catenating five sets of common invariant descriptors extracted from the patch. The

descriptors consist of 50-dimensional spin images (Johnson and Hebert, 1999), two

32-dimensional shape distributions (Osada et al., 2002), three-dimensional shape
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d

m

L

Figure 3.4: Schematic illustration for spin image computation. A hypothetical plane
is first revolved around an axis of rotation given by the line L, collecting points as
they hit the plane. Dashed plane denotes the starting location of the plane and solid
plane denotes its current location. Resulting points collected on the plane is then
binned into a normalised 2D histogram plotted here as a greyscale image.

factors (Westin et al., 1997), and the three dimensions of the bounding box of the

patch. In the following sections, we briefly review these features, and detail specific

modifications to our application.

3.3.4.1 Spin Images

Spin images were proposed by Johnson (Johnson, 1997; Johnson and Hebert, 1999),

and are popular invariant descriptors and one of the most commonly applied to the

domain of 3D laser data. The backbone of the feature extraction process is illustrated

in Figure 3.4, which consists of fixing one side of a hypothetical rectangular sheet

at a line L in space passing through a point m with orientation d. Then the sheet

is revolved about L collecting laser points along its way. After a full revolution,

the sheet is discretised into a regular grid and points collected in each grid cell

are counted. The result forms a two-dimensional histogram. This histogram is then

normalised by the total number of points fallen on the sheet such that the cell values

sum up to one.

We compute a 10 by 5 histogram for each patch taken at the mean location of a

patch m = 1
|P |
∑

p∈P p, where P denotes the set of points belong to a patch, along

the Z direction, which is defined by convention to be the vertical axis. This gives us,
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after vectorising the 2D histogram entries, a 50-dimensional feature vector. Because

the spin images are taken along the Z-axis, the feature vector is invariant to any

rotation about Z.

3.3.4.2 Shape Distributions

Shape distributions are a class of invariant descriptors for 3D models proposed by

Osada et al. (2002). In the construction of the feature, pairs of points are randomly

selected from the model (the point cloud patch in our case), then a shape function

is defined to map each pair of points selected to a scalar. The scalar outputs of the

shape function are then binned into a histogram with bin counts normalised to sum

up to one.

We define two shape functions f and g as

f(i, j) = ||pi − pj||2 (3.13)

and

g(i, j) = |ni · nj| , (3.14)

i.e. the Euclidean distance between the pair of points and the magnitude of the dot

product between the normals estimated at those points. Because these measures are

relative, the features computed are invariant to translation and rotation.

3.3.4.3 Shape Factors

Shape factors, though originally introduced in the context of medical imaging (Westin

et al., 1997), are closely related to Principal Component Analysis (PCA). Briefly,

a PCA finds principal directions local to a group of data points corresponding to

stationary values in the variance of the data as a function of direction.
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Specifically, a PCA finds stationary points with respect to n of the cost function

C(n) =
1

N

N∑

i=1

((xi − x̄)>n)2 (3.15)

for a set of points xi, where x̄ denotes the mean of the point set, subject to the

constraint n>n = 1 (because n is a direction).

Again, using a Lagrange multiplier similar to Section 3.3.2.1, the solution to Equa-

tion (3.15) is given by the eigenvectors of the covariance matrix

M =
1

N

N∑

i=1

(xi − x̄)(xi − x̄)> . (3.16)

The eigenvalues of M give the value of the variance along the eigenvector directions.

Hence the eigenvector corresponding to the largest eigenvalue represents the direc-

tion of largest variance while the one corresponding to the least eigenvalue gives the

direction of least variance.

Shape factors are normalised versions of the eigenvalues of M in R3. Specifically,

the three shape factors are defined as

cl =
λ1 − λ2

λ1 + λ2 + λ3

, cp =
2(λ2 − λ3)

λ1 + λ2 + λ3

, cs =
3λ3

λ1 + λ2 + λ3

, (3.17)

where λ1, λ2 and λ3 denote the eigenvalues of M in descending order.

In a case when λ1 � λ2 ≈ λ3, cl ≈ 1, cp ≈ 0 and cs ≈ 0. This corresponds

to a linear case, where the point set has a rod-like distribution in space. In a case

when λ1 ≈ λ2 � λ3, cl ≈ 0, cp ≈ 1 and cs ≈ 0. This corresponds to a planar case,

where the point set has a disc-like distribution in space. Finally, in a case when

λ1 ≈ λ2 ≈ λ3, cl ≈ 0, cp ≈ 0 and cs ≈ 1. This corresponds to a spherical case,

where the point set is spherically distributed in space. Any distribution in between

produces fractional shape factors representing components of the three cases present
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in the shape.

3.3.4.4 Bounding Box Dimensions

We also include the dimensions of a bounding box for the patch as part of the feature

set. In order to achieve rotational invariance, we take the width, height and depth

dimensions of a tight-fit bounding box for the patch along a local set of axes given

by the PCA eigenvectors.

3.3.5 Patch Classification

Now each patch has been mapped into a vector in the 120-dimensional feature space,

standard off-the-shelf classifiers can be applied to determine the membership of Pf
of a novel patch. We apply a well-known and effective classifier from the literature,

the Support Vector Machine (SVM) with the Radial Basis Function (RBF) kernel

for the classification task. Readers unfamiliar with SVM classification is referred

to Appendix A.1 for a brief summary.

3.4 Evaluation of Three Segmentation and Clas-

sification Strategies

3.4.1 Three Different Schemes

In our particular application, since it is relatively straight-forward to provide the

actual class label of a patch (if it is part of a car, a pedestrian or a bicyclist, rather

than it belongs to an object of interest), we propose two schemes of merging the three

foreground classes in the patch classification stage to produce a clean foreground-

background segmentation of the scene so that the EMST-RANSAC algorithm is

applicable.
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STC Wildcat Total
Car 13998 580 14578

Pedestrian 4619 0 4619
Bicyclist 4601 2 4603

Background 10000 30500 40500
Total 33218 31082 64300

Table 3.1: Details of the evaluation set composition for patch classification in units
of patches obtained from the initial pre-segmentation. Columns denote the source
of the data. See text for details.

F/B binary: in this scheme the three foreground classes are pooled into a single

class and a SVM classifier is trained to separate them.

F/B N-class: here, N one-versus-all SVM classifiers are deployed for the car,

pedestrian, bicyclist and background classes, respectively. After classification is per-

formed the outputs for the three foreground classes are merged into a single set.

These schemes are also benchmarked against a third, N-class, where the in-

dividual foreground classes are treated separately up to, and including, the object

detection level.

We evaluate our segmentation approach using both a publicly available dataset

as well as data gathered using our own autonomous vehicle. In particular, we make

use of the Stanford Track Collection (STC) dataset released to the public with (Te-

ichman et al., 2011). The STC contains a significant number of labelled objects

of interest (cars, pedestrians and bicyclists) and has the added advantage of being

gathered using the same sensor as deployed on our car. However, the dataset was

originally produced for the task of track classification and therefore contains only

instances of trackable objects. Scene clutter is especially underrepresented (see Ta-

ble 3.1). For this work we therefore augment the STC with data gathered using

our Bowler Wildcat research platform (Figure 1.1(a)) equipped with a Velodyne

HDL-64E S2 laser range finder.

38



3.4 Evaluation of Three Segmentation and Classification Strategies

3.4.2 Patch Classification

The performance of the three patch classification schemes was evaluated using the

data detailed in Table 3.1. Our approach is agnostic to the patch segmentation

scheme employed as long as it produces an over -segmentation of the data with

respect to the classes of interest. The parameters for the patch segmentation algo-

rithm used here (cf. Section 3.3.3) were determined empirically based on a qualitative

evaluation of performance on a small number of scenes. For classifier training and

evaluation, 70% of the data were selected at random to form the training set. The

remainder were used as a hold-out set for classifier evaluation. For scheme F/B

binary a single binary SVM classifier is trained for the foreground and background

classes. For schemes F/B N-class and N-class, four individual SVM classifiers are

trained in a one-versus-all configuration for each of the car, pedestrian, bicyclist and

background classes. Final class decisions are made greedily such that the winner

takes all.

We follow the common practice in the machine learning community and use

Precision-Recall curves to characterise quantitatively the performance of the three

schemes up to the task of patch classification. Readers unfamiliar with the Precision

and Recall evaluation metrics are referred to Appendix A.2 for a detailed description.

Figure 3.5 shows Precision-Recall curves generated for the three schemes using

the held-out data. Curves for F/B binary and each of the one-versus-all classifiers of

N-class were generated by varying the threshold on prediction scores (distances to

the decision hyperplane) returned by the binary SVM classifier, effectively shifting

the location of the decision boundary. The curve for the F/B N-class was generated

using a score defined as follows: let s = [s1, s2, s3, s4]> be scores returned by the

four one-versus-all classifiers with s1, s2, s3, s4 representing prediction scores for the

car, pedestrian, bicyclist and background classifiers respectively. We define a score
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Figure 3.5: Precision-Recall curves for schemes F/B binary, F/B N-class and N-
class. For the latter, individual curves are shown for each one-versus-all classifier.
Numbers in brackets represent the area under the curve (AUC).

for the F/B N-class classifier to be

s = max{s1, s2, s3} − s4 . (3.18)

Thus a decision boundary of s = 0 results in the same classification results as

taking the class label to be the one corresponding to the maximum of the N one-

versus-all prediction scores. And more positive values correspond to more confident

positive classification results in one or more of the three foreground classes and more

confident negative classification results in the background class, and vice versa.

It is evident from Figure 3.5 that the binary foreground/background separation

in this particular case presents an easier task for the classifiers than separating the

data into the individual classes car, pedestrian, bicyclist and background. When

combining the output of the classifiers for the three individual foreground classes

into a single class for the F/B N-class scheme the performance is almost identical to

that of the binary foreground/background classifier of the F/B binary scheme. Note
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Figure 3.6: Confusion matrices for the N-class scheme normalised to Precision (left)
and Recall (right) along the diagonal.

also that, by definition, the performance of the background-versus-all classifier of the

scheme N-class is identical to that of the binary foreground/background classifier

evaluated for the background class. This indicates that the separate classification of

the car, pedestrian, bicyclist classes introduces significant confusion amongst only

these classes which is remedied by collating them into a single foreground class. Fur-

ther evidence of this can be found in the confusion matrices for the N-class scheme

depicted in Figure 3.6. These imply that the biggest confusion between foreground

and background is caused by background data being mistakenly classified as car.

On the other hand, significant confusion exists amongst the individual foreground

classes. These results indicate that, for the task of separating car, pedestrian and

bicyclist from background in 3D laser data, the predominantly shape-based features

employed here are not sufficient. This lends further support to the intuitive notion

that over-segmented patches do not carry enough shape information to be classi-

fied correctly. Formulating the task as a binary classification problem, on the other

hand, remedies this problem as the foreground and background classes appear much

more amenable to separation when characterised by shape features.
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3.4.3 Overall System Evaluation

In this section we evaluate the performance of the overall system starting with a

raw data stream as input and performing preprocessing, patch classification and

EMST-RANSAC clustering. However, in order to demonstrate the efficacy of the

F/B-based schemes against the N-class scheme, the clusters obtained have to be

classified into one of the three foreground object classes. For this purpose we trained

a N -class SVM classifier using the same set of features listed in Section 3.3.4, now

computed over entire entity clusters (as opposed to patches representing object

parts) returned by the F/B binary scheme. For the F/B N-class scheme, since it

uses an N -class classifier in an intermediate stage, we retain the prediction scores

from patch classification and determine the class of an entity cluster by a majority

vote amongst the constituent laser points. The votes are weighted by prediction

confidence. For the N-class scheme, detections are obtained by running the EMST-

RANSAC algorithm over the three foreground regions independently and entity

cluster classes are self-evident.

The EMST-RANSAC algorithm involves only a single parameter: the inlier sup-

port width w to evaluate hypotheses (cf. Section 3.2). This parameter was trained

on 200 frames extracted from the STC dataset that are disjoint from those used in

producing the training data for patch classification. For the F/B binary and F/B

N-class schemes, a single value for w was determined since the EMST-RANSAC

algorithm is applied only once on patches belonging to the foreground class. For the

N-class scheme, EMST-RANSAC is applied to each of the object classes, resulting

in a three-element vector w. We trained the three support widths independently for

the N-class scheme.

To evaluate the performance of the system, we hand-labelled 100 randomly cho-

sen frames from a busy urban scene taken at a local town centre. These data are

entirely independent from those used during any of the training phases. A set of
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(a) (b)

(c) (d)

Figure 3.7: Sample frame showing results of the F/B N-class scheme. (a) Ground
truth scene labels. (b) Objects detected by F/B N-class. (c) Ground truth objects
in the scene. (d) Object clusters produced by F/B N-class. In both (a) and (b),
regions coloured red, blue, green and grey correspond to points belonging to the
car, pedestrian, bicyclist and background classes, respectively. In both (c) and (d),
different colours denote different object instances, with colours chosen at random.

qualitative results on a sample frame for the F/B N-class scheme is shown in Fig-

ure 3.7. For quantitative analysis we adopt evaluation metrics derived from those

used in a popular object detection challenge in the Computer Vision community, the

PASCAL Visual Object Classes Challenge (Everingham et al., 2010). In particular,

a detection is marked as correct if it overlaps with a ground-truth annotation more

than 50%. The measure of overlap is computed as

ao =
|Cp ∩ Cgt|
|Cp ∪ Cgt|

, (3.19)
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3.4 Evaluation of Three Segmentation and Classification Strategies

where Cp and Cgt denote sets of points belonging to the predicted and ground-truth

object clusters respectively. Each detection is assigned to at most one ground-truth

object, and multiple detections are treated as false positives. Table 3.2 thus lists

evaluation results for each of the foreground object classes obtained on the 100

evaluation frames containing, in total, 818 cars, 899 pedestrians and 39 bicyclists.

It is evident from observing the F1-measures (See Appendix A.2 for a definition

of F -measures) in Table 3.2 that the schemes based on a binary formulation of the

problem (i.e. clustering based on separating foreground from background) outperform

the N-class scheme. However, the latter still does surprisingly well considering the

findings in the patch classification evaluation. This observation can be explained by

the two extra degrees of freedom found in the EMST-RANSAC algorithm for this

scheme. For example, the system has the freedom to learn that instances of people

tend to be closer together than instances of cars. Performance differences between

the F/B binary and F/B N-class schemes are attributed to the difference in entity

classification schemes.

3.4.3.1 Failure Cases

In this section, we examine some interesting scenarios that often cause the detector

to fail. As an illustrative case, we show detection results returned by the F/B

N-class scheme. Similar qualitative performance is observed from the other two

schemes in these challenging scenarios.

Figure 3.8(a) shows the detection results in a case where a pedestrian gets in a

car. As shown in the figure, when the pedestrian approaches the car, the car and

the pedestrian are erroneously merged into one object. After the pedestrian opens

the door, the opened door may or may not be identified as one part of the same

car (see the middle two frames of Figure 3.8(a)). Finally when the door is closed,

the car is identified successfully. Figure 3.8(b) shows a case where a parked car has
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3.4 Evaluation of Three Segmentation and Classification Strategies

(a)

(b) (c)

Figure 3.8: Challenging scenarios from the 100 evaluation frames where detection
may fail. Points coloured red belong to detected cars whereas points coloured blue
belong to detected pedestrians. Separate object instances determined by the de-
tector are marked with separate bounding boxes. Most cases are due to complex
interactions between objects. Detection shown is given by the F/B N-class scheme.
(a) A scenario of a pedestrian getting in a car. (b) A parked car with an open boot.
(c) Segmentation failure erroneously returned two pedestrians passing each other as
one object instantaneously.
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3.5 Conclusions and Discussions

its boot open. In this case, the opened boot has been left out of the detected car.

Figure 3.8(c) shows two pedestrians passing by each other. Due to segmentation

failures, they are temporarily merged as one object when they are close together.

Most of these challenging scenarios arise from complex interactions of objects,

for example between a pedestrian and a car, and between pedestrians. It is these

interactions that are not well modelled in the current approach, where we assume

objects are spatially separated.

3.4.4 Timing

A prototype of the proposed system has been implemented in C++ and Matlab and

was deployed on a vanilla MacBook Pro equipped with a dual core Intel i5 proces-

sor (2.4GHz) with 4GB of RAM. For point normal estimation our implementation

takes advantage of the facilities provided in the Point Cloud Library (PCL) (Rusu

and Cousins, 2011). SVM training and prediction were carried out using LIBSVM

(Chang and Lin, 2011). For efficient EMST computation, we implemented the fast

EMST algorithm proposed by March et al. (2010). Based on measurements from

our 100 evaluation frames (containing of the order of 100,000 points per frame), the

per-frame run-time is dominated by the EMST-RANSAC clustering step (3.3s) and

the normal computation (1.7s).

3.5 Conclusions and Discussions

In this chapter, we presented an approach to segmenting objects of interest from a

raw data stream as commonly obtained from a 3D laser range finder. We focus on

the supervised extraction of potentially dynamic objects such as cars, pedestrians

and bicyclists for autonomous driving applications. The output of the system are

clusters of points representing entire objects, which is often assumed to be available
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3.5 Conclusions and Discussions

by work on object classification in 3D point clouds. We show that, for the specific

classes considered, solving a binary classification task (i.e. separating the data into

foreground and background first) outperforms approaches that tackle the multi-class

problem directly. This is primarily the case because parts of objects, as commonly

obtained by a pre-segmentation step, do not contain enough shape information to be

robustly categorised as belonging to the classes considered here. While our pipeline

is agnostic to the graph-based clustering algorithm used we explore the use of the

EMST algorithm, and extend it by a RANSAC-based outlier rejection step to au-

tomatically determine the number of clusters present in a scene. In doing so, we

explicitly exploit the sampling characteristics of the laser range finder. While the

results on patch classification presented here are particular to the popular car, pedes-

trian, bicyclist and background classes, the EMST-RANSAC approach is agnostic

to the choice of classes and, therefore, more generally applicable.

The proposed segmentation-based object detector has also been successfully ap-

plied to building high quality maps free of cars, pedestrians and bicyclists to improve

navigation (Stewart and Newman, 2012; McManus et al., 2013).

In the next chapter, we take a different approach to object detection, and in-

vestigate the applicability of the sliding window technique that is so ubiquitous in

vision-based detection methods to the case of 3D laser data.
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Chapter 4

Efficient Sliding Window Object

Detection in 3D

4.1 The Idea

The sliding window approach to object detection, as we have surveyed in Section 2.2,

is arguably the most frequently deployed paradigm for object detection in the Com-

puter Vision community. However, it has been largely neglected so far for laser-based

object recognition. In fact, the same paradigm seems to be equally applicable to a

3D point cloud as it is to a 2D image. The conceptual difference is not significant,

one only need to first discretise the space into a 3D voxel grid, and slide a window

through all three-dimensions instead of two in the case of images.

Perhaps what has been discouraging is the worry of the extra computational

burden introduced by the additional dimension, and dismissing sliding window ap-

proaches as intractable in 3D.

In this chapter, we attempt to give a second thought to this opinion, and noting

that there is one fundamental difference to the structure of a 3D point cloud and

that of a 2D image – a 3D point cloud is sparse in that most space is simply
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4.2 Related Works

unoccupied. Could we exploit this observation to our advantage and make sliding

window approaches tractable or even efficient in 3D? In fact, it turns out this is

achievable.

We show in Section 4.5 there exists a duality between sliding window detection

with linear classifiers and voting from only the occupied cells, reducing the amount

of computation to the bare minimum while at the same time maintaining exact

mathematical equivalence. This is our key contribution in this chapter.

To the best of our knowledge, this is the first time the sliding window approach

has been taken to object detection in 3D data.

4.2 Related Works

Perhaps most similar to our work is a body of work for monocular object detection

with 3D pose estimation (Hedau et al., 2010; Fidler et al., 2012). Objects are

characterised by 3D bounding boxes, and its location is slid in 3D. However, instead

of building a 3D feature grid, detection is achieved by projecting the image fronto-

parallel to each visible face of the object bounding cuboid and 2D features are then

extracted for that face from the projected image.

A line of work by Oliveira and colleagues (Oliveira et al., 2010; Oliveira and

Nunes, 2013) slides a window in 3D to aid image-based pedestrian detection as

follows. From the mounting position of their 2D laser scanner, the location of the

ground plane can be estimated to be at a fixed height below the laser and parallel

to the laser scanning plane. Then a 2D window of a fixed size fronto-parallel to

the camera imaging plane is anchored on the ground plane in 3D and slid through

discrete locations on the ground plane. The window at each location is then back-

projected into the image plane to bound a pedestrian hypothesis.

An alternative approach to object detection in 3D is to combine a 3D point cloud
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4.3 Overview

acquired with a laser scanner with an image taken by a camera, and project all laser

points to the image plane to form a depth image (Premebida et al., 2014; Quigley

et al., 2009; Lai et al., 2011a). Then the sliding window approach is applied on both

the ordinary image and the depth image in 2D.

The approach we propose in this chapter does not require an image. We take

solely the 3D laser data, slide a 3D detection window across a three-dimensional

feature grid. There is no projection involved.

4.3 Overview

The steps required in our sliding window detector is conceptually analogous to an

image-based sliding window detector. Figure 4.1 illustrates the process with a toy

example – a small section of a real 3D laser scan containing an object of interest, a

car in this case.

The input to detection is the 3D laser scan represented as a list of point locations,

together with reflectance values for each point. The locations of the points provide

the shape cues while the reflectance values provide some information about the

appearance of the object.

First, the point cloud is converted into a feature grid as follows. The 3D space

is discretised according to a fixed grid size, and each occupied cell (by occupation,

we mean at least one point of the point cloud falls within the bounds of the cell) is

converted into a fixed-dimensional feature vector. Details of our feature representa-

tion are explained in Section 4.6. Cells that are not occupied by any points map to

zero feature vectors (i.e. a vector of all zero elements). This definition is critical for

exploiting the sparsity of the problem. For example, as an illustration, the middle

left diagram of Figure 4.1 visualises the feature grid extracted over the section of

point cloud shown at the top left of the same figure. Here each coloured ball rep-
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Figure 4.1: An illustration of the detection process. The point cloud (top left) is first
discretised into a 3D grid (top right). For each occupied cell, points that fall within
the cell, together with their reflectance values, are mapped to a fixed-dimensional
feature vector (middle right gives an example of such an occupied cell highlighted
in both top right and middle left). Unoccupied cells are mapped to zero feature
vectors by definition. Thus the point cloud is converted to a feature grid (middle
left, each coloured ball represents a feature vector extracted for an occupied cell).
A 3D detection window then slides, in all three-dimensions, through the feature
grid (bottom left), a classifier evaluates each window location for the evidence of an
object. The point cloud with the detected object is shown at the bottom right. The
process repeats for each angle of rotation.
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4.3 Overview

resents a feature vector extracted for an occupied cell, the absence of a ball means

the cell is unoccupied and therefore its feature vector is zero. Note the sparsity of

the feature grid – coloured balls only occupy a small subset of the entire grid. In

particular, they lie only on a 2D surface of the world that the laser traces out.

Then conceptually, a three-dimensional detection window of a fixed size is placed

at one corner of the feature grid and slides down the x-direction then the y-direction

and then the z-direction. At each location of the detection window, the feature

vectors contained within its bounds are stacked up into a single long vector and

passed to a classifier (for example, an SVM classifier). The classifier then decides

whether the current location of the detection window bounds an object of interest or

not by means of returning a detection score (a higher score meaning more confident

that it bounds an object of interest). Section 4.5 is devoted to a mathematical

“trick” that makes this step tractable.

Finally, just as is the case for image-based sliding window detectors, the classifier

may fire multiple times centred around the true object of interest. Non-maximum

suppression must be applied over returned object windows to suppress duplicate

detections. Our strategy to non-maximum suppression is detailed in Section 4.7.

In contrast to image-based detectors, scale is not an issue here, because the

absolute scale (in metres) is known in 3D. However, rotation is a problem. Assuming

objects of interest are generally upright, that is, any rotation is constrained to be

about the vertical axis, in order to be able to detect objects of our interest in

arbitrary orientations, we discretise the full 360◦ into N orientation bins and run

the same detection process (cf. Figure 4.1) N times on the rotated point cloud for

each orientation bin.
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4.4 Linear SVM versus Nonlinear SVM

4.4 Linear SVM versus Nonlinear SVM

For our classifier, we choose the linear SVM (we refer readers unfamiliar with the

SVM classifier to Appendix A.1 for a review of SVM classification). This is far from

an arbitrary choice.

In the sliding window case, the feature vector for input to an SVM classifier is the

stacked feature vector composed of features extracted for each cell in the detection

window (which is itself a 3D grid, albeit small). For example, if the dimensions of

the detection window is (l, w, h), and the dimension of the feature vector for each cell

is n, then the overall dimension of the stacked up feature vector will be lwhn. Even

for moderate values of these numbers, e.g. let’s say (l, w, h) = (8, 4, 4) and n = 5,

this translates into a feature vector of 640 dimensions to go into SVM classification.

This is a quite large number of dimensions.

The above line of reasoning means that the feature vectors in the case of sliding

window detectors usually live in a high dimensional space already, making the extra

effort of the kernel trick that lifts the features up into a higher dimensional space

less justifiable. It is true that additional performance gains may be expected with

kernelised (i.e. nonlinear) SVM’s. In particular, classification using the Radial Basis

Function (RBF) kernel performs at least as well as the linear SVM (Hsu et al.,

2003). However, this statement only holds true if the hyperparameters of the SVM

cost function and the RBF kernel have been selected via cross-validation (Hsu et al.,

2003).

Another key difference of linear SVM’s compared with nonlinear SVM’s in the

case of sliding window detection is that the application of linear models to a sliding

window on a feature grid can be viewed as a convolution, and therefore standard

techniques such as the Fast Fourier Transform (FFT) can be applied to compute

the detection scores efficiently (Dubout and Fleuret, 2012). Unfortunately, this tech-
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4.5 The Duality between Sparse Convolution and Voting

nique does not apply in our case in 3D. Sparsity in the spatial domain does not imply

sparsity in the frequency domain, thus the Fourier transform of the sparse feature

grid will be dense. However, as we show in Section 4.5, we can view convolution

on a sparse feature grid from a different angle. This leads to an efficient way of

computing the detection scores fully exploiting the sparse nature of the problem to

our advantage. We take this to be our main contribution in this work. Note again,

the technique we are about to describe is only applicable in the case of a linear

classifier.

4.5 The Duality between Sparse Convolution and

Voting

We prove, in this section, the key result of this chapter. That is, sparse convolution is

mathematically equivalent to the process of voting. Before we begin the derivation,

some mathematical formality has to be set up.

The feature grid is naturally four-dimensional – there is one feature vector per

cell, and cells span a three-dimensional grid. Let us denote the l’th feature at

cell location (i, j, k) by f lijk. Alternatively, we will find it convenient to refer to

all features computed at location (i, j, k) collectively as a vector fijk. To keep the

presentation simple and clear, and to avoid cluttering the mathematics with multiple

subscripts, we refer to the tuple (i, j, k) by a single variable, e.g. φ = (i, j, k). If the

grid dimension is (NG
x , N

G
y , N

G
z ) then define the set Φ = [0, NG

x )× [0, NG
y )× [0, NG

z ),

thus φ ∈ Φ. Here the notation [m,n) is to be understood as the standard half open

interval defined over the set of integers, i.e. [m,n) = {q ∈ Z : m ≤ q < n}, and

“×” denotes the set Cartesian product. In this notation fijk can be written in the

cleaner form fφ (this indexing notation is illustrated in Figure 4.2(a)). Recall that

by definition fφ = 0 if the cell at φ is not occupied. We can capture this concept
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w✓ = w(2,3,0)

 = � = (i, j, k)
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x
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(a) (b)

Figure 4.2: (a) An illustration of the duality between convolution and voting. This
location of the detection window happens to include only three occupied cells (rep-
resented by the three coloured spheres). The origin (anchor point) of the detection
window is highlighted by the big blue cube at the corner, which happens to coincide
with the cell location ψ = φ = (i, j, k) on the feature grid. Being the origin of the
detection window, the anchor point has coordinates θ = (0, 0, 0) on the detection
window. The feature vector for the occupied cell at grid location φ = (i+7, j+3, k)
is shown as an illustration. The weights from the linear classifier are dense, and
four-dimensional. The weight vector for an example location θ = (2, 3, 0) is high-
lighted by a small magenta cube. All three occupied cells cast votes to the window
location ψ, contributing to the score sψ. (b) An illustration of the votes that a single
occupied cell casts. The location of the occupied cell is indicated by the red sphere
and the origins of detection windows that receive votes from it are represented by
blue cubes. This example is for a 8× 4× 3 window.

by defining a subset Φ∗ ⊂ Φ that represents the subset of cell locations that are

occupied. Thus φ ∈ Φ \ Φ∗ =⇒ fφ = 0. The feature grid is sparse.

Similarly, if the dimensions of the detection window is (NW
x , NW

y , NW
z ), then

define the set Θ = [0, NW
x )×[0, NW

y )×[0, NW
z ), we may denote the weights associated

with location θ ∈ Θ as wθ (an example is also illustrated in Figure 4.2(a)). In

contrary to the feature grid, the weights can be dense.

Finally, to save us from worrying about boundary conditions, we define the

feature vectors and weight vectors to be zero if its index is outside the bounds. For

56



4.5 The Duality between Sparse Convolution and Voting

example, wθ = 0 if θ = (−1, 0, 0). This extends the set of indices in both cases

(feature and weights) to the full Z3. We are now in a position to derive the main

result of this section.

Theorem 4.1. The detection score sψ for the detection window with origin placed

at grid location ψ can be written as a sum of votes from occupied cells that fall within

the detection window.

Proof. We begin by writing down the explicit form for the detection score sψ ac-

cording to the linear classifier

sψ =
∑

θ∈Θ

fψ+θ ·wθ , (4.1)

where “·” denotes the vector dot product. Since wθ = 0 whenever θ /∈ Θ, the

summation can be extended to the entire Z3, then after a change of variables φ =

ψ + θ we arrive at

sψ =
∑

θ∈Z3

fψ+θ ·wθ (4.2)

=
∑

φ∈Z3

fφ ·wφ−ψ (4.3)

=
∑

φ∈Φ

fφ ·wφ−ψ (4.4)

=
∑

φ∈Φ∗

fφ ·wφ−ψ . (4.5)

Equation (4.4) follows from Equation (4.3) because fφ = 0 ∀φ /∈ Φ, and Equa-

tion (4.5) then follows from Equation (4.4) because fφ = 0 for unoccupied cells by

definition.

Now, we note also, that wθ = 0 ∀θ /∈ Θ, this implies that the summation in

57



4.5 The Duality between Sparse Convolution and Voting

Equation (4.5) further reduces to

sψ =
∑

φ∈Φ∗∩Γψ

fφ ·wφ−ψ , (4.6)

where Γψ = {φ ∈ Z3 : φ− ψ ∈ Θ} = {φ ∈ Z3 : ∃θ ∈ Θ, φ = ψ + θ}.

If we now define the vote from the occupied cell at location φ to the window at

location ψ as vφ,ψ = fφ ·wφ−ψ, Equation (4.6) becomes

sψ =
∑

φ∈Φ∗∩Γψ

vφ,ψ . (4.7)

This completes the proof.

Theorem 4.1 gives sliding window detection on a sparse grid a second view, in

that each detection window location is voted by its contributing occupied cells. This

is illustrated in Figure 4.2(a). Indeed, we can also imagine votes being cast from each

occupied cell for different detection window locations in support of the existence of

an object of interest at those particular window locations. This view of the voting

process is summarised by the next corollary.

Corollary 4.1. The three-dimensional score array s can be written as a sum of

arrays of votes one from each occupied cell.

Proof. First, we note that s is a function that maps elements in Z3 to real numbers

(the detection scores at different window locations), that is s : Z3 → R.

With this view in mind, we turn our attention back to Equation (4.5), with our

previous definition of the vote vφ,ψ = fφ ·wφ−ψ, we arrive at

sψ =
∑

φ∈Φ∗

vφ,ψ . (4.8)

Now, v is defined for each φ, ψ ∈ Z3. Given a fixed φ, with some abuse of notations,
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4.5 The Duality between Sparse Convolution and Voting

we define a function vφ : Z3 → R such that vφ(ψ) = vφ,ψ ∀ψ ∈ Z3. It is now obvious

that the three-dimensional score array s can be written as

s =
∑

φ∈Φ∗

vφ . (4.9)

We now turn our attention to the structure of the 3D array vφ. By definition,

vφ(ψ) = vφ,ψ = fφ ·wφ−ψ, this implies that vφ(ψ) = 0 whenever φ− ψ /∈ Θ. Noting

that φ specifies the “id” of the occupied cell where the votes originate from, and ψ

the window location a vote is being cast to, this means only windows at locations

satisfying φ−ψ ∈ Θ receive possibly a non-zero vote from the cell. Now given a fixed

φ, define the set Λφ = {ψ ∈ Z3 : φ− ψ ∈ Θ} = {ψ ∈ Z3 : ∃θ ∈ Θ, ψ = φ− θ}. Then

the argument above limits the votes from cell φ to the subset of window locations

given by Λφ. Λφ includes all window locations whose origins are located in a window

of the same size as the detection window but going backwards from the cell location

φ. Referring to Figure 4.2(b), the red sphere in the figure represents the location of

the occupied cell φ and blue cubes indicate window locations that will receive votes

from φ, that is, the set Λφ.

With the insight of the structure of voting gained, Corollary 4.1 readily translates

into an efficient algorithm – Algorithm 4.1 – to compute the array of detection

scores s by voting. The new set of indices Ψ ⊂ Z3 introduced in Algorithm 4.1

is the set of window locations that possibly receive a non-zero score, that is, Ψ =

[1 − NW
x , NG

x ) × [1 − NW
y , NG

y ) × [1 − NW
z , NG

z ). Note that the real computation

happens inside the double loop where the dot product fφ · wθ is computed for all

φ ∈ Φ∗ and θ ∈ Θ. This, in fact, can be thought of as a single matrix-to-matrix

multiplication as follows. First, all the feature vectors for the occupied cells are

stacked horizontally to form a feature matrix F that is of size d×N , where d is the
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4.5 The Duality between Sparse Convolution and Voting

1 Function ComputeScoreArray(w,f)

Input: Weights of the classifier w and the feature grid f .
Output: The array of detection scores s.

2 // Initialise the score array with zero values.

3 for ψ ∈ Ψ do
4 sψ ← 0;
5 end

6 // Begin voting.

7 for φ ∈ Φ∗ do
8 for θ ∈ Θ do
9 sφ−θ ← sφ−θ + fφ ·wθ;

10 end

11 end

12 return s;

13 end

Algorithm 4.1: Computing the score array given weights of the classifier and
the feature grid. See text for details.

dimension of the feature vector per cell, and N is the total number of occupied cells.

Then the weights of the classifier are arranged in a weight matrix W of size M × d,

where M is the total number of cells of the detection window. That is, each row of

W corresponds to the transposition of some wθ for some θ ∈ Θ. Now all the votes

from all occupied cells can be computed in one go as V = WF. The M ×N votes

matrix V then contains for each column the votes going to the window locations Λφ

for some occupied cell φ ∈ Φ∗.

However, despite the elegance of this way of computing all the votes, it is in

practice more advisable to compute individual columns of V as vi = Wfi, where

with some abuse of notations, here vi denotes the i’th column of V and similarly fi

the i’th column of F, and add these votes to the score matrix at each iteration in

a batch. The reason being that the size of the entire matrix V is M × N , that is,

the total number of cells in the detection window (which can be in the order of a

thousand) by the number of all occupied cells in the entire feature grid (a fraction
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4.5 The Duality between Sparse Convolution and Voting

of the total number of cells in the feature grid). In most practical cases, V is simply

too large to be stored in memory.

Finally, as an aside, the next corollary verifies that sliding window detection with

a linear classifier is indeed equivalent to convolution.

Corollary 4.2.

sψ =
∑

φ∈Z3

w̃ψ−φ · fφ (4.10)

for some w̃ related to w.

Proof. The proof is trivial. Looking at Equation (4.3), we may define a reversed

array of weights w̃ by having w̃θ = w−θ for all θ ∈ Z3. Equation (4.10) then follows

from Equation (4.3).

We are probably not the first to notice the duality between sliding window detec-

tion with linear classifiers and voting. Lehmann et al. (2011) use a similar argument

to justify the voting process in the Implicit Shape Model (ISM). In their framework

named Principled Implicit Shape Model (PRISM), it is argued that the Implicit

Shape Model is in fact equivalent to the sliding window detector – they are two

sides of the same coin.

However, there are three main differences of the derivation presented in this

section to the PRISM framework (other than that they are applied to different

sensor modalities – Lehmann et al. (2011) focus on image-based object detection):

1. The “votes” are not cast into a continuous search space, they vote directly for

the discrete locations of the sliding window.

2. There are no codebooks generated, feature vectors are not matched to any

exemplars. Instead, votes are simply the scalar product between the feature

vector and the corresponding weight vector.
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3. Finally, and most importantly, instead of a conceptual equivalence, what we

demonstrate in this section, is an exact mathematical equivalence for convolu-

tion on a sparse feature grid.

As closing remarks, the theoretical results derived in this section can be trans-

ferred to the simpler 2D case with minimal changes (in fact, one only needs to define

the index sets Φ, Θ and Ψ to be subsets of Z2 instead of Z3). Thus these theoretical

results may also prove useful for applications such as a sliding window detector for

2D laser scans, or sliding window object detection with sparse image features such

as, for example, edge maps.

4.6 Feature Extraction

This section is concerned with the middle right block of Figure 4.1, that is, given

an occupied cell containing scattered 3D points with reflectance values, how it is

mapped to a fixed, finite-dimensional feature vector.

Throughout the experiments for this work, we fix the grid size to be 20cm. Since

this is a small scale, points contained within occupied cells appear to have simple

and local distributions. Broadly speaking, they may appear to be rod-like, plane-

like, a scatter of points in space or a mixture of the three. This is exactly what the

shape factors (cf. Section 3.3.4.3) cover. Figure 4.3 illustrates three situations with

examples from real 3D laser scans where the shape factors will be the most discrim-

inative. Vertical shafts such as the shaft of the sign post shown in Figure 4.3(a)

will give a high linear score cl. Planar patches on a car will give cells having a high

planar score cp. The crown of a tree typically appear as a scatter of points in space

in a laser scan and thus gives cells with high spherical scores cs. Of course in general

shape factors computed for an occupied cell may have any arbitrary proportions of

linear, planar and spherical scores, making the shape factors far more descriptive
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cl cp cs cl cp cs cl cp cs

(a) (b) (c)

Figure 4.3: Motivation for shape factors in sliding window detection in 3D. The most
useful cases: (a) vertical shafts (sign posts as shown here or column poles) have cells
that are locally rod-like, (b) cars are mainly composed of locally planar patches, and
(c) trees tend to leave a scatter of points that appear randomly distributed in the
entire space giving rise to a high spherical score. All three cases are taken from real
3D laser scans. Typical example cells are indicated in each case and magnified at
the top right with the actual computed shape factors for the linear (cl), planar (cp)
and spherical (cs) scores displayed at the bottom right as bar charts. A generic cell
will have shape factors that are a blend of these three canonical cases.

than the simple canonical cases illustrated here.

To capture the appearance information provided by the reflectance values, we

also include in our feature set the mean and variance of the reflectance values of

points contained in the cell. These simple features may not appear to be descriptive

when considering just a single cell. However, we note again that the cell size is

typically small, thus the mean and variance are usually sufficient to capture the

most important aspects of the handful of points falling within it. And considering

an object is described by a collection of cells (and that the relative positions of these

cells do matter), the overall descriptive power of these apparently simple features

can be rich.

Finally, we also include a binary occupancy feature that is 1 for a cell that is

occupied and 0 if it is not. This gives a total of 6 features for each cell.

We stress here that designing the best features for a sliding window detector in

3D is not the main focus of this work. However, the simple feature set we have

chosen gives a good detection performance as is demonstrated in Section 4.8.
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4.7 Non-Maximum Suppression

4.7 Non-Maximum Suppression

Each object may trigger multiple detections in its close vicinity. To remove dupli-

cate detections, we apply a non-maximum suppression procedure analogous to the

standard technique commonly applied in Computer Vision (Dalal and Triggs, 2005;

Felzenszwalb et al., 2010; Neubeck and Van Gool, 2006). Specifically, we follow the

greedy approach described in (Felzenszwalb et al., 2010).

The result of the voting procedure described in Section 4.5 is a score array giving

a detection score for each window location. All window locations with a detection

score (strictly) greater than a given threshold σ are then classified as positive. Be-

cause voting is conducted for each angle of rotation about the vertical axis in N

discretised orientation bins (cf. Section 4.3), a set of such positive detection windows

will be collected for each orientation bin. All the positive detection window loca-

tions (including its orientation) paired with their detection scores are then pooled

into an array P .

The detection threshold σ is restricted to be non-negative, that is, σ ≥ 0. This

requirement is to ensure that the empty window, which will have a zero score, is

always classified as negative. The selection of σ is usually conducted with a dataset

independent of the dataset used for training the linear classifier. We defer the specific

strategy used to select the threshold value until Section 4.8.5.

The non-maximum suppression then proceeds as outlined in Algorithm 4.2. The

positive windows are first sorted in descending order of their detection scores. Then

they are taken one-by-one in that order, and compared with the current list of

accepted window locations (initialised to be empty). A window location is accepted

and added to the list of accepted windows if it doesn’t overlap with any of the

previously accepted object windows by more than a given threshold. This overlap

threshold is a system parameter that is set based on intuition.
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1 Function NonMaximumSuppression(P , to)
Input: P , an array of scored oriented positive detection windows, and to

the overlap threshold.
Output: D, a subarray of P selected as detection results.

2 // Sort the detection windows according to their scores in

descending order.

3 SortInDescendingScore(P);

4 // Initalise D as an empty array.

5 D ← [ ];
6 for i← 1 to Length(P) do
7 overlap ← false;
8 for j ← 1 to Length(D) do

9 o← Intersection(Pi,Dj)
Union(Pi,Dj) ;

10 if o > to then
11 overlap ← true;
12 break;

13 end

14 end
15 if not overlap then
16 AppendToArray(Pi,D);
17 end

18 end

19 return D;

20 end

Algorithm 4.2: The greedy approach to non-maximum suppression. The
list of positive detection windows are first sorted in descending order of their
detection scores. Each window is then taken in turn, added to the array of
windows for output if it does not overlap with any previously selected windows
for more than a certain threshold.
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4.7 Non-Maximum Suppression

Figure 4.4: An illustration of two intersecting extruded boxes. The volume of in-
tersection is highlighted in blue in both the 3D view and the bird’s-eye view. The
concept of intersection for extruded boxes is closely related to that of their cross-
sections.

Overlap between two object windows is computed as the ratio of the volume of

intersection of the windows (treated geometrically as orientated 3D boxes) over the

volume of their union.

4.7.1 Efficient Computation of Overlap between Extruded

Boxes

There is not much to be said about computing the overlap between two axis-aligned

2D boxes (albeit different sizes). This is commonly the case encountered for image-

based sliding window detectors. The corresponding case in 3D, however, requires

computing the overlap between oriented (i.e. non-axis-aligned) 3D boxes. Comput-

ing the intersection between two arbitrarily oriented 3D boxes efficiently is quite a

complex problem (Gottschalk, 2000).

Fortunately, in our case, the orientation is not arbitrary – rotation is constrained

to be about the vertical axis. Each box may be treated as an arbitrarily oriented box

in 2D, and then extruded along the vertical direction to make the full 3D detection

window (See Figure 4.4 for an illustration). The intersection between two arbitrary

polygons, of which oriented 2D boxes are special cases, is a well studied problem
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1 Function Intersects(W1,W2)

Input: W1 = (B1, z
1
l , z

1
h) and W2 = (B2, z

2
l , z

2
h), the pair of oriented

detection windows to be tested for intersection.
Output: intsc, a boolean value indicating the result of the test.

2 if z1
l > z2

h or z1
h < z2

l then
3 intsc ← false;
4 else
5 intsc ← Intersects2D(B1, B2);
6 end

7 return intsc;

8 end

Algorithm 4.3: An algorithm for testing for intersection of two extruded
boxes. First, quick tests are done using the range of extrusion along the ver-
tical axis to determine simple cases of non-intersection, then if these tests are
indeterminate, the 2D intersection test Intersects2D is called.

in computational geometry, and efficient implementations are readily available (for

example, the Boost Geometry library1 includes efficient implementations for both

the test for intersection and the computation of the area of intersection for polygons).

Each oriented detection window is an extruded box represented by a tuple W =

(B, zl, zh), where B is the oriented 2D box, and [zl, zh] gives the range of extrusion

along the vertical axis. Algorithm 4.3 then gives an algorithm for testing intersection

of two such extruded boxes based on the assumption that test of intersection for the

2D case is available. The geometry of the problem is illustrated by Figure 4.4.

Provided their ranges of extrusion overlap, the two boxes intersect if and only if

their 2D cross-sections intersect. Now we can easily test whether two extruded

boxes intersect, we can build on that to compute their volume of intersection as

illustrated by Algorithm 4.4. Again here we assume we have available a method of

computing the area of intersection of two oriented 2D boxes. With reference again

to Figure 4.4, the volume of intersection of two extruded boxes is itself an extruded

shape of the 2D intersection of the boxes’ cross-sections.

1www.boost.org
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1 Function Intersection(W1,W2)

Input: W1 = (B1, z
1
l , z

1
h) and W2 = (B2, z

2
l , z

2
h), the pair of oriented

detection windows whose volume of intersection is to be
computed.

Output: v the volume of intersection.

2 if not Intersects(W1,W2) then
3 v ← 0;
4 else
5 v ← Intersection2D(B1, B2) ∗ (Min(z1

h, z
2
h)− Max(z1

l , z
2
l ));

6 end

7 return v;

8 end

Algorithm 4.4: An algorithm for calculating the volume of intersection for
two extruded boxes. It is assumed that computing the area of intersection for
two oriented 2D boxes is easy (given by the function Intersection2D).

1 Function Union(W1,W2)

Input: W1 = (B1, z
1
l , z

1
h) and W2 = (B2, z

2
l , z

2
h), the pair of oriented

detection windows whose volume of union is to be computed.
Output: v the volume of union.

2 v ← Volume(W1) + Volume(W2)− Intersection(W1,W2);

3 return v;

4 end

Algorithm 4.5: A straightforward algorithm for computing the volume of
union of two extruded boxes.

Finally, for completeness, we give the straightforward computation of the vol-

ume of union for two extruded boxes in Algorithm 4.5, based on their volume of

intersection (cf. Figure 4.4).

4.8 Evaluation

To facilitate supervised learning, we take advantage of the publicly available KITTI

dataset (Geiger et al., 2013). The object detection benchmark from the KITTI

dataset supplies synchronised camera and Velodyne frames, with objects annotated
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in both image and laser data. Specific to our interests is that the annotations in the

laser data are given as complete oriented 3D bounding boxes bounding the object

of interest in a canonical orientation.

We evaluate the performance of the proposed 3D sliding window detector on

the car class, and demonstrate its superior performance in terms of both the abso-

lute performance based on common evaluation metrics and the relative performance

compared both quantitatively with the previously proposed segmentation-based de-

tector in Chapter 3, and qualitatively with state of the art vision-based methods

from a practical point of view.

Details related to training are given in Section 4.8.1. In Section 4.8.2 we explain

our evaluation strategy, specifically, how the ground truth labels are divided into

three difficulty levels: hard, moderate and easy similar to the original split in the

image annotations of the KITTI dataset (Geiger et al., 2013) but now according to

a criterion suitable to laser-based detections. Then in Section 4.8.3 we present our

main results of the detection performance on the car class. Section 4.8.4 investigates

the relative importance of the features chosen. Section 4.8.5 gives an evaluation of

the computation time taken by the proposed detector. In Section 4.8.6, we compare

the sliding window detector with the previously proposed segmentation-based de-

tector aiming more at a better understanding of the advantages and disadvantages

of the two approaches in general than simply looking at the performance differences

due to the specific implementations. Finally, in Section 4.8.7 we compare qualita-

tively with current state of the art vision-based car detectors reported on the KITTI

dataset.

4.8.1 Training

The standard KITTI object detection benchmark contains a labelled training set and

a labelled test set. However, the labels on the test set are held back for evaluation
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No. of Frames
No. of Cars

Hard (Total) Moderate Easy
All 7481 28742 18971 12611

Training (80%) 5985 22802 15028 9941
Testing (20%) 1496 5940 3943 2670

Table 4.1: Details of data splits for training and testing. The first row shows
information about all data with annotation that is publicly available (this is what
the KITTI object detection benchmark calls “training” data). The second and third
rows show information about the subsets of data that has been selected for training
and testing respectively. We take an 80/20 random split for training and testing.
The first column shows the number of frames in the dataset. The following three
columns show the number of annotated ground-truth hard, moderate and easy cars
respectively contained in the dataset. See Section 4.8.2 for how these difficulty levels
are classified. Note the number of hard cars is also the total number of cars present
in the dataset.

purposes. Since what we are interested in here is a fair evaluation of the performance

of the sliding window detector on 3D data, whereas KITTI is primarily a vision

dataset, we create our own training and test datasets from the labelled data in

KITTI that is publicly available (i.e. the original “training” dataset) by randomly

splitting it into two parts and then test the detector’s performance based on metrics

that are more suitable for evaluating detections in 3D (cf. Section 4.8.2).

Specifically, we randomly split the 7481 labelled frames available into 80/20

proportions for training and testing respectively. The numbers of frames contained

in the resulting training and test sets, together with other information, are tabulated

in Table 4.1.

For training the linear SVM classifier, we use the LIBLINEAR library (Fan

et al., 2008). An initial set (equal to the number of positive examples) of negative

examples are randomly sampled from the training data taking care not to overlap

with any positive examples. Taking this initial set of training examples, we adopt

the standard hard negative mining technique from image-based object detectors

(e.g. Sung and Poggio, 1998; Dalal and Triggs, 2005; Felzenszwalb et al., 2010).
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Specifically, a classifier is first trained on the initial training set. After training, the

classifier is applied back on all the training frames. All false positive detections from

this classifier on all the training frames are collated, and sorted in descending order

of the detection score. The first N (or all of the false positives if there are less than

N of them) are then taken and added to the set of negative examples. The classifier

is then retrained with this updated training set and this process may iterate for a

predefined number of rounds. In all our experiments that follow, we fix N to be

10000 and conduct 20 rounds of hard negative mining.

A disadvantage of sliding window approaches is the artefacts introduced during

the discretisation process. Because window locations are only searched on the dis-

cretised feature grid (and the discretised angle of rotation), it is unlikely an object is

captured in the detection window in precisely its canonical pose. However, the pos-

itive examples for training are extracted from manual labels, the objects contained

are therefore centred and facing forward. To compensate for this discrepancy, for

each positive example, we randomly sample 10 slightly translated and rotated (about

the vertical axis) versions of it, and append them to the set of positive examples for

training.

4.8.2 Evaluation Strategy

The object labels provided by the KITTI dataset on the 3D laser data are compre-

hensive in the sense that, as well as obvious object instances, challenging objects

that are heavily occluded or very sparsely sampled due to being at a large distance

from the sensor are also included. The included objects may at times be as challeng-

ing as being described by only a handful of laser measurements (see, for example,

the left column of Figure 4.5).

This motivates us to divide the labelled car instances into different difficulty

levels similar to the original KITTI specification (Geiger et al., 2013), to respect the
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Hard but not 
Moderate

Moderate but 
not Easy Easy

Figure 4.5: Examples of labelled car instances from the training set of different
difficulties. Left column: hard but not moderate, instances containing numbers of
measurements m < 50. Middle column: moderate but not easy, instances containing
numbers of measurements 50 ≤ m < 150. Right column: easy, instances containing
numbers of measurements m ≥ 150. See text for details.
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complete set of labels from the dataset at the same time not to place unreasonable

demands to the detection system.

The original KITTI specification is tailored specifically to vision-based detection

systems. Here, we first take a closer look into the dataset for the types of labelled car

instances provided in the 3D laser data, and based on that, devise suitable criteria

for dividing the objects into the easy, moderate and hard difficulty levels.

Figure 4.5 presents examples of labelled car instances from the KITTI Velodyne

data. As can be noted, from left to right, the identity of the object ranges from very

difficult to judge, to being obvious (as far as a human perceiver is concerned) that

it is a car. The left column displays example ground truth labels that contain only

less than 50 laser measurements, the middle column shows examples that contain

between 50 and 150 laser measurements, whereas the right column gives examples

that have over 150 measurements on them. Examples in the left column contain

insufficient measurements for even a human observer to tell its identity. On closer

inspection, a human observer may be able to identify the examples of cars in the

middle column. Finally, the features of a car are much better defined for the ex-

amples in the right column. Given the observations above, we define the easy car

instances as instances described by over 150 laser measurements, the moderate car

instances as instances described by over 50 laser measurements, and the hard car in-

stances including all labelled instances provided in the dataset. Note the set of hard

instances include the set of moderate instances, and similarly the set of moderate

instances include the set of easy instances. Table 4.1 gives the number of labelled

car instances of each difficulty level contained in the KITTI dataset and our splits.

We use the standard Precision and Recall metrics to evaluate the detector’s

performance on the test dataset (readers unfamiliar with the Precision and Recall

metrics are referred to Appendix A.2 for a brief summary). Specifically, Recall for

each difficulty level is computed as the ratio of the number of car instances belonging
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to that difficulty level that are successfully detected over the total number of car

instances of that difficulty level. Precision is computed independently of difficulty

levels as the usual ratio of true detections (of cars of any difficult level) over the

total number of detections.

Detections are assigned to ground truth labels in a matter similar to that de-

scribed in Section 3.4.3. In this specific case, in addition to the overlap being

required to be greater than 0.5 between the detection and the ground truth label,

the detection has to match the angle of orientation of the ground truth object, that

is, the angle of rotation about the vertical axis between the detected object box

and the ground truth object box must be within ±∆
2

where ∆ is the angular resolu-

tion. Each detection is assigned to at most one ground truth object, and duplicate

detections to the same ground truth object are taken as false positives.

4.8.3 Detection Performance

We present the key results of this chapter in this section. The sliding window

detector described in this chapter is trained with the training set according to the

procedure outlined in Section 4.8.1, and evaluated on the test set. There are only

three parameters to the detector, the grid size δ, the number of angular bins N and

the overlap threshold to for non-maximum suppression (cf. Section 4.7). In all our

experiments, we set δ = 0.2m, N = 8 and to = 0.01.

With the division of ground truth labels into difficulty levels defined in the

previous section, in addition to evaluating the performance of a certain classifier at

each difficulty level, we may also investigate the effect of training on only the ground

truth objects of a particular difficulty level. For example, if all we care about is good

performance with respect to detecting easy cars, we may reflect this in the training

stage by training on only easy car examples. Without the confusion introduced with

ambiguous cases abundant in higher difficulty levels, the performance on easy cars is
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expected to increase. But because at no stage of training is the classifier presented

with hard (hard but not moderate) cars for example, the performance at the hard

difficulty level is somewhat undefined.

Naturally there arise three schemes of training based on the three difficulty levels

– training on only the easy, moderate (including all easy cases) and hard (including

all labelled cars) positive examples respectively. Figure 4.6 presents results from an

experiment where the detector is trained on the training set according to the three

different training schemes, each evaluated on the three different difficulty levels on

the test set. The Precision-Recall curves presented in the figure are generated by

varying the detection threshold σ (cf. Section 4.7). In general, the performance of

the detector increases as the number of rounds of hard negative mining increases

until convergence as one would expect. And regardless of the training scheme,

the detector performs better as the evaluation difficulty decreases, with the best

performance noted on the easy cars. According to the bottom row, the detector

trained only on the easy car instances perform poorly compared with the other

two training schemes on the hard and moderate difficulties confirming our reasoning

above. However training on only cases of a certain difficulty level does not seem to

increase the detection performance for that difficulty level. For example, training on

the easy positive examples gives similar performance compared with the other two

schemes on the easy difficulty level, and training on the moderate cases produces

slightly worse performance at the moderate difficulty level than training on the hard

cases (that is, all of the positive examples). This suggests, for example, focusing

training on only the easy cars does not necessarily increase performance on detecting

easy car instances – the detector is capable of accommodating more difficult car

instances in addition to handling well the easy cases. All three training schemes

perform equally well evaluated according to the easy difficulty level.

We note here again that the three difficulty levels hard, moderate and easy are
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Figure 4.6: Precision-Recall curves as the number of rounds of hard negative mining
(HNM) goes up. The top row gives Precision-Recall curves for training on all the
hard positive examples and evaluating for the hard, moderate and easy difficulties
respectively (from left to right). Similarly, the second and third row present the
corresponding results for training on only the moderate and easy training examples
respectively. Precision-Recall curves are shown for every two rounds of hard negative
mining. The bottom row compares the relative performances of the three different
training strategies at the end of training (HNM Round 20) on common axes, again
evaluated for the hard, moderate and easy difficulties respectively (from left to right).
All Precision-Recall curves are generated on the test dataset.
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Figure 4.7: Precision-Recall curves of three training schemes similar to the bottom
row of Figure 4.6, but evaluated on non-inclusive difficulty levels, for example, hard
and only hard positive examples (i.e. hard but not moderate). Thus the plot for
evaluating on the easy difficulty is the same as the corresponding plot in the bottom
row of Figure 4.6, reproduced here for completeness.

inclusive, in the sense that all hard positive examples include all moderate positive

examples, and all moderate examples in turn include all easy examples. We may

also examine system performance over a set of non-inclusive difficulty levels, for

example, the hard and only hard examples (hard but not moderate). Figure 4.7

shows plots similar to the bottom row of Figure 4.6 for the three training schemes,

but evaluated on non-inclusive difficulty levels. As can be noted from the figure,

all training scheme performs poorly on the non-inclusive hard difficulty, confirming

the challenging situation revealed by the left column of Figure 4.5. In particular,

the scheme of training on hard examples performs better than training on the other

difficulty levels. This makes intuitive sense because there are no examples of hard

(non-inclusive) cars in these latter training schemes during training. Similarly, both

schemes trained on hard and moderate cars outperform the scheme trained on easy

cars at the non-inclusive moderate difficulty. However, training on moderate cars

does not improve performance at the non-inclusive moderate difficulty level over

training on hard cars. Noting again that the hard examples for training include all

moderate examples, this observation suggests that there may be significant overlap

in appearance of the hard (hard only) and moderate (moderate only) examples

(also, see Figure 4.5), and that the additional hard only examples also help in
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discriminating moderate only cars too.

In the remaining experiments we focus on the performance of the proposed detec-

tor on the moderate and easy difficulty levels, because, referring back to Figure 4.5,

requiring any detection system to reliably detect car instances belonging to the hard

but not moderate difficulty level without incurring a large number of false detec-

tions is beyond our reach. For this purpose, the moderate training strategy (i.e.

training on all moderate positive examples) is adequate judging from the bottom

row of Figure 4.6, and will be followed in all our experiments hereafter. Though less

well-performing at the moderate difficulty level compared with training on all hard

positive examples, this choice strikes a balance between performance and resource

requirements at training (from Table 4.1, moderate training instances account for

only 66% of the total labelled examples).

4.8.4 How Useful are the Features?

In Section 4.6 we have chosen six simple features for the proposed sliding window

detector. Experiments in the previous section demonstrated their effectiveness (see

also Section 4.8.6 and Section 4.8.7 for comparative studies with other methods).

However, how important are these features relative to each other? Could some of

the features be redundant or confusing in discriminating the positive and negative

cases? To seek answers to these questions, we plot, in Figure 4.8, a measure of

relative importance of each feature in the car detection task.

To compute the measure of relative feature importance, we take the weights of

the final classifier trained (i.e. after the 20th round of hard negative mining) on

all moderate positive examples (cf. Section 4.8.3), and collate, for each feature, the

corresponding weights at all cell locations of the detection window. The feature’s

relative importance is then computed as the mean absolute value of these weights.

Figure 4.8 suggests that the most useful features for car detection are the appear-
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Figure 4.8: A plot of a measure of relative importance of features on the task of car
detection. Features are denoted by: cl, the linear shape factor, cp, the planar shape
factor, cs, the spherical shape factor, Ī, the mean of reflectance values, σ2(I), the
variance of reflectance values, and o, the binary occupancy indicator. See Section 4.6
for detailed feature definitions.

ance features. The shape features have similar relative importance values other than

the linear shape factor, which has a lower importance value. The lower importance

value of the linear shape factor makes intuitive sense, because by definition the three

shape factors always sum to one, given values of the other two shape factors, the

linear shape factor is redundant.

To confirm the insights gained by studying Figure 4.8, we trained the detector

with different feature selections, again on all moderate positive examples in the

training dataset for up to 20 rounds of hard negative mining, and plot the Precision-

Recall curves of these different variants of the detector in Figure 4.9 for the moderate

and easy difficulty levels. Each Precision-Recall curve is generated with the final

classifier trained (i.e. after the 20th round of hard negative mining) evaluated on

the test dataset.

As the figure suggests, without the linear shape factor feature, the detector per-
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Figure 4.9: Precision-Recall curves of detector trained with different feature selec-
tions on all moderate positive examples in the training set evaluated at the moderate
and easy difficulty levels on the test set. The Precision-Recall curves shown are gen-
erated with the final classifier – the classifier trained after the 20th round of hard
negative mining.

forms equally well compared with the original variant of using all the features. Re-

moving the appearance features, however, greatly degrades detection performance,

confirming their dominating importance noted from Figure 4.8. Retaining only the

appearance features (in addition to the binary occupancy feature, which is a com-

pulsory feature since it is also used as an indicator for occupancy of the cell) gives

only a slight decrease in performance, making one question the necessity of the shape

factor features. Thus finally, we reduce the feature set to its bare minimum taking

only the simplest binary occupancy feature. Compared with using the occupancy

feature and the shape factors (all but appearance features), this variant performs

significantly worse, suggesting shape factors do provide additional shape-cues on top

of simple occupancy.

Finally, we note that although using only the binary occupancy feature decreases

the system performance significantly compared with the full feature set, its perfor-

mance is still reasonable in its own right, demonstrating the power of the proposed

sliding window approach for 3D object detection (at least in the case of car detec-

tion).
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4.8.5 Timing

In this section, we empirically analyse the computational efficiency of the proposed

sliding window detector from a practical perspective. The proposed sliding window

detector is implemented as a C++ library. We note the computation for each

orientation bin (cf. Section 4.3) is completely independent of each other, therefore

it falls within the “embarrassingly parallelisable” paradigm. We hence take full

advantage of modern CPUs’ multi-core architectures by treating the computation

for each orientation bin as an independent job unit, which may be executed on

different threads.

In what follows, we evaluate the timing aspects of our implementation on a

MacBook Pro equipped with a quad-core 2GHz Intel i7 CPU and 8GB of RAM. We

take the classifier trained with the full feature set on all moderate positive examples

as the base classifier, and select the detection threshold as our point of operation

from the Precision-Recall curve evaluated on the test dataset at the easy difficulty

level (cf. Figure 4.6) as the threshold value that gives the highest Recall while

maintaining a Precision of over 0.9. To ensure our analysis is not biased (because

the detection threshold selected this way is based on the test dataset), all results

quoted except otherwise stated are obtained on a third independent sequence data

that is completely unlabelled from the KITTI dataset containing 1170 frames of

Velodyne laser scans.

Figure 4.10(a) shows the computation time taken per frame of complete Velo-

dyne scan (each scan contains about 100, 000 points) versus frame number while

Figure 4.10(b) arranges the same information as a histogram plot to examine its

distribution. As can be noted from Figure 4.10(a), the time taken by the detec-

tor is highly dependent on the scene structure. This is expected as both feature

computation and voting depend on the number of occupied cells of the feature grid,

cluttered scenes tend to take longer to process. Nonetheless, each frame takes at
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Figure 4.10: (a) Computation time versus frame number on an independent sequence
data. Also shown on common axes is a similar plot restricting the range of detection
to 50m. In both cases, the mean computation time per frame is given by a horizontal
line. (b) A histogram plot putting the distributions of computation time per frame
of the two variants (with, or without range limit) in (a) under comparison. (c) A
plot of performance on the test dataset as the range limit decreases, evaluated at
all three difficulty levels. Horizontal lines denote performance at no range limit. (d)
A pie chart showing a decomposition of computation time per frame into the major
system components, evaluated on the independent sequence data with a limited
detection range of 50m. The time quoted for each component is the time taken for
that component per frame averaged over the sequence.
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most a second to process and on average only 618ms, demonstrating the feasibility

of the sliding window approach to object detection in 3D.

Although the quoted maximum range of the Velodyne HDL-64E sensor2 is as far

as up to 120m (depending on surface reflectivity), in practice the useful information

is contained only within a range of about 80m. Additionally, measurements at far

ranges are so sparse due to the range-bearing nature of the device that reliable

object detection is challenging if not impossible. By restricting the detection range,

we may focus on the (relatively) close-range objects whose detection is more reliable

with an additional gain of computational speed. This argument is backed up by

Figure 4.10(c) where we show a plot of performance degradation as the detection

range is gradually reduced (by running the detector on only the laser points that

fall within range). Here performance is measured by the area under the curve

(AUC) computed over the full Precision-Recall curve generated on the test dataset

by varying the detection threshold as before, but now restricting detection to a given

range. Compared with the AUC without range limit, there is no notable difference

to system performance up to 50m, then the performance evaluated according to the

hard difficulty starts to drop. The performance on the easy difficulty level, on the

other hand, does not degrade until as close as 30m further confirming our arguments

earlier that the challenging cases are largely due to sparse sampling when observed

at long distances.

With this observation in mind, we plot the timing performance (on the same

sequence data) when the detection range is restricted to 50m on common axes with

the original timing results of the case without range limit in Figure 4.10(a) and

Figure 4.10(b). The computation speed of the detector is greatly improved averaging

to 482ms corresponding to an achievable processing rate of 2Hz (e.g. with buffering).

Finally, Figure 4.10(d) visualises the contributions of major components to the

2http://www.velodynelidar.com/lidar/hdlproducts/hdl64e.aspx
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total computation time per frame as a pie chart. The majority of processing time is

spent on voting, while a small proportion is spent in the computation of the feature

grid. Non-maximum suppression takes the thinnest slice contributing to only 1.25%

of the total time.

4.8.6 Comparison with the Segmentation-Based Approach

In this section, we quantitatively compare the sliding window object detector pro-

posed with the segmentation-based detector described in Chapter 3, in hope to gain

insights into how a sliding window approach to object detection in 3D compares

with the segmentation-based approach that is popular among state of the art 3D

detection methods.

To ensure a fair comparison with the existing results quoted in Chapter 3, we

take care to follow exactly the same evaluation procedure and use exactly the same

evaluation dataset on which results presented in Section 3.4.3 are obtained. In

particular, each oriented object box as output from the sliding window detector is

converted to a corresponding object segment by taking all points that fall within

the window. Figure 4.11 presents the Precision-Recall curve in blue of the sliding

window detector evaluated in this way, compared with the results quoted in Ta-

ble 3.2 on the car class for the three different detection schemes proposed for the

segmentation-based detector. The variant of the sliding window detector evaluated

is the one trained with the full feature set on all moderate positive examples from

the training set (from KITTI). As may be noted from the figure, the sliding win-

dow detector outperforms the segmentation-based detector by a significant margin.

Because the segmentation-based detector is purely shape-based, it does not use ap-

pearance information from the reflectance values, to compare the two approaches on

a common footing, we also include in Figure 4.11 the Precision-Recall curve of the

variant with only the shape-based features from our feature set, also evaluated on
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Figure 4.11: A comparative study of detection performance with the segmentation-
based object detector proposed in Chapter 3. Results shown here are evaluated
on the same dataset on which the segmentation-based detector is evaluated in Sec-
tion 3.4.3. Performance metrics are also computed in the same manner to allow for
an unbiased comparison. Results from Chapter 3 as presented in Table 3.2 for the
car class of the three different detection schemes are placed here on common axes.
See text for details.

the same dataset as the segmentation-based detector, in green. Though the perfor-

mance compares less favourably with using the full feature set as one would expect,

it still outperforms the segmentation-based detector. Is the success of the sliding

window detector due to the benefits of taking a sliding window approach, or simply

because we have been lucky enough to haven chosen a good feature set? To an-

swer this question, we make a third comparison against the baseline sliding window

performance – that is using the simplest possible feature, the binary occupancy fea-

ture only, and plot its Precision-Recall curve in Figure 4.11 in red. Despite such a

disadvantage, the sliding window detector still outperforms the segmentation-based

detector with all its sophisticated feature set (cf. Section 3.3.4). We accredit this

to the rich description brought by the feature grid representation unique to sliding

window approaches where an object is represented by, instead of a single feature vec-

tor, features extracted at different cell locations of the detection window, together
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with the knowledge of their relative positions, even a feature as simple as the binary

occupancy indicator can become quite powerful in describing an object.

Finally, we note that the comparative studies in this section are actually biased

in favour of the segmentation-based detector. The classes van and car are treated

separatedly in the KITTI dataset thus the sliding window detector trained will not

trigger on a van. However, the object labels in the dataset of the segmentation-

based detector do not make this distinction, making the performance of the sliding

window detector evaluated on this dataset an underestimate.

4.8.7 A Practical Comparison with State of the Art Vision

Methods

In this section, we give a qualitative comparison to the reported performance of state

of the art vision methods to car detection. The bottom row of Figure 4.12 shows the

published results of the top five car detectors on the KITTI object detection vision

benchmarking website3, and the top row of Figure 4.12 shows the same plots from

the bottom row of Figure 4.6 reproduced here for easy comparison.

We must stress here, although quantitative results for each case are displayed

in Figure 4.12, any quantitative comparison between the proposed sliding window

detector and the image-based detectors is not meaningful because the evaluations are

not based on common criteria. Specifically, the published results of vision methods

are evaluated according to the original difficulty specification defined with respect

to vision, whereas the results quoted in Figure 4.12 for the proposed sliding window

detector is evaluated according to the laser -based difficulty specification defined

in Section 4.8.2. However, because of the inherent difference in sensor modality,

attempting to compare laser-based and vision-based methods on a completely fair

basis is challenging if not impossible. For example, what is difficult in appearance

3http://www.cvlibs.net/datasets/kitti/eval_object.php
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Figure 4.12: A qualitative comparison with state of the art vision-based car de-
tectors evaluated on the KITTI dataset from a practical point of view. The top
row reproduces the bottom row of Figure 4.6. The bottom row shows publicly re-
ported Precision-Recall curves of the top five car detectors evaluated on the KITTI
dataset. Numbers in brackets denote the area under the curve (AUC). Note because
our proposed sliding window detector is evaluated according to the laser criteria
whereas the vision methods are evaluated according to the vision criteria, it is not
meaningful to draw any quantitative conclusions by placing the curves on common
axes. Instead, we only note here that qualitatively, the performance of the proposed
sliding window detector in 3D is commensurate to state of the art vision methods
from a practical point of view. See text for further discussions.
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in vision may not be difficult in laser and vice versa. Evaluating the performance of

one sensor modality on a set of evaluation criteria designed for fair comparison for

another sensor modality can only lead to non-meaningful results.

We may however compare qualitatively the performance of the proposed sliding

window detector with the published results of current state of the art vision methods

from a practical point of view. In both cases, the division to the easy, moderate

and hard difficulty levels reflects what a human perceiver would find challenging

or straight-forward to perceive the object by observation of data form the sensor

modality alone (either laser or vision). Thus a qualitative comparison is meaningful

because the Precision and Recall metrics in both cases evaluate how the respective

detection system performs at achieving the perception task at a common indicative

level of proficiency.

Hence we may note from Figure 4.12 that, from a practical point of view, the

proposed sliding window detector is commensurate at the task of car detection with

the current best vision-based car detectors. Note, only the top five vision methods

are shown in Figure 4.12, the top ranked method, the “Regionlet” method (Wang

et al., 2013b; Long et al., 2014) in particular, has only been submitted to the KITTI

vision benchmark a few days prior to the writing of this thesis.

4.9 Conclusions

In this chapter, for the first time, we have taken the sliding window approach to

object detection from vision to 3D data. The sparse nature of the problem is fully

exploited to give an efficient method for exhaustively searching through all object

locations at all orientations. Specifically, we proved the mathematical equivalence

of convolution on a sparse feature grid and voting, and demonstrated the detector’s

superior performance with the KITTI dataset on the car class.
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This concludes our studies on model-based objection detection. In the next

chapter, we take a model-free perspective to dynamic object tracking, aiming at the

detection of not only a limited set of classes of objects but any object that moves.
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Chapter 5

Model-Free Tracking of Dynamic

Objects

5.1 Motivation

A 3D laser scanner such as the Velodyne HDL-64E S2 sensor deployed during our

studies in the previous chapters (cf. Figure 1.1(a)) produces a rich description of

the environment, allowing for powerful model-based methods for object detection

taking advantage of the shape and appearance information available unique to these

sensors. However, despite a decreasing trend on the price of these 3D sensors in

recent years, they remain prohibitively expensive. It is also inconceivable that each

of the autonomous cars in the near future will have one of such devices spinning

at 10Hz on its roof. The 3D laser scanner is fantastic to equip a dedicated survey

vehicle, perhaps not the technology that common folks will find it friendly.

It is our desire to build light-weight, affordable and user-friendly self-driving

technologies that motivates us to turn our attention away from the benefits of 3D

laser scanners to its cheaper, smaller counterpart – the 2D range finders. However,

since the 2D range finders scan the 3D world through only a single plane, significant
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Figure 5.1: Examples of real laser scans in an outdoor driving scenario. Each row
gives an example at a single instant (Frame k). The first column shows the scan
data at Frame k reprojected into an image taken by an onboard camera. (The image
is to provide some context for visualisation only. Our system does not require vision
data to operate.) The next three columns show a sequence of consecutive raw laser
scans at Frame k − 1 (left), Frame k (middle) and Frame k + 1 (right) respectively.
The last column shows the output from our proposed system at the instant at Frame
k (the middle scan). Here different objects detected are denoted by different colours
and highlighted with boxes. A green box is a true detection whilst a red box is a
false alarm. Arrows denote velocity estimates. See text for details.

challenges arise to the task of object detection.

5.2 The Challenge and Our Approach

There are several complicating factors to the successful detection and tracking of

moving objects with a 2D laser scanner mounted on a moving platform (such as

the SICK LDMRS mounted on our research vehicle – a modified Nissan LEAF,

Figure 1.1(b)). First of all, because the sensor itself is moving, we have uncertainties

to its motion, rendering simple frame differencing techniques ineffective. In addition,

occlusion and viewpoint changes give the appearance of dynamic behaviours even

in a purely static scene. This confusion makes the reliable detection of the true

dynamic objects difficult without giving a high false alarm rate.

These difficulties are illustrated with real-world data in Figure 5.1. What is
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being shown here are samples of data gathered with our research platform (cf. Fig-

ure 1.1(b)) as it was driven on the streets of Oxford. The first row gives a scenario

of busy traffic, whilst the second row shows an example of laser data in an area

where everything is stationary. In the first scenario (Row 1), it can be noted from

the sequence of consecutive laser scans that, due to occlusion, it is ambiguous sim-

ply judging by appearance to tell whether an object is moving or not. Here, cars

numbered 1 and 2 are traveling in opposite directions, whilst Car Number 4 is sta-

tionary. Note how Car Number 4 changes its appearance as Car Number 1 gradually

occludes it. Number 3 is a pedestrian walking on the pavement. Even in a situation

where there is no moving objects in the scene (Row 2), there is still much burden

on a dynamic object detector. Because our vehicle is driving through the environ-

ment, static structures are being observed at different viewpoints. This gives rise to

dynamic-like behaviours in the data. The corner of the building numbered 5 appears

to be dynamic, bushes such as the ones circled as 6 and 7 appear to be moving too.

Note how Bush Number 7 resembles more in its appearance to a group of walking

pedestrians than the true walking pedestrian numbered 3 in the first row. These

motivating examples illustrate the difficulties in motion detection from a moving 2D

scanner. It is challenging even for a human to tell what is moving what is not from

the raw data alone.

In this chapter, we focus on the motion cues, and take a model-free approach to

the detection and tracking of moving objects, and present a principled framework

that allows a flexible object representation capable of representing objects of any

classes and shapes.

Many authors (for example, Miyasaka et al. (2009) and Wang et al. (2003))

observe that the problems of sensor pose estimation, map-building and detection

and tracking of dynamic objects are closely related to each other. Removal of dy-

namic objects from the map-building process enhances the quality of the map, while
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knowledge about the static structure of the environment helps significantly in the

successful detection of dynamic objects. Both are in turn tightly coupled with sen-

sor pose estimation because all observations are made relative to the sensor. To

this end, our proposed system also estimates a joint state that includes the sensor

pose, a local static background that maps the static structure around the sensor and

the dynamic states of the tracked moving objects. However, we emphasise it is not

our interest to map the static part of the environment, only local static informa-

tion is kept and estimated as a part of our state for the purpose of dynamic object

detection.

The last column of Figure 5.1 shows the output of our proposed system to the

central frame (the middle column). Despite of the aforementioned difficulties, our

system successfully detects the two moving vehicles and the walking pedestrian and

rejects ambiguous static structures as moving entities (with one false alarm for Bush

Number 6 in the static scene example, the second row).

We structure this chapter as follows. After stating our main contributions in this

chapter in Section 5.3, Section 5.4 presents the core concept that is our model-free

representation of objects. Following which we derive the prediction and observation

models for the Bayes filter formulation in Section 5.5. In Section 5.6, we discuss the

challenge posed to data association by our object representation and our solution to

it. Finally, in Section 5.7, we evaluate the performance of the proposed system with

real-world data, and show that it outperforms both an industry standard solution

that was designed for the same problem domain of object tracking from a moving

sensor and a classical approach to model-free tracking based on independent tracking

of scan segments. Finally, we conclude the chapter in Section 5.8.
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5.3 Contributions

Our main contribution in this chapter is the formulation of a unified framework

that jointly estimates the pose of the sensor, a continuously updated local static

background, and the motion states of dynamic objects, with the focus on reliable

detection of moving objects. All three aspects are tightly coupled through a novel

joint state representation that allows for objects of arbitrary shapes and sizes to be

modelled and tracked. Our state representation is presented in Section 5.4.

In addition, we propose a hierarchical data association algorithm to assign raw

laser measurements to potential state updates, and present a variant of the Joint

Compatibility Branch and Bound (JCBB) algorithm (Neira and Tardos, 2001) that

is suitable for associating a large number of measurements, and derive an alternative

set of recursive update rules based on the triangular form representation of positive

definite matrices for its efficient and numerically stable computation. The details of

our approach to data association can be found in Section 5.6.

5.4 An Unusual State Representation

The system we propose is run within a Bayes filter implemented as a simple Extended

Kalman Filter (for a comprehensive treatment of the Bayes filter and the Kalman

filter, the reader is referred to the standard textbooks, for example, (Thrun et al.,

2005) and (Bar-Shalom et al., 2002)). In this section, we describe in detail the

representation of the system state. In particular, we motivate and describe how

dynamic objects are represented to allow objects of any class and any shape to be

modelled and tracked.

The motions of dynamic objects can be arbitrary and independent of each other.

The sensor, however, does not observe their motions directly but ranges and bearings

of points on the surface of the objects. Thus once conditioned on the measurements,
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V

S

W

T

GW
T = [�, �,�]T

Our Vehicle

GW
S = [↵,�, ]T

GV
S = [�↵, ��, � ]T

p = [x, y]T

Moving Threat

Background

World Origin

b = [x, y]T

Figure 5.2: Illustration of frame conventions and variable definitions. Here GB
A

denotes an SE2 transform from frame A to frame B as an (x, y, θ)-triple. Coordinate
frames W , V , S and T denote world, vehicle, sensor and track respectively. The
sensor and objects’ (tracks’) motions are referenced to the fixed world origin W, and
are denoted by the SE2 transforms GW

S and GW
T . The sensor’s extrinsic calibration

parameters are denoted by the SE2 transform GV
S . Boundary points are referenced

locally to the track’s frame, and are denoted in the illustration by p. Boundary
points belonging to the static background are referenced globally to the world’s
frame, and are denoted in the illustration by b. Subscripts are dropped to avoid
clutter.

motions between different objects become correlated, due to the fact that these

observations are taken from a moving sensor.

In order to correctly account for this correlation, the states of the objects and

that of the sensor have to be estimated in a single joint distribution. A local static

background is also simultaneously estimated as part of the joint state which is

essential to distinguishing measurements belonging to dynamic objects from those

on static objects. The state therefore consists of three parts: the sensor pose,

the dynamic objects, and the static map. Figure 5.2 illustrates the relationships

between the different parts of the joint state, and our object representation, and

will be referred to extensively in what follows.
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5.4.1 Sensor Pose Representation and Related Matters

The sensor pose (as part of the state vector x) is represented by an SE2 transform

xS = GW
S = [α, β, ψ]T from the sensor’s frame of reference to a stationary world

frame of reference as depicted in Figure 5.2, which is updated by vehicle odometry

measurements at the prediction stage, and as part of the measurement update stage

with each new laser scan observation.

Since the holonomic constraints apply to the vehicle but not to the sensor di-

rectly, and odometry measurements are naturally referenced to the vehicle’s frame

of reference, the transform between the sensor and vehicle’s frames of reference are

required. To account for uncertainties in this estimated transform, we include it

as part of the state as xC = GV
S = [δα, δβ, δψ]T . This is the SE2 transform that

transforms points from the sensor frame into the vehicle frame, also illustrated in

Figure 5.2.

5.4.2 Model-Free Object Representation

For convenience of description, in what follows, we will also refer to dynamic objects

as “tracks”, since their motion state is continuously being tracked. Each dynamic

object i has its own set of axes Ti, and its motion state includes the SE2 transform

GW
Ti

from the track’s frame Ti to the world frame W , and its derivative, i.e. xiT =

[GW
Ti

T
, ĠW

Ti

T
]T = [γi, δi, φi, γ̇i, δ̇i, φ̇i]

T . This is illustrated by Figure 5.2 (the subscript

i is dropped to avoid clutter). What is unusual about our representation is however,

that none of these states are directly observed according to the observation model.

Instead, each object has additional state parameters attached, named the “boundary

point” coordinates, that are 2D cartesian coordinates represented locally to the

object’s frame of reference. It is these boundary points that are directly observed

according to our observation model.
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To understand the intuition behind boundary points, consider the case of a

moving object being illuminated by the laser for the first time, for example, in the

case illustrated in Figure 5.2. The set of raw range and bearing measurements Z is

used to initialise a new track with its 6-vector states plus boundary points at the

locations of the raw measurements in Z but transformed into the object’s frame

of reference (hence the name “boundary points” because the laser impinges on the

boundary of the object). All subsequent measurements (laser illuminations) will be

taken to be noisy observations of these boundary points on the object.

This model-free representation raises an interesting and central data association

question. We must decide whether or not to extend the object’s boundary by ini-

tialising additional boundary points with new raw laser measurements or simply

associate the laser returns to the existing boundary points as it stands. Further-

more, which of the laser returns belong to the static background and hence have

nothing to do with dynamic objects whatsoever? Our approach to data association

lies at the heart of this work and is detailed in Section 5.6.

We make the assumption that dynamic objects observed in the 2D scanning

plane of the sensor behave as rigid bodies. This assumption, although it does not

hold strictly true due to deformable bodies such as a walking pedestrian, is a close

approximation when observations are constrained to the 2D plane. Under this as-

sumption, boundary points stay fixed relative to the object’s frame of reference and

hence their states have a trivial motion model.

With the introduction of boundary points, each object is thus parameterised with

a partial outline of its perimeter allowing objects of arbitrary shapes and dimensions

to be modelled under the same representation.
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5.4.3 Static Background Representation

The representation for the static part of the state is simply a collection of boundary

points as in the case of a dynamic object, except boundary points on the static

background are represented with their global 2D cartesian coordinates in the world ’s

reference frame. See Figure 5.2 for an illustration.

5.4.4 The Complete State Structure

The complete state x consists of all parts described above, and is arranged as follows:

x = [xTS ,x
T
T ,x

T
b ,x

T
p ,x

T
C ]T , (5.1)

where xS is the sensor pose, xT the collection of all 6-vector motion states of dynamic

objects,

xT = [x1
T
T
,x2

T
T
, . . . ,xNTT

T
]T , (5.2)

and xb the collection of 2D coordinates of all boundary points belonging to the static

part of the state,

xb = [bT1 ,b
T
2 , . . . ,b

T
Nb

]T , (5.3)

and xp the collection of 2D coordinates of all boundary points on all dynamic objects,

xp = [p1
1
T
,p1

2
T
, . . . ,p1

N1
p

T
,p2

1
T
,p2

2
T
, . . . ,p2

N2
p

T
, . . . . . . ,pNT1

T
,pNT2

T
, . . . ,pNT

N
NT
p

T
]T .

(5.4)

Finally, xC is the vector of the extrinsic calibration parameters of the sensor as

described in Section 5.4.1.
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1 Function ProcessMeasurement(x̂,P,Z)

Input: The current estimate of the mean x̂ and covariance matrix P of
the joint system state, and the measurement Z which may have
type odometry or laser.

Output: The updated mean x̂ and covariance matrix P of the joint
system state.

2 if IsType(Z,odometry) then
3 (x̂,P)← ProcessOdometryMeasurement(x̂,P,Z);
4 else
5 // ProcessLaserMeasurement is defined in Algorithm 5.2.

6 (x̂,P)← ProcessLaserMeasurement(x̂,P,Z);

7 end

8 return (x̂,P);

9 end

Algorithm 5.1: Top-level algorithm executed upon each new measurement.

5.5 Detection and Tracking of Dynamic Objects

The mean and covariance matrix of the joint state vector are updated at each it-

eration according to the standard Bayes filter. The input to our system is a set

of odometry measurements and a sequence of range and bearing laser scans. The

inclusion of the odometry measurements is necessary because they provide the only

absolute motion estimates. Without it, it is ambiguous to define what is static

when all motion estimates are relative to the sensor. In this section, we derive the

prediction and observation models for the joint state and present our approach to

track initialisation which is key to the separation of dynamic objects from the static

background.

Algorithm 5.1 lists the straightforward procedure carried out at each iteration

when a new measurement is received. The mean x̂ and covariance matrix P of

the joint state are updated differently according to the type of the measurement Z

(odometry or laser). In general, odometry measurements arrive at a much higher

frequency than laser measurements, they need to be processed very efficiently, and
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1 Function ProcessLaserMeasurement(x̂,P,Z)

Input: The current estimate of the mean x̂ and covariance matrix P of
the joint system state, and the measurement Z which must be of
type laser.

Output: The updated mean x̂ and covariance matrix P of the joint
system state.

2 (x̂,P)← CleanUpStates(x̂,P);

3 (x̂,P)← ForwardPredict(x̂,P);

4 // AssociateAndUpdate is defined in Algorithm 5.3.

5 (x̂,P)← AssociateAndUpdate(x̂,P,Z);

6 (x̂,P)← MergeTracks(x̂,P);

7 return (x̂,P);

8 end

Algorithm 5.2: Top-level algorithm executed upon receiving a new laser scan.
See text for details.

therefore only forward-prediction of the sensor pose state taking the odometry mea-

surement as a noisy control input is carried out in this case. In Section 5.5.1 we

present the prediction model for this process. Algorithm 5.2 outlines the sequence of

actions executed when a new laser scan is received. First, we do some house-keeping

where out-of-date dynamic tracks and boundary points on the static background

that have fallen out of the sensor’s field of view are dropped. Next, the motion part

of all dynamic tracks is forward-predicted according to an appropriate motion model

as described in Section 5.5.2, and followed by data association and measurement up-

dates. We derive observation models in Section 5.5.3 and defer the discussion of data

association until Section 5.6. Finally, any tracks appear to be static are merged with

the map, and adjacent tracks following the same rigid body motion are merged into

a single track. The latter is to account for the situation that occasionally a large

object is tracked as different “pieces”, and this allows for the pieces to be put back

into a single object. This merging procedure is described in Section 5.5.4.
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Figure 5.3: Illustration of the standard bicycle model. Here v denotes the vehicle’s
linear speed and θ the mean angle of the front wheels. The vehicle thus executes a
coordinated turn about the point O. Also shown are the vehicle’s reference frame
V against which the holonomic constraints are specified, and the sensor’s reference
frame S whose motion is to be predicted. See text for details.

5.5.1 Sensor Pose Prediction on Odometry Measurement

Each odometry measurement contains an estimate to the vehicle speed v, and the

mean angle of the front wheels θ as illustrated in Figure 5.3. Here we assume the

non-holonomic vehicle motion follows a bicycle model. What is nonstandard about

our prediction model, however, is that the holonomic constraints of the bicycle model

are specified with respect to the vehicle’s reference point, whereas it is the motion of

the sensor that is to be predicted (and is part of the state). We derive the prediction

model for the sensor pose in what follows.

Assuming both v and θ hold constant during the prediction period ∆t, define

the uncertain control input as

u(v, θ) =




∆l

∆ψ


 =



v∆t

ω∆t


 = v∆t




1

tan θ
L


 , (5.5)

where L is the distance between the front and rear wheel axles (see Figure 5.3), and
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ω the angular speed of the vehicle ω = v tan θ
L

. In this model, we assume L is a fixed

constant. After differentiating Equation (5.5), we obtain the Jacobian of the control

input

U(v, θ) = ∆t




1 0

tan θ
L

v sec2 θ
L


 . (5.6)

Thus if the measured vehicle state [v̂, θ̂]T has covariance matrix V,

V =



σ2
v 0

0 σ2
θ


 , (5.7)

the control input has mean û = u(v̂, θ̂) and covariance matrix Q = UVUT .

To arrive at a prediction model for the sensor pose xS, we note that, referring to

Figure 5.3, the sensor’s motion is a simple rotation about the same stationary point

O as that of the vehicle. This is due to the fact that the sensor is attached rigidly

to the vehicle.

The linear velocity vS of the sensor frame origin is more easily obtained in the

vehicle frame, and transformed into the global world frame later. To do this, note

that the vector t from O to the origin of S in the vehicle frame V is given by

t =




0

L
tan θ


+



δα

δβ


 . (5.8)

Recall that xC = GV
S = [δα, δβ, δψ]T is the SE2 transform from the sensor to the

vehicle’s frame. This gives the absolute velocity of the sensor frame origin (again,

in the vehicle frame) as

vS = ωR(−π/2)t = ω




δβ

−δα


+



v

0


 , (5.9)
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where R(θ) is the 2D rotation matrix given an angle of rotation θ. Transforming

vS to the world frame and assuming small motion within the time step ∆t, the new

pose of the sensor x′S is given by

x′S = xS + ∆t




R(ψ′)vS

−ω


 , (5.10)

where xS = [α, β, ψ]T is the pose of the sensor before the prediction and ψ′ = ψ−δψ

is the angle of rotation from the vehicle frame to the world frame. Substituting in

Equation (5.9) and rearranging, we arrive at the discrete dynamic model for the

sensor pose:

x′S = f(xS,xC ,u) =






α

β


+ R(ψ − δψ)


∆ψ




δβ

−δα


+




∆l

0







ψ −∆ψ




. (5.11)

We can now differentiate Equation (5.11) to obtain its Jacobian as J = [F G] =

[FS FC G], where

FS =




I2 R(ψ − δψ)


∆ψ



δα

δβ


+




0

∆l







01×2 1




(5.12)

is the Jacobian with respect to xS, and

FC =




∆ψR(ψ − δψ)




0 1

−1 0


 −R(ψ − δψ)


∆ψ



δα

δβ


+




0

∆l







01×2 0




(5.13)
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is the Jacobian with respect to xC , and

G =




R(ψ − δψ)




1

0


 R(ψ − δψ)




δβ

−δα




0 −1




(5.14)

is the Jacobian with respect to u respectively, and F is defined by F = [FS FC ].

Recall that x̂ and P denote the current mean and covariance matrix of the joint

state respectively, it follows that the updates for the complete joint state is then

given by

x̂′ = [fT (x̂S, x̂C , û), x̂Tr , x̂
T
C ]T (5.15)

for the mean, and

P′ =




FPs,c|s,cF
T + GQGT FPs,c|r,c

Pr,c|s,cF
T Pr,c|r,c


 (5.16)

for the covariance matrix. Here a subscript of r denotes the remaining states other

than xS and xC , and the notation Ps,c|r,c denotes the sub-matrix of P that is formed

by taking the rows belonging to the states xS and xC and columns belonging to the

states xr and xC and so on. Note that the bottom right block of the covariance

matrix is not touched and the top left block involves multiplications of matrices

of fixed sizes (at most 6 × 6). This computation is therefore dominated by the

off-diagonal updates, which is of O(N), thus can be carried out very efficiently.

5.5.2 Dynamic Object Motion Prediction

At the prediction step after a new laser scan is received, all dynamic tracks are

predicted forward according to a generic motion model before being updated with

the measurements. A general motion model is desirable in this case because we do
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not have information regarding to the object class (and hence its expected motion

pattern). In an autonomous driving scenario, the sensor itself is constantly mov-

ing, this usually results in any particular object instance being observed for only

a limited amount of time, rendering object-specific behaviour learning approaches

also impractical. Therefore, in this work, we choose the classic constant velocity

model. However, in our definition of the constant velocity model, in addition to

the conventional linear velocity components, the angular velocity component is also

modelled (which also follows a constant angular velocity motion decoupled to the

linear components). The inclusion of the angular velocity component makes the

model adequate at capturing the full range of 2D rigid body motion, which is the

best we could hope for in a purely model-free approach.

Our constant velocity model is a linear model given by

x′T = FxT + v , (5.17)

where xT is the dynamic states of the object before the prediction, and x′T the

predicted states,

F =




I3 ∆tI3

03 I3


 , (5.18)

and v is a zero mean additive noise with covariance matrix

Q =




∆t3

3
V ∆t2

2
V

∆t2

2
V ∆tV


 . (5.19)

Here V is the 3 × 3 covariance matrix for the zero-mean continuous linear and

angular white noise accelerations (see (Bar-Shalom et al., 2002, Chapter 6) for more

details).
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To extend Equation (5.17) to multiple tracks, define the matrices

F̃ =




F

F

. . .

F




and Q̃ =




Q

Q

. . .

Q




, (5.20)

where the diagonals have an entry for each dynamic track. The update equations

for the joint state mean and covariance matrix become:

x̂′ = [x̂TS , (F̃x̂T )T , x̂Tr ]T , (5.21)

and

P′ =




Ps|s Ps|tF̃
T Ps|r

F̃Pt|s F̃Pt|tF̃
T + Q̃ F̃Pt|r

Pr|s Pr|tF̃
T Pr|r




. (5.22)

Here we follow the same subscripting convention as in Section 5.5.1, and xT denotes

the collection of dynamic states of all dynamic tracks as in Equation (5.2), and xr

the remaining states other than xS and xT .

5.5.3 Observation Models for Raw Laser Measurements

In this section, we derive observation models for boundary points on the static

background and dynamic objects respectively. All variables involved in what follows

are defined in Section 5.4.

First we define the function and its Jacobian

u(x, y) =



r

θ


 =



√
x2 + y2

tan−1 y
x


 , U(x, y) =

1

r2



rx ry

−y x


 , (5.23)
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which converts a 2D point from cartesian coordinates into polar coordinates. This

function (and its Jacobian) will be used extensively in what follows.

5.5.3.1 Boundary Points of Static Background

Each boundary point j on the static background may potentially generate a laser

measurement z = [r, θ]T , and hence its measurement model is the boundary point’s

location in polar coordinates in the sensor ’s frame of reference:

hj(x) = u(g(xS,bj)) , g(xS,bj) = RT (ψ)






xj

yj


−



α

β





 . (5.24)

Here xS has been defined in Section 5.4.1, and bj = [xj, yj]
T is the 2D cartesian

coordinates of boundary point j in the world frame as described in Section 5.4.3 and

illustrated by Figure 5.2.

The Jacobians of g is given by:

GS(xS,bj) =
∂g

∂xS
=

[
−RT (ψ) −R

(
π
2

)
g(xS,bj)

]
,

Gb(xS,bj) =
∂g

∂bj
= RT (ψ) . (5.25)

This leads to the overall Jacobians for the measurement model hj as:

Hj
S(x) =

∂hj
∂xS

= U(g(xS,bj))GS(xS,bj) ,

Hj
b(x) =

∂hj
∂bj

= U(g(xS,bj))Gb(xS,bj) . (5.26)

5.5.3.2 Boundary Points of Dynamic Objects

Each boundary point j on any dynamic track i may also give rise to a laser mea-

surement, and the measurement model in this case is the 2D polar coordinates of
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the boundary point in the sensor ’s frame, and is given by:

hij(x) = u(g(xS,x
i
T ,p

i
j)) , (5.27)

where

g(xS,x
i
T ,p

i
j) = RT (ψ)


R(φi)



xij

yij


+



γi

δi


−



α

β





 . (5.28)

Here xiT is the dynamic states of track i, and pij the boundary point’s cartesian

coordinates in the object ’s frame as discussed in Section 5.4.2 and illustrated by

Figure 5.2.

To obtain the Jacobians to the measurement model, we again obtain first the

Jacobians of g:

GS(xS,x
i
T ,p

i
j) =

∂g

∂xS
= [ −RT (ψ) −R

(
π
2

)
g(xS,x

i
T ,p

i
j) ] ,

GT (xS,x
i
T ,p

i
j) =

∂g

∂xiT
=


 RT (ψ) RT (ψ)R(φ)



−yij
xij


 02×3


 ,

Gp(xS,x
i
T ,p

i
j) =

∂g

∂pij
= RT (ψ)R(φ) . (5.29)

Now the Jacobians of hij follow:

Hij
S =

∂hij
∂xS

= U(g(xS,x
i
T ,p

i
j))GS(xS,x

i
T ,p

i
j) ,

Hij
T =

∂hij
∂xiT

= U(g(xS,x
i
T ,p

i
j))GT (xS,x

i
T ,p

i
j) ,

Hij
p =

∂hij
∂pij

= U(g(xS,x
i
T ,p

i
j))Gp(xS,x

i
T ,p

i
j) . (5.30)
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5.5.4 Track Initialisation and Merging

The initialisation of new dynamic tracks is non-trivial because we have to ensure

that only new dynamic objects are initialised into new tracks and static objects

are merged with the static background. To this purpose, we apply the technique

of constrained initialisation (Williams, 2001), where each new track’s motion status

is deferred until it has accumulated enough evidence to make the correct decision.

Specifically, a new track is first marked as “tentative” when initialised, and becomes

“mature” only if it is continuously being observed for more than a fixed number of

frames (otherwise it is dropped). Then it is tested against the static background,

and each existing dynamic track in turn for merging. The test and merging are all

handled consistently within the same Bayesian filtering framework. If all merging

tests fail, it is declared “established” and added to the set of existing dynamic tracks.

In the case of testing against merging with the static background, we are inter-

ested in the hypothesis that the track’s absolute velocity (linear and angular) is zero

given the estimated uncertainty in its motion. Following (Williams, 2001), we take

uncertainty into account by introducing a fictitious perfect (noiseless) measurement

on the track’s absolute velocity, and test the validity of a measured value of zero

with the standard χ2 test. Specifically, given a tentative track T with its motion

state vector xT = [γ, δ, φ, γ̇, δ̇, φ̇]T (in accordance with the notation introduced in

Section 5.4.2), we define a fictitious measurement model

h1(xT ) =




γ̇

δ̇

φ̇




, (5.31)

and consider a measured value of ẑ = 0 under the noise-free condition (R = 0).

That is to say, given an observer that perfectly observes the internal dynamics of
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the object, what is the chance for it to say they are zero?

The Jacobian to Equation (5.31) is trivial and is given by

H1
T =

∂h1

∂xT
= [03 I3] . (5.32)

Thus noting that R = 0, the innovation covariance of the fictitious measurement is

given by simply S = PvT vT , where PvT vT is the sub-matrix of the joint covariance

matrix P corresponding to the velocity of track T .

We then carry out a validation test on the measurement ẑ = 0, to see if it falls

within the validation gate, that is, if

(ẑ− h1(x̂T ))TS−1(ẑ− h1(x̂T )) ≤ χ2
d,α . (5.33)

Here x̂T is the current estimate (the mean) of xT , and χ2
d,α is the χ2 validation gate

threshold of degree of freedom d (d = 3 in this case) and confidence level α.

If Equation (5.33) holds, the hypothesis that this tentative track is stationary

is accepted, and the merge proceeds with a formal update to the state estimate

as if ẑ were a real measurement. This propagates the information gathered with

the tentative track so far to the rest of the system and sets its absolute velocity

actually to zero. The track can then be safely marginalised out after copying over

its boundary points to the static background to complete the merge.

A similar procedure applies to merging tests with an existing dynamic track.

In this case, the fictitious measurement applies to the relative motion of the tenta-

tive track to the existing track under consideration. Let us denote the dynamic

states of the tentative and existing tracks by xT = [γT , δT , φT , γ̇T , δ̇T , φ̇T ]T and

xE = [γE, δE, φE, γ̇E, δ̇E, φ̇E]T respectively, then the fictitious measurement we are

interested in is the relative motion (both linear and rotational) of the tentative track
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with respect to the existing track:

h2(xT ,xE) = ĠE
T

=




R(−φE)






γ̇T

δ̇T


−



γ̇E

δ̇E





− φ̇ER(π

2
− φE)






γT

δT


−



γE

δE







φ̇T − φ̇E




.

(5.34)

Differentiating Equation (5.34), we obtain its Jacobians

H2
T =

∂h2

∂xT
=



−φ̇ER(π

2
− φE) 02×1 R(−φE) 02×1

01×2 0 01×2 1


 , (5.35)

and

H2
E =

∂h2

∂xE

=




φ̇ER(π
2
− φE) Dh2(xT ,xE) −R(−φE) R(π

2
− φE)






γT

δT


−



γE

δE







01×2 0 01×2 −1




,

(5.36)

where D is a selection matrix given by

D =




0 1 0

−1 0 0


 . (5.37)

The merging test then proceeds in a similar fashion to the merging test in the static

case.

The same merging procedure is also conducted at the end of each processing
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cycle (Algorithm 5.2) for testing each existing track against merging with the static

background or other existing tracks.

The procedure described in this section is important because it is the only means

through which the static information in the state is kept up-to-date. It also allows

a dynamic object (or a false detection) to transition into the static state. An up-

to-date static information is the only direct influential factor to successful dynamic

object detection because successful data association requires an accurate estimate

of static boundary points and the classification of each new laser scan into a static

part and a dynamic part is handled implicitly by the data association process. Data

association is the main subject of our discussion in the next section.

5.6 Hierarchical Data Association

Not all state variables in the joint state are directly observable, for the ones that

are, namely boundary points on either the static background or any dynamic object,

it is ambiguous which is being observed, which is not, and indeed, whether a new

boundary point needs to be initialised. Thus when new laser measurements arrive,

it has to be determined for each measurement:

1. If it is an observation on a static object, then

(a) is it an observation of an existing boundary point?

(b) is it an observation of a new boundary point?

2. If it is an observation on an existing dynamic object, then

(a) is it an observation of an existing boundary point on the object?

(b) is it an observation of a new boundary point on the object?

3. Is it an observation on a new dynamic object?
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In addition, in case 2, it has also to be determined to which of the existing dynamic

objects the measurement belongs to, and in case 3, how many new tracks need to

be initialised.

This data association problem naturally breaks down into two levels. The first

level operates at the coarse scale, in which measurements are first divided into

clusters, and each cluster is assigned to either the static background, or a dynamic

object, or used to initialise a new dynamic track. At the fine level, for each object

(or the static background), measurements from the associated clusters are further

associated with its existing boundary points or used to initialise new boundary

points.

5.6.1 Coarse Level Data Association

The measurements in a given laser scan are first divided into a set of clusters C =

{C1, C2, . . . , C|C|}. The clusters are then assigned to the static background and

dynamic objects recursively with the help of the ICP algorithm (Besl and McKay,

1992).

We use a simple variant of ICP with outlier rejection. Specifically, to align two

point sets P and Q, at each iteration, we conduct nearest neighbour search between

the two point sets. A point in P is associated to its nearest neighbour in Q if their

distance is within a certain threshold, otherwise it is discarded as an outlier for this

iteration and become unassociated to any point in Q. All associations obtained in

this way are used to estimate a transform that aligns the point set P to Q. The

points in P are then updated to their new positions with the estimated transform

and the loop continues until convergence. The association upon convergence is taken

as the final association, with outlier rejection from P to Q.

With the ICP procedure defined, the coarse level data association proceeds as

follows. First, boundary points on the static background are aligned to the set of
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1 Function AssociateAndUpdate(x̂,P,Z)

Input: The current estimate of the mean x̂ and covariance matrix P of
the joint system state (after prediction), and the laser scan Z.

Output: The updated mean x̂ and covariance matrix P of the joint
system state.

2 C ← ClusterMeasurements(Z);

3 (x̂,P,A)← AssociateAndUpdateWithStatic(x̂,P, C);
// A = {C ∈ C : C is associated}

4 C ← C \ A;

5 for i← 1 to NT do
6 (x̂,P,A)← AssociatedAndUpdateWithDynamic(x̂,P, C, i);
7 C ← C \ A;

8 end

9 for C ∈ C do
10 (x̂,P)← InitialiseNewTrack(x̂,P, C);
11 end

12 return (x̂,P);

13 end

Algorithm 5.3: The coarse level data association algorithm. The raw laser
measurements are first clustered. Then clusters are recursively assigned to the
static background and each dynamic object in turn, with the assigned clusters
removed from the list at each stage. The unassociated clusters initialise new
tentative tracks. See text for details and relations to fine level data association.

measurements Z with ICP, and clusters in C which contains measurements matched

to any boundary points on the static background in this way are associated to the

static background, and used to update or initialise new boundary points at the fine

level for the static backgournd. Then the associated clusters are removed from C

and a similar procedure follows recursively for each dynamic track. The clusters that

remain in C at the end of this process are thus not associated with any existing track

(or the static background), and each cluster will initialise a new tentative dynamic

track. This procedure is captured in Algorithm 5.3.

Coarse level data association makes intuitive sense because first the majority of

the measurements belonging to the static part of the environment will be associated
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with the static boundary points, leaving the outliers being mostly measurements

on dynamic objects. The association of clusters instead of raw measurements at

this level helps in extending object boundaries because according to Algorithm 5.3,

all measurements in a given cluster will be associated to an object (or the static

background) if any measurement in it is associated with a boundary point on the

object with ICP. Provided the initial clustering is correct and ICP with outlier

rejection gives a reasonable performance, the remaining measurements in the cluster

can safely be assumed to be previously unobserved boundary points on the same

object and be used to extend the object boundary.

ICP is known to perform poorly when the initial misalignment between the two

point sets is large. However, if the two point sets start close-to-aligned, ICP is ideal.

This is precisely the case here because data association is conducted after model

prediction. The boundary points will be in their predicted locations instead of their

previous locations in the last frame. Given a good motion estimate, the predicted

locations of the boundary points will be already close to their actually observed

values.

What remains is to ensure that a good set of clusters is produced in the clustering

step. The details of our approach to clustering are deferred until Section 5.6.5 where

we introduce the proposed EMST-EGBIS clustering algorithm that is designed to

produce perceptually coherent clusters.

However, segmentation failure is inevitable in any unsupervised clustering pro-

cedure. In such an event, other components of the system such as the merging

procedure introduced in Section 5.5.4 take over to resolve the issue if it is possible.

5.6.2 Fine Level Data Association

Given a set of clusters associated with a certain track (or the static background),

the fine level data association must find a matching satisfying certain desirable
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criteria that assigns measurements contained in the clusters to boundary points on

the track. Correct assignment is critical to successful tracking, and, the stability

of the system as a whole, due to the fact that correlation is introduced between all

pairs of variables in the joint state. In particular, all state variables we would like

to infer: the sensor pose, the dynamic states of the tracked objects, are not directly

observed.

Joint Compatibility Branch and Bound (JCBB) (Neira and Tardos, 2001) is

a well-known data association algorithm that takes into account the correlations

between observations. Explained in our nomenclature, an association between the

set of measurements and the set of boundary points is called a feasible association

if:

1. Each measurement is associated to at most one boundary point, and no two

measurements are associated to the same boundary point (one-one associa-

tion).

2. Each matching of a measurement to a boundary point is individually compat-

ible as described below (individual compatibility).

3. The overall data association is jointly compatible as described below (joint

compatibility).

To clarify the concepts of individual and joint compatibilities, consider a bound-

ary point whose observation model has the standard form zj = hj(x) + wj. Here x

is the joint state defined in Section 5.4, and wj is the additive zero-mean measure-

ment noise. Thus its innovation covariance matrix is Sj = HjPHT
j + R. Here Hj is

the Jacobian of the function hj evaluated at the current state mean, and R is the

measurement noise covariance matrix (we assume all measurements have the same

noise covariance matrix).
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5.6.2.1 Individual Compatibility

Individual compatibility requires the assigned measurement ẑi must fall within a

certain confidence region of boundary point j’s validation gate, i.e. an assignment

of ẑi to zj is individually compatible if:

(ẑi − hj(x̂))TS−1
j (ẑi − hj(x̂)) ≤ χ2

d,α , (5.38)

where χ2
d,α is the χ2 validation gate threshold of degree of freedom d and confi-

dence level α. Here, d is the measurement dimension, hence d = 2, because each

measurement contains a range and a bearing ẑ = [r̂, θ̂]T .

5.6.2.2 Joint Compatibility

Under the assumption of independent observations, the joint observation model of

a complete association σ is given by

hσ(x) = [hTσ(1)(x),hTσ(2)(x), . . .]T , (5.39)

with the innovation covariance

Sσ =




Hσ(1)PHT
σ(1) + R Hσ(1)PHT

σ(2) . . .

Hσ(2)PHT
σ(1) Hσ(2)PHT

σ(2) + R

...
. . .




, (5.40)

where σ(1) denotes the index of the boundary point associated to the first assigned

measurement and so on. Thus the joint measurement has dimension Nad if the

number of assigned measurements is Na. An association σ is jointly compatible if

(ẑσ − hσ(x̂))TS−1
σ (ẑσ − hσ(x̂)) ≤ χ2

Nad,α . (5.41)

117



5.6 Hierarchical Data Association

Here ẑσ is the collection of the measurements that are assigned to some boundary

point according to association σ.

The JCBB algorithm then finds the feasible association that has the largest

number of assigned measurements N∗a . Since there are in general many feasible

associations with Na = N∗a , the algorithm finds the association σ∗ that gives the

lowest joint Normalised Innovation Squared (jNIS, defined to be the expression to

the left of the inequality in Equation (5.41)).

5.6.3 The JCBB-Refine Algorithm

Unfortunately, the JCBB algorithm is an exponential algorithm in the number of

measurements to be assigned. This means it is not directly applicable to our ap-

plication domain, since in our case observations are raw laser measurements and

number in the 100’s.

We introduce the JCBB-Refine algorithm, which instead of aiming to find the

optimum assignment σ∗, we only find a good association σ̃ that is feasible. Of course,

there are many feasible associations, a good association must be measured relative to

some gauge. The JCBB-Refine algorithm we propose here takes an initial association

σ0 as a starting point, and finds a feasible association that has as many assigned

measurements and as low a jNIS as possible in a greedy manner while respecting

the initial association σ0. The initial association σ0 can be arbitrary, i.e. it does not

have to be feasible. In fact, none of the feasibility conditions has to be satisfied.

Given σ0, the algorithm first removes assignments that do not comply with in-

dividual compatibility (i.e. noncompliant measurements become unassociated with

any boundary point), and then removes duplicate assignments with a single pass

through the measurements. After these, the resulting association satisfies feasibility

conditions 1 and 2. The algorithm then proceeds to iteratively removing the assign-

ment that leads to the most jNIS reduction until condition 3 is satisfied. Starting
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from this minimal set of assignments that is now feasible, the unassociated mea-

surements are then tried in turn, and assigned to the boundary point (among the

boundary points that are individually compatible and yet unassigned) that gives

the lowest jNIS if the assignment does not violate joint compatibility. The resulting

association is thus guaranteed to remain feasible.

The JCBB-Refine algorithm can be initialised with any sensible starting as-

signment σ0. In our particular application, the assignment as a result of the ICP

matching at the coarse level association is a natural starting point. The associa-

tion after the refinement is then used to update the joint state with the associated

measurements, and all unassociated measurements initialise new boundary points

to extend the object boundary.

5.6.4 Recursive Updates in Triangular Form

It is shown (Neira and Tardos, 2001) that the innovation covariance matrix S, its

inverse, and the jNIS can be computed recursively as hypotheses are being tested.

However in its direct form, the recursion suffers from numerical stability issues when

the number of measurements becomes large because both S and S−1 have to be

maintained to be symmetric and positive definite. We show the same computation

can be achieved in the triangular form, which is a numerically stable representation

for positive definite matrices.

To begin with, at step k, assume a decomposition for Sk is given such that

Sk = UT
kUk for some upper triangular matrix Uk, for example through Cholesky

decomposition. Then its inverse is given by S−1
k = U−1

k (U−1
k )T . If we define a new

matrix Gk = U−1
k so that S−1

k = GkG
T
k , we obtain a decomposition also for S−1

k . In

particular, Gk is also upper triangular.

Now the next iteration selects a new boundary point to be assigned to a measure-

ment expanding the innovation covariance matrix (with reference to Equation (5.40))
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to

Sk+1 =




Sk WT
k

Wk Nk


 . (5.42)

If we now define a new upper triangular matrix

Uk+1 =




Uk RT
k

0 Fk


 , (5.43)

where Rk = WkGk and Fk = chol(Nk−RkR
T
k ). It is then straightforward to verify

that Sk+1 = UT
k+1Uk+1 by direct evaluation.

Equation (5.43) establishes a recursion on the upper triangular matrix Uk. A

similar recursion on Gk can be obtained by explicitly inverting Equation (5.43).

Note that Equation (5.43) expresses Uk+1 in block form, hence we can apply the

standard formula for matrix inversion in block form




A B

C D




−1

=




(A−BD−1C)−1 −A−1B(D−CA−1B)−1

−D−1C(A−BD−1C)−1 (D−CA−1B)−1


 . (5.44)

This leads to

Gk+1 = U−1
k+1 =




Uk RT
k

0 Fk




−1

=




U−1
k −U−1

k RT
kF−1

k

0 F−1
k


 . (5.45)

Noting Gk = U−1
k and define a new matrix Mk = F−1

k for notational convenience,

we obtain the result

Gk+1 =




Gk −GkR
T
kMk

0 Mk


 . (5.46)

This gives a recursion on the decomposition of the inverse of the innovation covari-

ance matrix S−1
k .
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At any stage of the recursion, if the innovation covariance matrix Sk or its

inverse is needed, it can be obtained by a straightforward evaluation Sk = UT
kUk

or S−1
k = GkG

T
k . Thus by maintaining a different recursion on Uk and Gk, we

keep an implicit representation for the innovation covariance matrix and its inverse.

This triangular form does not suffer from numerical stability issues as keeping an

explicit recursion for Sk and S−1
k does because Uk and Gk are maintained to be

upper triangular by definition and this automatically guarantees Sk and S−1
k to be

symmetric and positive definite.

The innovation νννk also needs to be expanded with the newly assigned measure-

ment:

νννk+1 =



νννk

ν̃ννk


 , ν̃ννk = ẑk − hk(x̂) , (5.47)

where ẑk is the newly assigned measurement, and hk(x̂) the predicted measurement

given by the measurement model of the associated boundary point (as presented in

Section 5.5.3).

Given our representation of the innovation covariance matrix and its inverse

in the triangular form, a simpler formula for the jNIS can be obtained if we keep

track of an alternative vector ξξξk = GT
k νννk instead of νννk. The recursion for ξξξk can

be established by substituting Equation (5.46) and Equation (5.47) into ξξξk+1 =

GT
k+1νννk+1, so we have

ξξξk+1 =




Gk −GkR
T
kMk

0 Mk




T 

νννk

ν̃ννk


 =




GT
k νννk

MT
k (ν̃ννk −RkG

T
k νννk)


 . (5.48)

Noting ξξξk = GT
k νννk and define µµµk = MT

k (ν̃ννk −RkG
T
k νννk) = MT

k (ν̃ννk −Rkξξξk) we arrive

at

ξξξk+1 =



ξξξk

µµµk


 . (5.49)
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Now with ξξξk defined, the jNIS at each iteration k has a remarkably simple form

jNISk = νννTkS−1
k νννk = νννTkGkG

T
k νννk = ξξξTk ξξξk , (5.50)

a recursion for the jNIS therefore follows naturally from the recursion for ξξξk (Equa-

tion (5.49)):

jNISk+1 = jNISk + µµµTk µµµk . (5.51)

Finally, we note that these recursive update rules based on an implicit triangular

form representation of the innovation covariance matrix and its inverse have the

same computational complexity as the explicit recursions introduced in (Neira and

Tardos, 2001), but are more numerically stable.

5.6.5 EMST-EGBIS Clustering

As previously discussed in Section 3.2.1, Euclidean Minimum Spanning Tree (EMST)

based clustering algorithms have a long history, and is known for being capable of

detecting clusters with irregular boundaries (Zahn, 1971). We propose a novel vari-

ant of EMST based clustering algorithms in this section, which is efficient, and

particularly suitable for 2D range-bearing measurements where point densities vary

significantly at different distances from the sensor and across different scene geome-

tries.

EGBIS (Felzenszwalb and Huttenlocher, 2004) as described previously in Sec-

tion 3.3.3.1 is a popular graph-based segmentation algorithm, that is effective at

producing perceptually coherent segments over a wide range of variation in the dis-

similarity measure across the global graph structure. However, the graph structures

over unstructured application domains such as laser point clouds are usually not

trivial to define.

Our EMST-EGBIS algorithm combines the strengths of both algorithms. Specif-
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ically, we first compute the EMST over the collection of the points, and take the

obtained EMST as the input graph structure to EGBIS to compute the clusters.

Edge weights of the EMST (Euclidean distances between points) are taken directly

as the dissimilarity measure. We apply EMST-EGBIS to each incoming laser scan

to obtain measurement clusters to associate to object tracks (and the static back-

ground) at the coarse level of data association (cf. Section 5.6.1).

5.7 System Evaluation

In this section, we evaluate the proposed system, both quantitatively and quali-

tatively, and compare its performance against two benchmarking object tracking

approaches, of which one is an industrial standard solution. We note there exists

a large body of work on similar application domains (for example Miyasaka et al.,

2009; Mertz et al., 2013; Wang et al., 2003), however it is often difficult to obtain

a fair quantitative comparison to the methods due to either a lack of quantitative

results or difficulty of a direct comparison using a common dataset. This motivates

the comparison to a commercial product – the only one we are aware of which iden-

tifies and tracks dynamic obstacles. In addition, we also place the proposed system

in comparison to a classical tracking solution where each object is tracked with in-

dependent Kalman filters with greedy data association (details to follow in the next

section).

5.7.1 Experiment Setup

Our experiment platform is a modified Nissan Leaf that is equipped with a SICK

LDMRS laser scanner, which is a scanner targeted at object tracking applications on

automotive platforms. It scans the environment in four vertically separated scanning

planes at 12.5Hz and produces native object tracking information at the same time.
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Odometry information is provided internally as part of the vehicle state at 100Hz.

Figure 1.1(b) shows our experiment platform together with the sensor setup.

The main benefit of the multi-layered architecture of the SICK LDMRS scanner

is that it can compensate for the vehicle pitch appropriately. To take advantage of

the multi-layered scanner, we follow a standard procedure to remove ground strike

measurements given multiple scanning layers described in (Leonard et al., 2008).

Specifically, a grid is first built over the 2D scanning plane, measurements from

each scanning layer are projected down to the scanning plane and associated with

the grid cell that the measurement falls into. Then each occupied grid cell is taken in

turn. Where a cell contains measurements from more than one scanning layers the

measurements contained in that cell will be retained, otherwise they are discarded.

Finally, a single 2D polar scan free of ground strikes is generated by taking all

measurements that are retained, collecting range measurements corresponding to

each discrete scan angle from this retained set, and generate a new range value for

the scan angle by averaging. The resulting 2D scan has a number of measurements

in the same order as any single scan layer. The intuition behind this technique

is that obstacles are assumed to extrude out from the ground thus measurements

from multiple layers when projected down to the scanning plane tend to be close.

On the other hand, a ground strike due to vehicle pitching does not exhibit this

behaviour because it is equivalent to measuring a ramp. In all that follows, we

conduct experiments using this synthesised scan from all scanning layers.

We note that this procedure of combining the multiple layers of the LDMRS

scanner is solely for the purpose of removing false measurements due to ground

strikes. Our proposed tracking framework is not dependent on a multi-layered laser

scanner. The framework applies to any 2D laser scan. In fact, from our experience,

in the case of few ground strikes, using only a single layer from the LDMRS scanner

produces similar tracking performance.
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Dataset No. Laser Frames Duration (min) Drive Length (km) No. Objects

Training 3508 4.68 1.04 7517
Test 2151 2.87 0.82 5928

Table 5.1: Details of the training and test datasets. Here each count of an “object”
is a single observation of an object instance in a single laser scan.

In addition to the LDMRS’s native tracking system, we compare the proposed

system with a classic model-free tracking approach. For this second baseline, the

laser scan is first clustered with the EMST-EGBIS algorithm described in Sec-

tion 5.6.5. Then each cluster centroid is tracked with an independent Kalman filter

under the constant velocity model. Data association in this case is done by greedily

assigning each observed cluster centroid to the first object track for which the ob-

servation falls within its validation gate. A new object track is initialised if a cluster

cannot be associated with any existing object track in this way.

To evaluate the proposed system against the baselines, both quantitatively and

qualitatively, we collected data of busy traffic at the centre of Oxford containing

a variety of dynamic objects including pedestrians, cars, bicyclists, buses, trucks,

motorcycles and so on, and extracted two busy sections of the log right at the centre

of the city for evaluation. One dataset is used to find the best-performing parameter

set, and is hence named the training set, and the other, the test set, is used to obtain

unbiased test results running under the trained parameter set for fair comparison.

Both datasets are hand-labelled to provide ground truth for quantitative evaluation.

Figure 5.4 presents sample frames from the training and test datasets respectively

to illustrate the complexity of the datasets, and Table 5.1 lists the relevant statistics

of the datasets.

Note that, from Figure 5.4, a group of pedestrians is labelled in the datasets

as a single dynamic object provided the group has a common heading. Taking a

model-free approach, our goal here is to identify the dynamic hazard, to be able to

describe and predict its motion and estimate its extend. All of these requirements
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Training Set Test Set

Figure 5.4: Example frames from the datasets used for training and testing, demon-
strating the variety and complexity of dynamic scenarios covered by this challenging
dataset. For each column, similar to Figure 5.1, the left panel shows the image from
the onboard camera for visualisation only, with laser scan points projected into the
image plane, and the right panel shows the corresponding laser scan with ground
truth labels. Each ground truth object is highlighted by a green box. The left col-
umn shows five example challenging scenarios from the training set. From top to
bottom: (1) a complex junction, (2) an area frequently traversed by pedestrians and
groups of pedestrians, (3) a T-junction, also showing a cyclist travelling orthogonal
to the vehicle heading, and a pedestrian waiting for crossing (note in this scenario
the pedestrian is stationary hence is not included in the ground truth labelling), (4)
a situation where a large number of pedestrians can be observed by the laser at a
far distance, (5) a car manoeuvring from its parked location. Similarly, the right
column gives five example challenging situations from the test set. From top to
bottom: (1) a narrow street with pedestrians and manoeuvring cars, (2) a complex
junction with oncoming cars turning at different rates (relative to our own vehicle
motion), (3) a narrow road with significant oncoming traffic, (4) a busy pedestrian
crossing, (5) a wide turn resulting in a large relative motion to oncoming vehicles.
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can be satisfied by treating the group as a single object. In fact, the semantic

description that this single “object” is actually composed of several “pedestrians” is

neither achievable nor necessary given a completely model-free approach. Also, more

specifically, this imposes unrealistic demands to the clustering algorithm where the

cluster boundaries in this case are really only defined semantically. Individuals who

split from a group are labelled as separate objects as soon as their motion differs

from the common motion of the group.

5.7.2 Evaluation Metric and System Training

We evaluate the system’s ability to detect dynamic objects against the ground truth

using the standard Precision and Recall metrics. Specifically, Precision and Recall

are computed over the detected object boxes against the hand-labelled ground truth

object boxes using the overlapping criterion as is commonly used in the Computer

Vision community (Everingham et al., 2010). An object box is marked as a true de-

tection if it overlaps with a ground truth object box by more than a fixed percentage

threshold. In all our results, we use 0.5 as the percentage overlap threshold. And

a detection is matched to at most one ground truth object, and multiple detections

of the same ground truth object are treated as false positives.

To train the system for best performing parameter sets, we follow an approach

similar to that described in (Gavrila and Munder, 2007) as follows: both Precision

P and Recall R are functions of system parameters, thus if the number of system

parameters exceeds one, the set of all feasible (R,P ) pairs will in general occupy a

continuous 2D space in the R-P plane. The best parameters are then the parameters

that give rise to the (R,P ) pairs at the frontier of the feasible region (conceptually

corresponds to the top-right boundary of the feasible region, see Figure 5.5(a) for

an example).

Formally, the 2D feasible region parameterised by the set of all possible param-
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Figure 5.5: (a) Scatter plot of the obtained 1803 sample parameter settings using
(Snoek et al., 2012) with the estimated frontier overlaid. (b) Precision-Recall tuning
curves for the proposed system, the SICK LDMRS’s native tracking system, and the
independent tracking baseline.

eters P is given by F = {(R(p), P (p)) : p ∈ P}, the frontier parameter set of F is

given by F = {q ∈ P : ∀p ∈ P , R(p) ≤ R(q) or P (p) ≤ P (q)}. In other words,

a parameter set is in F if and only if it is not possible to achieve both a higher

Precision and a higher Recall.

To find this frontier parameter set, we apply a Bayesian parameter tuning algo-

rithm developed by Snoek et al. (2012) to bias the search in the high-dimensional

parameter space to look for satisfactory parameter settings, and obtain an approx-

imation to the frontier parameter set by finding the upper part of the convex hull

of the obtained (R,P ) scatter plot. Figure 5.5(a) shows the obtained 1803 sample

parameter settings with the algorithm, and the the blue curve shows the extracted

frontier.

Since the SICK LDMRS’s native tracking system clusters each incoming scan

and keeps track of every cluster, it makes no distinction between static and dynamic

objects. To compare the systems under the same setting, we take tracks with esti-

mated speeds higher than a given threshold to be the detected dynamic objects. It

would be desirable to be able to fine-tune the parameters of the LDMRS’s native
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tracking system. However, the most critical parameters are fixed internally to the

sensor, and modifications are unfortunately not feasible.

The independent tracking baseline is similar in the respect that it also does not

distinguish between static and dynamic objects. Hence thresholding on the object’s

absolute speed is also used to find dynamic objects to compare with the proposed

system. However, in the case of this baseline, we have control over the internal

parameters, thus we apply the same Bayesian parameter tuning technique also to

the classical independent tracking baseline to find the best internal parameter setups

as well as the best speed threshold.

Figure 5.5(b) presents the Precision-Recall curves for the proposed and the two

baseline systems for comparison. The curve of the LDMRS’s native system is gen-

erated by varying the speed threshold as described above, whereas for the classi-

cal independent tracking baseline, shown in the plot is the extracted frontier after

Bayesian parameter selection including both the internal parameters and the speed

threshold. As can be seen, the proposed system outperforms both baseline systems

by a significant margin. This is somewhat expected, since both the LDMRS’s na-

tive system and the independent tracking approach track only the cluster centroids,

which are not stable reference points on the objects to track due to occlusions and

dependency on the sensor viewpoint. On the other hand, the proposed system

enforces each track’s frame of reference to be attached rigidly to the object, and

dynamic objects are explicitly handled differently to static ones. The somewhat

bizarre behaviour of the Precision-Recall curves for the two baseline systems at the

low Recall end is an artefact of the fact that at a speed threshold that is too high,

all the sensible speed estimates are below the threshold while there exists false pos-

itives with some speed higher than the threshold. In this scenario, one obtains zero

Precision and zero Recall.

The performance of the LDMRS’s native detection system according to the
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Figure 5.6: An experiment to provide insights to the importance of Bayesian param-
eter tuning. All results are obtained with the classic independent tracking baseline.
Shown on common axes are: a scatter of (R,P ) pairs of the 1749 sample parameter
settings evaluated by the Bayesian parameter tuning algorithm (Snoek et al., 2012),
the extracted frontier based on the sampled parameter settings, and a Precision-
Recall curve generated by varying only the speed threshold fixing all the internal
parameters to a set of hand-tuned values (similar to how the Precision-Recall curve
for the LDMRS’s native tracking system in Figure 5.5(b) is obtained).

Precision-Recall curves compares inconceivably poorly even against the simple inde-

pendent tracking baseline. The reason for this apparently poor performance may be

explained by the inability to optimise for the system’s internal parameters. To see

how much difference it makes, Figure 5.6 plots the results for the classical indepen-

dent tracking baseline (whose internal parameters we have total control) in common

axes with a Precision-Recall curve for the same baseline generated by fixing the inter-

nal parameters to a hand-tuned set of values and only varying the speed threshold,

simulating the generation of the Precision-Recall curve in the case of the LDMRS’s

native system. As can be noted, the Bayesian optimisation algorithm is able to

quickly discover different parameter settings that are better than the hand-tuned

values, resulting in a much better achievable performance.
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Proposed System LDMRS Native Independent Tracking
Precision 0.45 0.07 0.14

Recall 0.39 0.70 0.23
F1-measure 0.42 0.13 0.18

Table 5.2: Quantitative evaluation of the three systems on the test dataset using
the parameters selected with the help of the training set (see text for details). Per-
formance is measured with the standard Precision and Recall metrics, as well as the
corresponding F1-measures for a comparison of overall performance in both Preci-
sion and Recall. The best performing system with respect to a specific metric is
highlighted in bold.

5.7.3 Test Case Performance : a Quantitative Evaluation

Given a range of operating points along the Precision-Recall curve, we choose empir-

ically a single parameter setting that achieves the best balanced performance from

Figure 5.5(b) for each system. Specifically we choose the parameter setting that

gives R = 0.53 and P = 0.57 for the proposed system, the speed threshold that

achieves R = 0.69 and P = 0.05 for the LDMRS’s native system, and the parameter

setting (including the speed threshold) that gives R = 0.39 and P = 0.23 for the

classical independent tracking baseline. All experiments that follow report metrics

evaluated on the test dataset using these chosen operating points.

Table 5.2 lists performance metrics evaluated on the test set using the chosen

parameter settings for each system. Here in addition to Precision and Recall we

also report the standard F1-measure as an overall performance measure taking ac-

count of both Precision and Recall. The trend observed during system training (cf.

Figure 5.5(b)) remains also in the test case. Judging by the F1-measure, the classi-

cal independent tracking baseline outperforms the SICK LDMRS’s native tracking

system, while our proposed system outperforms both by a significant margin. Note

however, the absolute figures differ from the training case. In particular, with the

selected speed threshold, the LDMRS’s native tracking system performs slightly

better on the test set than on the training set (a F1 value on the training set of
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0.09 from R = 0.69 and P = 0.05 compared with 0.13 on the test set), emphasising

further the importance of using a different test set for unbiased comparison.

Figure 5.7(a-c) show performance metrics for the three systems on the test

dataset as the detection range is varied. This experiment is different from the

experiment in Section 4.8.5 (cf. Figure 4.10(c)). Here we are interested in the sys-

tem’s ability to detect objects within a certain range compared with the baseline

systems, thus at each range limit, the ground truth objects we compare our detec-

tions with are also limited to the objects within range. In Figure 4.10(c), we are

interested in finding out how system performance degrades when objects above a

certain range are ignored by the detector all together, hence in that case, at each

range limit, the detections are compared with all ground truth objects regardless

of range. Therefore in Figure 4.10(c) we expect to see a decreasing performance

as the range limit reduces, whereas in Figure 5.7(a-c) we expect to see an increase

in system performance as the range limit reduces, because objects at closer ranges

contain more measurements and are usually easier to detect.

From Figure 5.7(a-c), all three systems show a decreasing trend in both Precision

and Recall as the detection radius increases. The independent tracking baseline

shows an interesting trend in its Recall, which, after an initial drop, increases back

up at further distances. This is likely due to the fact that objects far away tend

to appear as well-separated clusters of very small sizes – a situation particularly

suited to simple tracking techniques that track only the cluster centroids such as

the independent tracking approach here.

Figure 5.7(d) places the systems under common axes using the F1-measure for

comparison. From the figure, although the close-range performance of the pro-

posed system and the LDMRS’s native tracking system is similar (with the pro-

posed system slightly outperforming), the difference is significant from 20m onwards.

Interestingly, the classical independent tracking baseline exhibit close to uniform
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Figure 5.7: (a) Precision and Recall versus operating radius for the proposed sys-
tem. (b) Precision and Recall versus operating radius for the SICK LDMRS’s native
system. (b) Precision and Recall versus operating radius for the independent track-
ing baseline. (d) F1-measure versus operating radius for all three systems. (e)
F1-measure over past 100 frames versus frame number for the three systems.
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performance over different detection ranges. Although performing worse than the

LDMRS’s native tracking system at close ranges, the independent tracking baseline

performs (albeit slightly) better at further ranges, agreeing to the trend observed

during training (cf. Figure 5.5(b)).

Figure 5.7(e) compares the instantaneous performance at each frame of the three

systems. F1-measures are evaluated at each frame based on detections of the past

100 frames for each system, and results are plotted against the frame number. While

the proposed system outperforms the LDMRS at most frames, there are occasional

performance drops. Closer inspection into the dataset reveals that around Frame 400

there exists a period of driving with very few dynamic objects present, hence the

apparent low performance from both systems. However, near to Frame 1300, many

walking pedestrians close to background clutter are present which are missed out

by the proposed system due to segmentation failure. The LDMRS performs better

in this scenario but in sacrifice of Precision. The performance of the independent

tracking baseline follows approximately the same trend over time as that of the pro-

posed system, albeit at a lower quality, suggesting the performance of any model-free

tracking approach is heavily influenced by scene complexity. We take a closer look

into the instantaneous performance of the proposed system on the test dataset in the

next section, and identify some interesting cases, both the challenging but successful

ones, and the common failure modes, together with cases where the performance of

the proposed system differs from that of the two baseline systems and discuss about

possible reasons for it being so.

5.7.4 Test Case Performance : a Qualitative Evaluation

Continuing with the setup from the previous section, we take a closer look behind the

numbers in this section. All qualitative results presented in this section are obtained

by running the respective system (our proposed system and the two baselines for
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Figure 5.8: Examples of cases where the proposed system is able to successfully
detect and track dynamic objects under challenging situations. As in Figure 5.1,
green boxes represent true detections according to the ground truth labels, and red
boxes denote false alarms. Blue ellipses highlight interesting situations in the scene.
Images are provided for visualisation only. See text for details.

comparison) on the test dataset using the parameter set selected during the training

phase (cf. Section 5.7.2) for unbiased evaluation.

Figure 5.8 presents some examples of situations where the proposed system is

able to successfully detect and track the dynamic objects in the scene, despite of the

complexity of a real driving scenario in a busy town centre. The top left example

shows the performance of the proposed system during busy oncoming traffic. All

oncoming and leading cars are tracked successfully. Although two pedestrians can

be observed on the left, they are not tracked because they are stationary. Here

we note again that, in the model-free approach, only moving objects are detected

and tracked, for example, parked or instantaneously stationary cars are also not

included. The top right example gives a complex situation where the system has

been successful in tracking a manoeuvring vehicle, two walking pedestrians (one

is pushing a bicycle) as a group and another car travelling in the far field. Some

pedestrians walking along walls on the right are missed due to segmentation failure

(under-segmentation with the wall). In the bottom left example, our vehicle itself is

turning giving rise to a large relative motion to the tracked objects. Here a bicyclist
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(a)

(b)

Figure 5.9: Common failure modes of the proposed system. (a) The recoverable
cases. From left to right: an image with projected laser data to provide some
context only, and tracking results from the proposed system showing the evolution
of the system’s perception over time. (b) The unrecoverable cases. In particular, the
case on the right is potentially dangerous. In both (a-b), as with other figures, green
boxes denote true detections, red boxes denote false alarms. Blue ellipses highlight
regions of interest. See text for details.

(highlighted), together with a vehicle behind, are tracked successfully. The far field

“false detections”, upon closer look, may actually correspond to unlabelled moving

pedestrians at a large distance. The bottom right example shows an interesting

situation where a group of pedestrians (highlighted) are successfully tracked however

the corresponding ground truth label is missing. This suggests that imperfect ground

truth labelling may also contribute, to a certain degree, to a possibly underestimated

system performance. Note the car on the left in this example is parked.

Figure 5.9 studies some common failure modes of the proposed system. We
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divide this study into two different cases: a recoverable case, where despite initial

tracking failure, the system subsequently is able to recover from the incorrect states,

and an unrecoverable case, where an object is erroneously tracked or missed until it

moves out of the view of the sensor.

Figure 5.9(a) gives two common causes of recoverable failure. The top row shows

the situation where some measurements on the static background get erroneously

associated with a moving vehicle being tracked, due to under-segmentation (left

laser scan). However, the hierarchical data association procedure (cf. Section 5.6)

means that in the next iteration, this unreasonably large “object” is likely to be

associated with more measurements on the static background. This in turn results

in its estimated motion to drop, until eventually low enough to be merged with the

static background (cf. Section 5.5.4). Then because motion inconsistency, soon a

new object track will be initialised on the same vehicle (middle laser scan), and

old boundary points that are supposed to belong to the tracked vehicle but falsely

merged with the static background previously will expire because they are no longer

observed. After that the system successfully recovers and keeps good track of the

vehicle (the right scan). The bottom row, on the other hand, shows a case of

recoverable failure due to over -segmentation. Because of viewpoint changes, a car is

first erroneously tracked as two separate segments (the middle scan). But thanks to

the merging procedure (cf. Section 5.5.4), the system soon realises these segments

should belong to the same object, and the car is subsequently tracked successfully

as a single entity (the right scan). Although during a recoverable failure, the system

eventually corrects its mistakes, there is nonetheless a transient time during which

tracking is incorrect. Most of recoverable failures are due to segmentation errors.

Despite our efforts in obtaining perceptually coherent segments in introducing the

EMST-EGBIS algorithm in Section 5.6.5, segmentation errors are inevitable. One

possible way to improve on this matter is to introduce semantics into the framework,
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to actively look for certain known types of cluster boundaries. We will return to

this point in our discussions in Chapter 6.

Figure 5.9(b) presents two common cases of unrecoverable failure. The inclu-

sion of a static background in our model helps significantly in resolving ambiguities

resulting from viewpoint changes or occlusion (this will be demonstrated later qual-

itatively in this section). However, in regions beyond the current extend of the

estimated static background, false detections may still arise when a static structure

appears dynamic due to sensor motion, such as the short section of the wall visible

only between the two parked cars (highlighted) in the left example in Figure 5.9(b).

This false detection may not be as severe because the erroneous “dynamic” object

appears to travel parallel to and in reverse direction as our own vehicle. The failure

case in the example on the right however, is very critical. In this case, it is possible

that sometimes motion of slow objects such as pedestrians is below the threshold for

detection. When this happens, if the pedestrian remains walking in a low speed, they

may be missed entirely, albeit crossing right in front of the vehicle. This situation

exposes a weak point of purely model-free approaches (such as the proposed system

here). Because of a lack of any semantic interpretation, the situation is possible to

occur no matter what system parameters are actually used, provided a pedestrian

walks slowly enough. Again, one possible solution is to bring in model-based ele-

ments in aiding difficult situations such as a slow walking pedestrian. We include

this possible extension in our discussions in Chapter 6.

Figure 5.10 gives three common cases where the performance of the proposed

system tends to differ from that of the two baselines we compared with quantitatively

in Section 5.7.3. The first example (the top row), demonstrates the importance of

keeping an estimate of a local static background as part of the state. As can be seen

from the figure, both baselines give false detections around the section of the wall

on the right, due to either uncertain motion estimates (LDMRS native tracking,
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Proposed System SICK LDMRS Native Classical Independent Tracking

Figure 5.10: Three cases of differing performance over the three systems evaluated
quantitatively in Section 5.7.3. Each row is structured from left to right: the camera
image for visualisation only, the tracking result of the proposed system, the tracking
result of the SICK LDMRS’s native system, and that of the classical independent
tracking baseline. As with other figures, green boxes represent true detections, red
boxes indicate false alarms. Interesting areas are highlighted with blue ellipses. See
text for details.
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middle scan), or data association failure (independent tracking, right scan). The

proposed system, however, suffers none of these problems, because as soon as the

measurements belonging to the wall are assigned to the static background, they

are known to be stationary. The second example (the middle row), shows different

system responses in the event of viewpoint changes. A car (highlighted) traveling

towards our vehicle in the opposite direction is being tracked successfully until it

gradually goes out of view. The appearance of the car thus changes significantly

as it moves past the sensor. Both baseline systems, because they all track only

the cluster centroids, do not have a stable reference tracking point on the car, thus

the motion estimates they produce are incorrect (in the case of the independent

tracking, it is believed that the car has stopped). Our proposed system, on the other

hand, tracks a fixed reference point rigidly attached to the object due to our special

object representation (cf. Section 5.4.2), hence is able to maintain correct tracking

on the car (left laser scan). The third example (bottom row) examines in detail

the discrepancy in performance of the three systems around Frame 1300 observed

in Figure 5.7(e) earlier. As may be noted from the detection results shown, due to

noisy sensor measurements and segmentation errors, the two groups of pedestrians

(highlighted) on pavements either side of the road are largely missed by both the

proposed, and independent tracking systems. The LDMRS’s native tracking system,

however, is able to detect and track the majority of the pedestrians with success,

albeit at the sacrifice of a large number of false positives. The fact that both the

proposed system and the independent tracking baseline make the same mistakes in

this case may suggest that the error is due to either a common mistake made by the

clustering algorithm (both approaches use the EMST-EGBIS clustering algorithm

described in Section 5.6.5), or the way multiple scanning layers are fused into a

single scan described in Section 5.7.1. The mechanisms the LDMRS’s native tracking

system relies on to fuse information from multiple scanning layers are not known to
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us. Some specifics of the information fusion mechanism may have proven successful

in this particular situation.

5.7.5 Timing

In this section, we take an empirical analysis of the computational efficiency of the

proposed system. The parameter training procedure followed in Section 5.7.2 is ex-

cellent in investigating the full potential of a system in terms of system performance.

However, different parameter settings inevitably give rise to different computational

requirements. For example, a larger maturity threshold (cf. Section 5.5.4) means a

larger number of tentative tracks may be kept around in the system before they are

merged with the static background or existing object tracks, increasing the load of

the system. The best performing parameter set is not necessarily the most efficient

parameter set. As a compromise, we hand-tuned the system parameters by visual

inspection using only the training dataset for a reasonable performance and at the

same time a satisfactory computational time. We made sure during this hand-tuning

process the test set is completely hidden away from us so that any performance and

timing measures remain unbiased. The resulting parameter set gives a Precision of

0.47 and a Recall of 0.38 evaluated on the test dataset, corresponding to an F1-

measure of 0.42. These figures compare well with the values quoted in Table 5.2

using the best performing parameter set selected during the training phase.

Figure 5.11 then shows timing results using this hand-tuned parameter set as

plots of processing times for the laser and odometry measurement types respectively.

The results are generated using our current prototype implementation in MATLAB

on a MacBook Pro equipped with a quad-core 2.8GHz Intel i7 CPU and 16GB

of RAM. Figure 5.11(a) shows a plot of the time taken per frame over the entire

test sequence (in milliseconds) in the case of laser measurements, together with a

rough measure of scene complexity at each time instant. Scene complexity here
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Figure 5.11: (a) Computation time per frame for each laser frame. Also shown
on the same graph is a simple measure of scene complexity given by the number
of ground truth objects present at each frame. There exists a certain degree of
correlation between computation time and scene complexity. (b) Computation time
per frame for each odometry measurement frame. In both (a) and (b), the mean
computation time per frame is indicated by a horizontal line.

is measured by the number of ground truth objects present at any given instant.

Some degree of correlation may be observed between computation time per frame

and scene complexity, especially during the first half of the sequence (up to around

Frame 1200). Of course, we note here computation time per frame should not

completely depend on scene complexity measured by the number of dynamic objects

present, because at each laser frame the static background also needs to be updated.

The average time taken per frame evaluates to 151ms, corresponding to a frame

rate of around 6.6Hz if buffering is used. Figure 5.11(b) shows a similar time plot

for odometry measurements. Update times taken on each odometry measurement

appear much more stationary (with occasional outliers) compared with those of the

laser measurements. This makes intuitive sense because odometry updates do not

depend on scene complexity. The average time taken per odometry update evaluates

to a mere 0.37ms, confirming the theoretical insight gained in Section 5.5.1.
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5.7.6 An Evaluation of the JCBB-Refine Algorithm

In this section, we evaluate the efficacy of the proposed JCBB-Refine fine-level data

association algorithm (cf. Section 5.6.3). The JCBB-Refine algorithm enables pro-

cessing of a large number of measurements that is infeasible for the standard JCBB

due to its exponential complexity with respect to the number of measurements. An

alternative known extension to the JCBB algorithm for associating a large number

of measurements is the Randomised JCBB algorithm proposed by Paz et al. (2008).

Instead of refining an initial association like JCBB-Refine, Randomised JCBB

does not require an initial association. Instead, Randomised JCBB follows the

RANSAC paradigm (Fischler and Bolles, 1981, also see Section 3.2.2). At each iter-

ation, a small number of measurements are selected at random (four measurements

are selected in (Paz et al., 2008)). Then the standard JCBB algorithm is applied

to optimally assign this small set of measurements, following which the rest of the

measurements are assigned in a greedy fashion. The total number of assigned mea-

surements is taken as the number of inliers. This process iterates. In the end, the

association with the most number of inliers is returned as the final solution.

Though attractive as a solution in our situation, the RANSAC iterations in

Randomised JCBB are likely to introduce additional computational burdens. JCBB-

Refine, on the contrary, starts with an initial guess of the association, and reaches

a jointly compatible association in a single greedy pass through the measurements.

Figure 5.12(a) compares the performance of the proposed system with a variant

using Randomised JCBB replacing JCBB-Refine for fine-level data association. For

fair comparison, the variant with Randomised JCBB has also been tuned systemat-

ically using the approach detailed in Section 5.7.2 on all tunable system parameters

using the training set. There is no notable performance difference between the

proposed system using JCBB-Refine for fine-level data association and the variant

using Randomised JCBB. However, using JCBB-Refine enables a significantly faster
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Figure 5.12: (a) Comparison of the proposed system using the JCBB-Refine fine-
level data association with a variant using Randomised JCBB (Paz et al., 2008)
for data association. Shown on common axes are Precision-Recall curves for the
respective variants generated after searching for optimal parameter settings with
the Bayesian parameter optimisation package (Snoek et al., 2012) using the training
set. The curve for the original variant using JCBB-Refine is the same as the curve
in Figure 5.5. (b) Computation time per frame for laser measurements versus frame
number for the two variants. The curve for the original variant using JCBB-Refine
is the same as the curve in Figure 5.11(a). Note the different scale on the y-axis.

computation as can be noted from Figure 5.12(b), confirming our reasoning above.

Here the timing plot for the variant using Randomised JCBB was generated follow-

ing the same procedure as the proposed system (Section 5.7.5) to remove any bias

in comparison, i.e. all system parameters were hand-tuned for a good performance

as well as a reasonable computational speed using the training data, then timing

results were obtained on the test set using this set of parameters.

If a good initial guess is available, such as from the result of ICP in our case, it

is more preferable to use JCBB-Refine.

5.8 Conclusions

In this chapter, we presented a unified Bayesian framework for jointly estimating

the sensor pose, a local static background and dynamic states of moving objects.
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The main focus of our work is on the detection and tracking of moving objects

independent of classes and shapes. We described our model-free representation of

objects using boundary points initialised with raw laser measurements, and derived

their observation models. The dynamics of the moving objects are inferred as hidden

variables under a rigid body constraint, making the quality of the data association

algorithm critical to the system’s correct operation.

Therefore, within the same unified framework, we proposed a novel two-level

data association algorithm that takes benefits of both the density of observations

and strong correlations between them. A new variant of the JCBB algorithm (Neira

and Tardos, 2001) was suggested to tackle with large numbers of measurements, and

a solution to numerical stability issues under such scenarios was also presented.

Finally, the proposed system was tuned systematically on real-world data against

hand-labelled ground truth, and both quantitative and qualitative evaluations demon-

strated the system’s superior performance over an existing industry standard also

targeted at object tracking for automotive applications and a classical model-free

independent tracking approach.
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Chapter 6

Conclusions and Discussions

6.1 Summary of Contributions

In this thesis, we presented our contributions to laser-based dynamic object detec-

tion and tracking from two different perspectives: the model-based, and model-free

perspectives.

6.1.1 Model-Based 3D Object Detection

Model-based approaches focus on the detection of potentially moving objects based

on the semantics of the objects. We first proposed an end-to-end segmentation-based

object detector for the detection of cars, pedestrians and bicyclists in Chapter 3.

Then in Chapter 4 we presented one of the key contributions of this thesis – our

sliding window approach to object detection in 3D.

6.1.1.1 Segmentation-Based Object Detector

The proposed segmentation-based detector takes as input a raw stream of 3D point

locations and produces clusters (segments) corresponding to distinctive object enti-

ties labelled with the object class. In particular, we tackled the issue of segmenta-
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tion errors by first producing an over-segmentation, and then grouping the resulting

super-voxels into object clusters once more information has accumulated about their

identities. Our key contribution in this work is the postulation that at the level of

the over-segmented super-voxels, there is insufficient semantic information to decide

the true identity of the segment other than whether it belongs to one of the three

object classes of our interest (car, pedestrian or bicyclist), or the background clut-

ter. Based on this binary classification, we may collate all foreground super-voxels,

and group them into holistic object clusters, where there will be more evidence at

this level to decide the object’s true identity. We verified our postulation using a

collection of custom and publicly available data of urban street scenes.

As part of our detection pipeline, we also presented a novel EMST-based clus-

tering algorithm that adapts to the native characteristics of the laser by the use of a

RANSAC edge selection criterion. The resulting EMST-RANSAC clustering algo-

rithm is able to successfully segment clusters of points according to their Euclidean

distances of separation independent of the number of objects in the scene.

6.1.1.2 Sliding Window Object Detection in 3D

The sliding window approach to object detection, while ubiquitous in the Computer

Vision community, is largely neglected in laser-based detection methods, possibly

due to its perceived computational inefficiency.

In Chapter 4, we demonstrated that, by taking advantage of the sparsity of 3D

laser scans, the processing of a large number of window locations can be avoided.

Specifically, we proved mathematically the equivalence between convolution on a

sparse feature grid and voting, providing an efficient algorithm to exactly compute

the detection scores at all window locations and all orientations using only the bare

minimal amount of computation, resulting in an average computation time of less

than half a second for a complete 3D scan containing in the order of 100, 000 points.
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We demonstrated the superior performance of the proposed detector on the pub-

licly available KITTI dataset, and showed that it achieves commensurable qual-

itative performance to the best available vision-based detectors on the car class.

The proposed sliding window detector is both faster and better-performing than the

previously proposed segmentation-based detector in Chapter 3.

This work is to our best knowledge the first to apply a sliding window approach

to object detection in 3D data.

6.1.2 Model-Free Tracking with 2D Laser

Model-free methods, in contrast to model-based methods, focus on the detection

and tracking of instantaneously moving objects, independent of their classes and

shapes. In Chapter 5, we presented a new approach to model-free tracking of dy-

namic objects that represents an object by a collection of points on its boundary

initialised (and subsequently updated) with raw laser measurements, thus allowing

a flexible nonparametric representation. Dealing with raw laser points poses a sig-

nificant challenge to data association. We proposed a hierarchical approach, and

presented a new variant of the well-known Joint Compatibility Branch and Bound

(JCBB) algorithm to respect and take advantage of the constraints of the problem

introduced through correlations between observations. Finally, we calibrated the

system systematically on real world data containing 7.5K labelled object examples

and validated on 6K test cases. We demonstrated its performance over an exist-

ing industry standard targeted at the same problem domain as well as a classical

approach to model-free object tracking.
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6.2 Discussions and Future Research

6.2.1 On the Sliding Window 3D Object Detector

Although we focused our evaluation of the sliding window 3D object detector on the

car class in this thesis, our formulation is general enough for the detection of any

object class. Evaluating the effectiveness of the current feature set on the detection

of other object classes such as pedestrians and bicyclists is a part of our future work.

Currently, we have chosen six simple features capturing both the shape and ap-

pearance aspects of the objects. Although our current choice of the feature set gives

superior performance as demonstrated by the evaluations in Chapter 4, designing

the best feature set for sliding window detection in 3D is not the main focus of the

work presented here. In seeking further improvements to detection performance, we

are keen to apply unsupervised feature learning techniques (Bo et al., 2012; Ngiam

et al., 2011; Ranzato et al., 2008) to search for better feature representations than

the currently hand-picked simple features.

We are also interested in generalising the proposed sliding window approach, in

particular the voting paradigm, to other cases where the feature grid is inherently

sparse, such as the 2D laser scan, or the 2.5D scan formed by the four scanning layers

of the SICK LDMRS sensor (without projection to a single scanning plane as we have

done in the case of the model-free tracker). We wish to investigate the effectiveness

of various feature choices (including the possibility of unsupervised feature learning)

on these alternative sensor modalities, then evaluate the performance and efficiency

of the proposed sliding window framework in these cases. In particular, computation

time is expected to reduce significantly due to a much reduced number of points.
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6.2.2 On Improving Tracking Performance

There are several advantages in taking a model-free approach over a model-based

approach to object tracking. For example, dynamic objects are identified and tracked

independent of their shapes and classes, lifting the design efforts required in model-

based approaches to treat each object class separately. Also, unexpected object

classes are covered in the same framework with no difference to other familiar object

classes, thus providing full situational awareness.

Despite these advantages, a purely model-free approach does lack semantic in-

terpretation to the objects it tracks, giving difficulties in many folds, some of which

we have already encountered in Section 5.7.4. There is still room for improvements

over the model-free tracking framework proposed in Chapter 5. In the future, we

aim to extend our model-free framework with model-based elements to bring the

best of both worlds. Specifically, model-based elements may be designed as “plug-

ins” to the existing model-free framework serving only to improve its performance.

Individual object classes (for example, the familiar object classes cars, pedestrians

and bicyclists) can be added one at a time or whenever a corresponding “plugin” is

available (e.g. by using the sliding window detector proposed in Chapter 4 trained

on a specific object class). Each of such modules provides additional semantic in-

terpretation for the objects the model-free tracker is currently tracking, aiding it

in many fronts. First, given semantic interpretations, we may bias the output of

the EMST-EGBIS algorithm to correctly segment objects that are known to the

model-based modules, reducing segmentation errors. Second, once an object of a

given class is recognised, it may be flagged as a potential dynamic object even if

it is not actually moving or moving in a low speed. Finally, additional semantic

knowledge will enable us to apply more sophisticated motion models, or even mul-

tiple models (e.g. the Interacting Multiple Model (IMM) filter (Zhao and Thorpe,

1998)) to objects whose class is known with confidence to better account for all
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complexities of motion the object may exhibit. This may include, for example, in

the case of pedestrians, a slow motion model to help with the situation encountered

in Section 5.7.4. When an unexpected object is observed, or the object class may

not be determined with confidence, the system falls back to model-free tracking, still

maintaining a full situational awareness.

6.2.3 On Combining Sensor Modalities

The focus of this thesis has been object detection and tracking with lasers. Of

course, we do not need to restrict ourselves to using only laser data if other sen-

sors are available such as cameras. The additional information contained in other

sensor modalities such as rich appearance information in vision compliments rich

shape information from lasers. When fused appropriately detection performance is

expected to increase over using either individual sensor modality alone. This idea of

combining sensor modalities for object detection has been a focus of active research

in recent years (e.g. Spinello et al., 2010; Oliveira and Nunes, 2013; Fotiadis et al.,

2013; Premebida et al., 2014).

The approaches proposed in Chapters 3 and 4 can be readily extended to fuse in-

formation from a camera. In the simplest case, assuming a good extrinsic calibration

is available between the laser and the camera, we can obtain RGB colour informa-

tion for each laser point by re-projection. After this process, each laser point will

contain, in addition to its (x, y, z) coordinates and intensity value, a (r, g, b) colour

information. Then additional appearance features based on the RGB values can be

added to the 3D feature set to aid detection. In the case of the segmentation-based

detector proposed in Chapter 3, we may fuse the information at an even earlier

stage of the pipeline – appearance information can be used to define similarities

between neighbouring points in addition to surface normal discontinuity to improve

pre-segmentation.
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Following such a simple approach essentially transfers only a part of the dense

appearance information available from an image into the sparse points in 3D. To

take advantage of dense appearance information such as texture contained in an

image, we may extract dense features on the image such as HOG (Dalal and Triggs,

2005), and transfer the computed dense features, in additional to raw (r, g, b) pixel

values to corresponding 3D points. Going further from this idea, we may think of

interpolating depth values at all pixel locations given the projected pixel locations

from the sparse laser data similar to (Premebida et al., 2014). If another camera

is available, for example from a stereo system, the second camera can be used to

verify the interpolated pixel depths to remove erroneous interpolated values. After

depth interpolation, each pixel in the image can be traced back to 3D to create a

dense 3D point cloud. Investigating the feasibility of such a dense 3D reconstruction

from stereo aided by a sparse 3D laser, and the applicability and performance of the

proposed detection systems (Chapters 3 and 4) on such dense 3D data are all part

of our future work.
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Appendix A

Preliminaries

A.1 The Support Vector Machine

In this appendix, we briefly describe the Support Vector Machine for classification.

While a full exposition of the details of SVM classifiers is beyond the scope of

this thesis, we are well served by a synopsis. First consider a set of training data

D = {(xi, yi) : i ∈ N, i ≤ N} where xi is a training instance in the feature space

and yi is its label. The SVM classifier is a binary classifier, so that the data is

to be classified into one of two classes only, i.e. yi ∈ {1,−1}. The actual values

of the labels are arbitrary, the specific choice is due to compatibility with existing

literature and in aid of later formulation of the cost function.

The simplest formulation of SVM assumes D is linearly separable, that is, there

exists a hyperplane in the D-dimensional feature space such that all xi with yi = 1

lie on one side of the plane and all xi with yi = −1 lie on the other. If the equation

of the hyperplane is given by

w>x = −b , (A.1)

the classifier finds the parameters w and b for the plane such that the classification

margin is maximised, that is, the training examples are as far away from the decision
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hyperplane as possible. Because the margin of the decision boundary is inversely

proportional to ||w||, SVM classifiers minimise a cost function that is proportional

to w>w.

In reality strictly linearly separable classes are rare, and this is accommodated by

allowing a small number of data points to fall inside the margin, with the formulation

min
w,b,ξ

1

2
w>w + C

N∑

i=1

ξi (A.2)

s.t. yi(w
>xi + b) ≥ 1− ξi ,

ξi ≥ 0 , ∀(i ∈ N, i ≤ N) ,

where ξi are slack variables that are strictly positive for points penetrating the

margins, zero otherwise.

When the feature space is not likely to be linearly separable, it is common to

apply so called the “kernel trick”, where the original feature space is mapped to a

higher dimensional feature space by a nonlinear mapping φ(xi) such that in the new

feature space the two classes are linearly separable.

Equation A.2 can be expressed alternatively in a dual formulation, such that

when φ(xi) is substituted for xi, it appears only in the form of k(xi,xj) = φ>(xi)φ(xj),

which is termed the kernel function.

Since the nonlinear mapping φ is never explicitly evaluated in the dual formula-

tion, kernel functions can be constructed that map the original feature space into an

infinite dimensional feature space, achieving better separability between the classes.

One of such kernel functions that are commonly deployed in practice is the Gaussian

Radial Basis Function (RBF) kernel defined by

k(xi,xj) = exp(−γ||xi − xj||2) . (A.3)

154



A.2 Precision, Recall and F -measures

When the number of classes is more than two, a common practice is to train

one-versus-all classifiers for each class, that is, a binary SVM classifier for each

class against all examples not belonging to the class, with the final classification

label determined by a greedy winner-takes-all approach – the class whose binary

one-versus-all classifier gives the most positive result.

For a detailed exposition to SVM classifiers, the reader is referred to (Bishop,

2006, Chapter 7).

A.2 Precision, Recall and F -measures

Precision and Recall are measures of performance for classification or detection

systems defined as

P =
TP

TP + FP
, (A.4)

and

R =
TP

TP + FN
, (A.5)

where P and R denote Precision and Recall respectively, and TP, FP, FN repre-

sent the numbers of true positive, false positive and false negative classifications (or

detections depending on what system is being evaluated) respectively.

The F -measures are balanced measures between Precision and Recall, and are

defined by

Fβ =
(1 + β2)PR

(β2P ) +R
. (A.6)

Here again, P and R denote Precision and Recall respectively, and β is a positive real

number that specifies the weight given to Recall. For example, as β → 0, Fβ → P ,

whereas as β →∞, Fβ → R.
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Arguably the most useful F -measure is the F1-measure, where β = 1:

F1 = 2
PR

P +R
. (A.7)

The F1-measure gives equal weights to Precision and Recall, hence is commonly

taken as an overall measure of system performance.
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