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Abstract—This paper proposes an efficient and effective
scheme to applying the sliding window approach popular in
computer vision to 3D data. Specifically, the sparse nature of
the problem is exploited via a voting scheme to enable a search
through all putative object locations at any orientation. We
prove that this voting scheme is mathematically equivalent to
a convolution on a sparse feature grid and thus enables the
processing, in full 3D, of any point cloud irrespective of the
number of vantage points required to construct it. As such it
is versatile enough to operate on data from popular 3D laser
scanners such as a Velodyne as well as on 3D data obtained from
increasingly popular push-broom configurations. Our approach
is “embarrassingly parallelisable” and capable of processing a
point cloud containing over 100K points at eight orientations in
less than 0.5s. For the object classes car, pedestrian and bicyclist
the resulting detector achieves best-in-class detection and timing
performance relative to prior art on the KITTI dataset as well
as compared to another existing 3D object detection approach.

I. INTRODUCTION

The sliding window approach to object detection is arguably
the most frequently deployed paradigm for object detection in
computer vision. However, it has been largely neglected so far
for laser-based object recognition. In fact, the same paradigm
seems to be equally applicable to a 3D point cloud as it is to
a 2D image. The conceptual difference is not significant, one
only needs to first discretise the space into a 3D voxel grid,
and slide a window through all three-dimensions instead of
two as in the case of images.

We conjecture that perhaps one disparaging factor has
been the perceived computational burden introduced by the
additional dimension, leading to a dismissal of sliding window
approaches as impractical in 3D. To illustrate, assume we
are interested in detecting objects in 3D within a point cloud
spanning an area of (100m)2 and a volume 10m high. If we
discretise this volume into (20cm)3 cells, we will have 12.5
million grid cells. A naı̈ve approach would place the corner
of a detection window at each of these 12.5 million cells
and test whether it bounds an object of interest. Thus one
would need to process ca. 12.5 million windows (neglecting
boundary conditions as they are irrelevant for the sake of this
thought experiment). Even assuming (rather optimistically)
that a single window can be processed within 1µs, this implies
a computational burden of 12.5s in order to process a single
frame. With our proposed algorithm, the average computation
time for such a case is less than 0.5 seconds.
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Fig. 1. An illustration of the detection process. The point cloud (top left)
is first discretised into a 3D grid (top right). For each occupied cell, points
that fall within the cell, together with their reflectance values, are mapped
to a fixed-dimensional feature vector (middle right gives an example of such
an occupied cell highlighted in both top right and middle left). Unoccupied
cells are mapped to zero feature vectors by definition. Thus the point cloud
is converted to a feature grid (middle left, each coloured sphere represents
a feature vector extracted for an occupied cell). A 3D detection window
then slides, in all three-dimensions, through the feature grid (bottom left),
a classifier evaluates each window location for the evidence of an object. The
point cloud with the detected object is shown at the bottom right. The process
repeats for each angle of rotation.

The key insight to achieving such efficiency is by noting
that there is one fundamental difference to the structure of
a 3D point cloud as compared to that of a 2D image: a 3D
point cloud is sparse in that most of the space is unoccupied.
We show in Section IV that there exists a duality between
sliding window detection with linear classifiers and a voting
scheme exercised only by the occupied cells, reducing the



amount of computation to a minimum while at the same time
maintaining exact mathematical equivalence. This constitutes
the key contribution of this work and results in a detector
which we demonstrate to achieve best-in-class detection and
timing performance relative to prior art on a number of classes
on the KITTI dataset as well as compared to another existing
3D object detection approach.

II. RELATED WORKS

There exist a number of works in robotics exploring the
detection of objects in 3D data. Teichman et al. [19, 18], for
example, first segment input laser scans and then track the
segments obtained in a sequence of scans. A boosting classifier
is employed to classify each tracked sequence of segments
into the classes car, pedestrian and bicyclist. Wang et al.
[20] take a related approach, where a laser scan is first over-
segmented into object parts, and SVM classifiers are trained
to separate the segments into either foreground that belongs
to objects of interest or the background. Then a clustering
procedure is conducted on the foreground segments to obtain
object instances. A second classification stage classifies the
resulting clusters into the same set of classes car, pedestrian
and bicyclist. Behley et al. [1] also take a segmentation-
based approach. First, a hierarchy of segments are obtained
from the input point cloud. The segments are then classified
with a mixture model trained on bag-of-words descriptors.
Redundant segments in the hierarchy are later removed in a
greedy manner. Lai et al. [11] deploy the Kinect sensor to
learn a sparse distance metric for recognising pre-segmented
indoor objects with Group-Lasso regularisation.

A body of work in monocular object detection with 3D pose
estimation [9, 7] also characterises objects by 3D bounding
boxes identified by sliding a window in 3D. However, instead
of building a 3D feature grid, detection is achieved by pro-
jecting the image fronto-parallel to each visible face of the
object bounding cuboid and 2D features are then extracted
for that face from the projected image. Similarly, another
common approach to object detection in 3D is to select or
exploit a single vantage point and to project the 3D data
from a laser scanner onto an image plane to form a depth
image. A 2D sliding window operation is then performed. As
examples serve [14, 15] who in addition also take into account
appearance information from a regular camera image. Lai et al.
[10] detect objects in 3D point clouds generated from multiple
views of RGB-D data by running a 2D sliding window detector
on each view over both the RGB and the depth data. Then
detections in 3D are obtained by first projecting 2D detection
scores to the integrated 3D point cloud and fusing them using
a voxel representation. In contrast, the approach we propose in
this paper does not require any projection and operates solely
on 3D data. Consequently, our approach is versatile enough
to operate on data from popular 3D laser scanners such as a
Velodyne as well as on 3D data obtained from increasingly
popular push-broom configurations without having to assume
a privileged vantage point.

Most closely related to our work is the sliding window
approach to 3D object detection recently proposed by Song
and Xiao [16], who share our aspiration of passing a 3D
window through a voxel grid. In their work, computational
tractability is achieved via the use of a 3D integral image.
However, each window needs to be tested explicitly as to
whether there are more occupied cells than a certain threshold.
While this is more efficient than a naı̈ve approach, it requires
operations linear in the total number of cells in the 3D grid.
In contrast, our approach is linear in the number of occupied
cells, empty cells are bypassed altogether. Our approach is
therefore computationally more efficient.

We are not the first to notice the duality between sliding
window detection with linear classifiers and voting. Lehmann
et al. [12] use a similar argument to justify the voting process
in the Implicit Shape Model (ISM). In their framework named
Principled Implicit Shape Model (PRISM), it is argued that
the Implicit Shape Model is in fact equivalent to the sliding
window detector – they are two sides of the same coin.
However, there are three main differences of the derivation
presented in Section IV to the PRISM framework: a) The
“votes” in our derivation are not cast into a continuous search
space, they vote directly for the discrete locations of the sliding
window. b) There are no codebooks generated, feature vectors
are not matched to any exemplars. Instead, votes are simply
scalar products between weight and feature vectors. c) Finally,
and most importantly, instead of a conceptual equivalence,
what we demonstrate in this work, is an exact mathematical
equivalence between sparse convolution and voting.

III. OVERVIEW

The steps required in our 3D sliding window detector
are conceptually analogous to an image-based one. Figure 1
illustrates the process with a toy example – a small section of
a real 3D laser scan containing an object of interest, a car in
this case.

The input to detection is the 3D laser scan represented as a
list of point locations, together with reflectance values. First,
the point cloud is converted into a feature grid as follows.
The 3D space is discretised into a grid at a fixed resolution,
and each occupied cell is converted into a fixed-dimensional
feature vector. Cells that are not occupied by any points map to
zero feature vectors. This definition is critical for exploiting
the sparsity of the problem. For example, as an illustration,
the middle left diagram of Figure 1 visualises the feature grid
extracted over the section of point cloud shown at the top left
of the same figure. Here each coloured sphere represents a
feature vector extracted for an occupied cell, the absence of a
sphere means the cell is unoccupied and therefore its feature
vector is zero. Note the sparsity of the feature grid – coloured
spheres only occupy a small subset of the entire grid.

Then conceptually, a 3D detection window of a fixed size
is placed at one corner of the feature grid and slides down
all three dimensions. At each window location, the feature
vectors contained within its bounds are stacked up into a single
long vector and passed to a classifier (for example, an SVM).



The classifier then decides whether the current location of the
detection window bounds an object of interest by means of
returning a detection score. Section IV is devoted to a key
mathematical result that makes this step tractable.

In contrast to image-based detectors, scale is not an issue
here, because the absolute scale (in metres) is known in 3D.
However, rotation is a problem. Assuming objects of interest
are generally upright, that is, any rotation is constrained to be
about the vertical axis, in order to be able to detect objects
in arbitrary orientations, we discretise the full 360◦ into N
orientation bins and run the same detection process N times
on the rotated point cloud for each orientation bin.

IV. SLIDING WINDOW, SPARSE CONVOLUTION AND
VOTING

It is well known that a linear classifier in the case of sliding
window detection is equivalent to convolution, and therefore
standard techniques such as the Fast Fourier Transform (FFT)
can be applied to compute the detection scores efficiently [3].
Unfortunately, this technique does not apply in our case in
3D. Sparsity in the spatial domain does not imply sparsity
in the frequency domain, thus the Fourier transform of the
sparse feature grid will be dense. We prove in this section
that sparse convolution is mathematically equivalent to the
process of voting. This leads to an efficient way of computing
the detection scores fully exploiting the sparse nature of
the problem to our advantage. We offer this as our main
contribution in this work. Note, the technique we are about
to describe is only applicable in the case of a linear classifier.

The feature grid is naturally four-dimensional – there is one
feature vector per cell, and cells span a three-dimensional grid.
Let us denote the l’th feature at cell location (i, j, k) by f lijk.
At times, we will find it convenient to refer to all features
computed at location (i, j, k) collectively as a vector fijk. To
keep the presentation simple and clear, we refer to the tuple
(i, j, k) by a single variable, e.g. φ = (i, j, k). If the grid
has dimensions (NG

x , N
G
y , N

G
z ), we may define a set Φ =

[0, NG
x )× [0, NG

y )× [0, NG
z ). Here the notation [m,n) is to be

understood as the standard half open interval defined over the
set of integers, i.e. [m,n) = {q ∈ Z : m ≤ q < n}, and “×”
denotes the set Cartesian product. Thus Φ is the set of indices
on the feature grid, and any φ ∈ Φ index a particular cell of
the grid. In this notation fijk can be written in the cleaner
form fφ (this indexing notation is illustrated in Figure 2(a)).
Recall that by definition fφ = 0 if the cell at φ is not occupied.
We can capture this concept by defining a set Φ∗ ⊂ Φ that
represents the subset of cell locations that are occupied. Thus
φ ∈ Φ \ Φ∗ =⇒ fφ = 0. The feature grid is sparse.

Similarly, if the dimensions of the detection window are
(NW

x , NW
y , NW

z ), then define the set Θ = [0, NW
x ) ×

[0, NW
y )×[0, NW

z ) that is the set of indices local to a detection
window, we may denote the weights of the linear classifier
associated with a cell location in the window θ ∈ Θ as wθ

(an example is also illustrated in Figure 2(a)). In contrary to
the feature grid, the weights are dense.
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(a) (b)
Fig. 2. (a) An illustration of the duality between sparse convolution and
voting. This location of the detection window happens to include only three
occupied cells (represented by the three coloured spheres). The origin (anchor
point) of the detection window is highlighted by the big blue cube at the
corner, which happens to coincide with the cell location ψ = φ = (i, j, k)
on the feature grid. The feature vector for the occupied cell at grid location
φ = (i + 7, j + 3, k) is shown as an illustration. The weights from the
linear classifier are dense, and four-dimensional. The weight vector for an
example location θ = (2, 3, 0) is highlighted by a small magenta cube. All
three occupied cells cast votes to the window location ψ, contributing to the
score sψ . (b) An illustration of the votes that a single occupied cell casts. The
location of the occupied cell is indicated by the red sphere and the origins of
detection windows that receive votes from it are represented by blue cubes.
This example is for a 8× 4× 3 window.

To save us from worrying about boundary conditions, we
define the feature vectors and weight vectors to be zero if its
index is outside the bounds. This extends the set of indices in
both cases (feature and weights) to the full Z3.

In addition to the set of indices on the feature grid Φ, the set
of indices in a detection window Θ, we will need to define a
third set of indices Ψ that contains the indices of all detection
window locations that may possibly receive a nonzero detec-
tion score. If we define the anchor point for a detection window
to be at its local coordinates θ = (0, 0, 0) (cf. Figure 2(a)), then
the set of all possible window locations can be captured by the
set of all possible locations on the feature grid of a window’s
anchor point. Thus the set of indices of the anchor points of all
windows that can possibly receive a nonzero detection score is
given by Ψ = [1−NW

x , NG
x )×[1−NW

y , NG
y )×[1−NW

z , NG
z ).

In the derivations that follow, we will consistently use an
index φ to index a feature vector on the feature grid, θ to
index a weight vector in the detection window, and ψ to index
a window location (anchor point position on the grid). We are
now in a position to derive the main result of this section.

Theorem 1. The score sψ for the detection window with origin
placed at grid location ψ can be written as a sum of votes
from occupied cells that fall within the detection window.

Proof: We begin by writing down the explicit form for
the detection score sψ according to the linear classifier

sψ =
∑

θ∈Θ

fψ+θ ·wθ , (1)

where “·” denotes the vector dot product. Since wθ = 0
whenever θ /∈ Θ, the summation can be extended to the entire



Z3, then after a change of variables φ = ψ + θ we arrive at

sψ =
∑

θ∈Z3

fψ+θ ·wθ (2)

=
∑

φ∈Z3

fφ ·wφ−ψ (3)

=
∑

φ∈Φ

fφ ·wφ−ψ (4)

=
∑

φ∈Φ∗

fφ ·wφ−ψ . (5)

Equation (4) follows from Equation (3) because fφ = 0 ∀φ /∈
Φ, and Equation (5) then follows from Equation (4) because
fφ = 0 for unoccupied cells by definition.

Now, we note again, that wθ = 0 ∀θ /∈ Θ, this implies that
the summation in Equation (5) further reduces to

sψ =
∑

φ∈Φ∗∩Γψ

fφ ·wφ−ψ , (6)

where Γψ = {φ ∈ Z3 : φ−ψ ∈ Θ} = {φ ∈ Z3 : ∃θ ∈ Θ, φ =
ψ + θ}.

If we now define the vote from the occupied cell at location
φ to the window at location ψ as vφ,ψ = fφ · wφ−ψ ,
Equation (6) becomes

sψ =
∑

φ∈Φ∗∩Γψ

vφ,ψ . (7)

This completes the proof.
Theorem 1 gives sliding window detection on a sparse grid

a second view, in that each detection window location is
voted by its contributing occupied cells. This is illustrated in
Figure 2(a). Indeed, we can also imagine votes being cast from
each occupied cell for different detection window locations
in support of the existence of an object of interest at those
particular window locations. This view of the voting process
is summarised by the next corollary.

Corollary 1. The three-dimensional score array s can be
written as a sum of arrays of votes one from each occupied
cell.

Proof: First, we note that s is a function that maps
elements in Z3 to real numbers (the detection scores at
different window locations), that is s : Z3 → R.

With this view in mind, we turn our attention back to
Equation (5), with our previous definition of the vote vφ,ψ =
fφ ·wφ−ψ , we arrive at

sψ =
∑

φ∈Φ∗

vφ,ψ . (8)

Now, v is defined for each φ, ψ ∈ Z3. Given a fixed φ, with
some abuse of notations, we define a function vφ : Z3 → R
such that vφ(ψ) = vφ,ψ ∀ψ ∈ Z3. It is now obvious that the
three-dimensional score array s can be written as

s =
∑

φ∈Φ∗

vφ . (9)

1Function ComputeScoreArray(w,f)
Input: Weights of the classifier w and the feature

grid f .
Output: The array of detection scores s.

// Initialise the score array with
zero values.

2 for ψ ∈ Ψ do
3 sψ ← 0;
4 end

// Begin voting.
5 for φ ∈ Φ∗ do
6 for θ ∈ Θ do
7 sφ−θ ← sφ−θ + fφ ·wθ;
8 end
9 end

10 return s;

11end

Algorithm 1: Computing the score array given weights of
the classifier and the feature grid via voting. See text for
details.

We now turn our attention to the structure of the 3D array
vφ. By definition, vφ(ψ) = vφ,ψ = fφ ·wφ−ψ , this implies that
vφ(ψ) = 0 whenever φ − ψ /∈ Θ. Recall that φ specifies the
index of the occupied cell where the votes originate from, and
ψ the window location a vote is being cast to, this means only
windows at locations satisfying φ − ψ ∈ Θ receive possibly
a non-zero vote from the cell. Now given a fixed φ, define
the set Λφ = {ψ ∈ Z3 : φ − ψ ∈ Θ} = {ψ ∈ Z3 : ∃θ ∈
Θ, ψ = φ − θ}. Then the argument above limits the votes
from cell φ to the subset of window locations given by Λφ.
Referring to Figure 2(b), the red sphere in the figure represents
the location of the occupied cell φ and blue cubes indicate
window locations that will receive votes from φ, that is, the
set Λφ. Λφ thus includes all window locations whose origins
are located in a window that has the same dimensions as the
detection window but going backwards from the cell location
φ.

With the insight of the structure of voting gained, Corol-
lary 1 readily translates into an efficient algorithm – Algo-
rithm 1 – to compute the array of detection scores s by voting.

V. FEATURE EXTRACTION

For our feature representation, we compute three shape
factors [21] on the scatter of points within the occupied cell,
the mean and variance of the reflectance values of points
contained in the cell, and a binary occupancy feature that is 1
for a cell that is occupied and 0 if it is not. This gives a total
of 6 features for each cell.

These simple features may not appear to be descriptive when
considering just a single cell. However, considering an object



is described by a collection of cells (and that the relative
positions of these cells do matter), the overall descriptive
power of these apparently simple features can be rich.

We stress here that designing the best features for a sliding
window detector in 3D is not the main focus of this work.
However, the simple feature set we have chosen gives a good
detection performance as is demonstrated in Section VII.

VI. NON-MAXIMUM SUPPRESSION

To remove duplicate detections, we apply a non-maximum
suppression procedure analogous to the standard techniques
commonly applied in Computer Vision [2, 6, 13]. Specifically,
we follow the greedy approach described in [6].

The non-maximum suppression proceeds as follows. All
window locations (at all angles of orientation) with a detection
score higher than a threshold σ are first sorted in descending
order of their detection scores. Then they are taken one-by-one
in that order, and compared with the current list of accepted
window locations (initialised to be empty). A window location
is accepted and added to the list of accepted windows if it
does not overlap with any of the previously accepted object
windows by more than a given threshold. The overlap between
two object windows is computed as the ratio of the volume of
the intersection over the volume of the union.

VII. EVALUATION

To facilitate supervised learning, we take advantage of the
publicly available KITTI dataset [8]. The object detection
benchmark from the KITTI dataset supplies synchronised
camera and Velodyne frames, with objects annotated in both
image and laser data. Specific to our interests is that the
annotations in the laser data are given as complete oriented 3D
bounding boxes bounding the object of interest in a canonical
orientation.

We evaluate the performance of the proposed 3D sliding
window detector on the classes car, pedestrian and bicyclist,
and demonstrate its superior performance in terms of its
absolute performance based on common evaluation metrics
and the relative performance compared quantitatively with
both an existing segmentation-based approach to 3D object
detection [20], and results published on the KITTI object
benchmarking website.

A. Training

The standard KITTI object detection benchmark contains
a labelled training set and a labelled test set. However, the
labels on the test set are held back for evaluation purposes.
Since what we are interested in here is a fair evaluation of
the performance of the sliding window detector on 3D data,
whereas KITTI is primarily a vision dataset, we create our
own training and test datasets from the labelled data in KITTI
that is publicly available (i.e. the original “training” dataset)
by randomly splitting it into two parts and then test the
detector’s performance based on metrics that are more suitable
to evaluating detections in 3D (cf. Section VII-B).

Specifically, we randomly split the 7481 labelled frames
available into 80/20 proportions for training and testing re-
spectively. The numbers of frames contained in the resulting
training and test sets, together with other information, are
tabulated in Table I.

For the linear classifier, we deploy a linear SVM, and use
the LIBLINEAR library [5] for training. An initial set of
negative examples (equal to the number of positive examples)
are randomly sampled from the training data taking care not to
overlap with any positive examples. Taking this initial set of
training examples, we adopt the standard hard negative mining
technique from image-based object detectors (e.g. [17, 2, 6]).
Specifically, a classifier is first trained on the initial training
set. After training, the classifier is applied back on all the
training frames. All false positive detections from this clas-
sifier on all the training frames are collated, and sorted in
descending order of the detection score. The first N (or all
of the false positives if there are less than N of them) are
then taken and added to the set of negative examples. The
classifier is then retrained with this updated training set and
this process may iterate for a predefined number of rounds.
In all our experiments that follow, we fix N to be 10000 and
conduct 20 rounds of hard negative mining.

A disadvantage of sliding window approaches is that arte-
facts may be introduced during the discretisation process.
Because window locations are only searched on the discretised
feature grid (and the discretised angle of rotation), it is unlikely
an object is captured in the detection window in precisely its
canonical pose. However, the positive examples for training
are extracted from manual labels, the objects contained are
therefore centred and facing forward. To compensate for this
discrepancy, for each positive example, we randomly sample
10 slightly translated and rotated (about the vertical axis)
versions of it, and append them to the set of positive examples
for training.

B. Evaluation Strategy

The object labels provided by the KITTI dataset on the
3D laser data are comprehensive in the sense that, as well as
obvious object instances, challenging objects that are heavily
occluded or very sparsely sampled due to being at a large
distance from the sensor are also included. The included
objects may at times be as challenging as being described
by only a handful of laser measurements (see, for example,
the left column of Figure 3).

This motivates us to divide the labelled object instances
into different difficulty levels similar to the original KITTI
specification [8], to respect the complete set of labels from the
dataset at the same time not to place unreasonable demands
to the detection system.

The original KITTI specification is tailored specifically to
vision-based detection systems. Here, we first take a closer
look into the dataset for the types of labelled object instances
provided in the 3D laser data, and based on that, devise
suitable criteria for dividing the objects into the easy, moderate
and hard difficulty levels.



TABLE I
DETAILS OF DATA SPLITS FOR TRAINING AND TESTING.

No. of Frames No. of Cars No. of Pedestrians No. of Bicyclists
Hard (Total) Moderate Easy Hard (Total) Moderate Easy Hard (Total) Moderate Easy

All 7481 28742 18971 12611 4487 3272 1843 1627 932 449
Training (80%) 5985 22802 15028 9941 3642 2665 1507 1337 775 372
Testing (20%) 1496 5940 3943 2670 845 607 336 290 157 77

Hard Moderate Easy

Fig. 3. Examples of labelled object instances from the training set of
different difficulties. Left column: hard (but not moderate), instances contain-
ing numbers of measurements m < 50. Middle column: moderate (but not
easy), instances containing numbers of measurements 50 ≤ m < 150. Right
column: easy, instances containing numbers of measurements m ≥ 150. See
text for details.

Figure 3 presents examples of labelled instances for the
classes car, pedestrian and bicyclist from the KITTI Velodyne
data. As can be noted, from left to right, the identity of the ob-
ject ranges from very difficult to judge, to being obvious (as far
as a human perceiver is concerned). The left column displays
example ground truth labels that contain only less than 50
laser measurements, the middle column shows examples that
contain between 50 and 150 laser measurements, whereas the
right column gives examples that have over 150 measurements
on them. Examples in the left column contain insufficient
measurements for even a human observer to tell its identity. On
closer inspection, a human observer may be able to identify
the examples of objects in the middle column. Finally, the
features of an object are much more well-defined for the
examples in the right column. Given the observations above,
we define the easy object instances as instances described
by over 150 laser measurements, the moderate instances as
instances described by over 50 laser measurements, and the
hard instances including all labelled instances provided in the
dataset. Note the set of hard instances includes the set of
moderate instances, and similarly the set of moderate instances
includes the set of easy instances in accordance to the original
KITTI specification on vision data. Table I gives the numbers
of labelled object instances of each difficulty level contained
in the KITTI dataset and our splits.

We use the standard Precision and Recall metrics to evaluate

the detector’s performance on the test dataset. Specifically,
Recall for each difficulty level is computed as the ratio of
the number of object instances belonging to that difficulty
level that are successfully detected over the total number
of instances of that difficulty level. Precision is computed
independently of difficulty levels as the usual ratio of true
detections (of any difficulty level) over the total number of
detections.

Detections are assigned to ground truth labels in a manner
similar to the strategy used in the PASCAL VOC Challenge [4]
from the Computer Vision community. For the classes car and
bicyclist, in addition to the overlap being required to be greater
than 0.5 between the detection and the ground truth label, the
detection has to match the angle of orientation of the ground
truth object, that is, the angle of rotation about the vertical axis
between the detected object box and the ground truth object
box must be within ±∆

2 where ∆ is the angular resolution.
Only the overlap criterion is required for the pedestrian class
because there is no dominating longitudinal direction for a
pedestrian. Each detection is assigned to at most one ground
truth object, and duplicate detections to the same ground truth
object are taken as false positives.

C. Detection Performance

The proposed sliding window detector is trained with the
training set according to the procedure outlined in Sec-
tion VII-A, and evaluated on the test set. There are only three
parameters to the detector, the grid resolution δ (the side length
of grid cells), the number of angular bins N and the overlap
threshold to for non-maximum suppression (cf. Section VI).
In all our experiments, we set δ = 0.2m, N = 8, and
to = 0.01 for the car class, to = 0.5 for the pedestrian class,
and to = 0.1 for the bicyclist class. The class-dependent to
parameters are chosen to reflect expected proximity between
objects of that class.

Figure 4 presents results for each of the three object classes
after training for 20 rounds of hard negative mining, each eval-
uated on the three different difficulty levels on the test set. The
Precision-Recall curves presented in the figure are generated
by varying the detection threshold σ (cf. Section VI). As one
would expect, the detector performs better as the evaluation
difficulty decreases for all object categories, with the best
performance noted at the easy level.

D. Timing

The proposed sliding window detector is implemented as
a C++ library. Noting that the computation for each orienta-
tion bin (cf. Section III) is completely independent of each
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Fig. 4. Precision-Recall curves at the end of training for the three object classes evaluated according to the three difficulty levels. All Precision-Recall curves
are generated on the custom KITTI test dataset.

TABLE II
TIMING STATISTICS. SEE TEXT FOR DETAILS.

Car Pedestrian Bicyclist
Ave. Time ± s.d. (ms) 462± 94 191± 38 235± 48

other, hence it falls within the “embarrassingly parallelisable”
paradigm. We therefore take full advantage of modern CPUs’
multi-core architectures by treating the computation for each
orientation bin as an independent job unit, which may be
executed on different threads.

We evaluate the timing aspects of our implementation on
a MacBook Pro equipped with a quad-core 2.8GHz Intel
i7 CPU and 16GB of RAM. We take the same classifiers
trained in Section VII-C, and select the detection threshold for
each object class from the Precision-Recall curve evaluated
on the test dataset at the easy difficulty level (cf. Figure 4)
at balanced values of Precision and Recall. Then the obtained
classifiers are applied over the test set from the original KITTI
benchmark (i.e. the test set whose ground truth labels are
not publicly available). Timing statistics are collected, and
tabulated in Table II. The computation time per frame averages
to under 500ms for all three object types.

E. Comparison to an Existing Method on 3D Object Detection

Although standard procedures for benchmarking vision-
based detectors exist on the KITTI dataset, a corresponding
benchmarking standard is currently missing for laser. It is
difficult to obtain a fair quantitative comparison with existing
approaches to object detection in 3D. In this section, we
quantitatively compare the sliding window object detector
proposed with one existing approach to object detection in
3D, the segmentation-based detector described in [20].

To ensure a fair comparison with the existing results quoted
in [20], we follow exactly the same evaluation procedure
and use exactly the same evaluation dataset on which results
reported in [20] are obtained. In particular, each oriented
object box as output from the sliding window detector is
converted to a corresponding object segment by taking all
points that fall within the window. Figure 5 presents the
Precision-Recall curves in blue of the sliding window detector
evaluated in this way, compared with the results quoted in

Table II of [20] for the three different detection schemes
proposed in that work. As may be noted from the figure,
the sliding window detector outperforms the segmentation-
based detector by a significant margin on all three object
categories. Because the segmentation-based detector is purely
shape-based, it does not use appearance information from
the reflectance values, to compare the two approaches on a
common footing, we also include in Figure 5 the Precision-
Recall curves, in red, of a variant of the sliding window
detector trained with only the shape-based features from our
feature set. Though the performance compares less favourably
with using the full feature set as one would expect, it still
outperforms the segmentation-based detector.

F. Comparison with Other Laser-Only Methods Evaluated on
the KITTI Dataset

As mentioned in the previous section, while it is currently
difficult to benchmark the proposed approach with other laser-
based detection methods in its native form due to the lack
of an established 3D object detection benchmark, standard
benchmarking for vision-based detectors is readily available
for the KITTI dataset.

As an attempt to broaden the reach of our comparative
studies, we have therefore submitted results from the proposed
3D detector to the 2D KITTI object benchmark by projecting
the obtained 3D detections to the image plane with the
provided calibration parameters1.

We must stress here, although evaluated following the same
procedures on the same test dataset, any comparison with
other published results of vision-based methods is inevitably
heavily biased. Our submission does not take advantage of any
image data, and the evaluation criteria followed are according
to the original difficulty specification defined with respect to
vision. Because of the inherent difference in sensor modality,
attempting to compare laser-based and vision-based methods
on a completely fair basis is challenging if not impossible. For
example, what is difficult in appearance in vision may not be
difficult in laser and vice versa.

1The submitted results may be viewed on the KITTI object bechmarking
website http://www.cvlibs.net/datasets/kitti/eval object.php under the method
name Vote3D.

http://www.cvlibs.net/datasets/kitti/eval_object.php
http://www.cvlibs.net/datasets/kitti/eval_object.php
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Fig. 5. Precision-Recall curves generated by applying the sliding window detectors over the evaluation dataset in [20]. Included in the same figures are
variants of the detectors with the appearance features turned off for fair comparison. Results reported in Table II of [20] are plotted on common axes as points.

TABLE III
COMPARISON WITH OTHER LASER-ONLY METHODS EVALUATED ON THE OFFICIAL KITTI VISION BENCHMARK. BOLD NUMBERS DENOTE TOP ENTRIES

FOR THE COLUMN. SEE TEXT FOR DETAILS.

Method Car Pedestrian Bicyclist
Rank Moderate Easy Hard Rank Moderate Easy Hard Rank Moderate Easy Hard

Vote3D (Ours) 20 47.99% 56.80% 42.57% 17 35.74% 44.48% 33.72% 4 31.24% 41.43% 28.60%
CSoR 22 26.13% 34.79% 22.69% - - - - - - - -

mBoW [1] 23 23.76% 36.02% 18.44% 18 31.37% 44.28% 30.62% 10 21.62% 28.00% 20.93%

However, currently two (and only two) other laser-only
methods exist on the benchmarking website that published
their detection results in a similar manner. Table III is an
excerpt of the table of published results on the KITTI website
that puts our submitted results (Vote3D) in direct comparison
to these methods. For each object category, the table lists
the rank of the method in the benchmark, and the average
precision for the moderate, easy and hard difficulty levels
respectively (submissions are ranked according to the average
precision evaluated on the moderate difficulty in the KITTI
benchmark, hence the ordering). The CSoR submission is an
anonymous submission, and evaluated on the car class only.
The number in bold in each column denotes the top entry of
that column (higher rank or higher average precision). As can
be noted from the table, the proposed sliding window detector
compares favourably winning on all columns.

VIII. CONCLUSIONS

The sliding window approach to object detection, while
ubiquitous in the Computer Vision community, is largely
neglected in 3D laser-based object detectors. This may be
due to its perceived computational inefficiency. In this paper
we demonstrate that by fully exploiting the sparsity of the
problem, exhaustive window searching in 3D can be made
extremely efficient. We prove the mathematical equivalence
between sparse convolution and voting and devise an effi-
cient algorithm to compute exactly the detection scores at
all window locations. The result is a fast, effective method
applicable to generic 3D point clouds constructed from single
or multiple vantage points for a variety of object types. The
voting scheme proposed here enables the processing of a
pointcloud containing over 100K points in less than 0.5s
while achieving state-of-the-art detection performance relative

to prior art on a number of object categories from the KITTI
dataset as well as compared to another existing 3D object
detection approach.
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