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Abstract— This paper tackles the problem of segmenting
things that could move from 3D laser scans of urban scenes. In
particular, we wish to detect instances of classes of interest
in autonomous driving applications - cars, pedestrians and
bicyclists - amongst significant background clutter. Our aim
is to provide the layout of an end-to-end pipeline which,
when fed by a raw stream of 3D data, produces distinct
groups of points which can be fed to downstream classifiers
for categorisation. We postulate that, for the specific classes
considered in this work, solving a binary classification task
(i.e. separating the data into foreground and background first)
outperforms approaches that tackle the multi-class problem di-
rectly. This is confirmed using custom and third-party datasets
gathered of urban street scenes. While our system is agnostic
to the specific clustering algorithm deployed we explore the
use of a Euclidean Minimum Spanning Tree for an end-to-
end segmentation pipeline and devise a RANSAC-based edge
selection criterion.

I. INTRODUCTION

In this paper, we present an end-to-end system that detects
instances of cars, pedestrians and bicyclists from a raw
stream of 3D laser data for autonomous driving applications.

Autonomous driving has become a prominent application
domain for robotics research. This is witnessed by a cornu-
copia of publications in this area [1], [2], [3]. The success
of the DARPA Grand- [4] and Urban Challenges [5] as
well as Google’s endeavour to promote autonomous driving
for data gathering purposes [6] has heightened expectations
that autonomous cars will be able to operate in environ-
ments of realistic complexity. Our community’s aspiration
to create self-driving cars has further served to highlight the
importance of - and to focus efforts within - environment
understanding.

Much research effort is being expended on the detection
and classification of objects pertinent to navigating a realistic
road environment, both using vision and laser data. Of
particular interest are potentially dynamic objects - that
is objects which could move - since their presence and
potential change of state will influence the planning of
actions and trajectories. The work presented here also falls
within this category. In particular, we restrict ourselves to
the detection of cars, pedestrians and bicyclists in a stream
of 3D laser data obtained from sensors commonly deployed
on autonomous vehicles based on shape information in a
per-frame basis. A shape based approach is taken because a
potentially moving object may not be actually moving.

In focusing on detection our work immediately differen-
tiates itself from a significant body of work targeted at the
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Fig. 1. Sample output from one of the proposed foreground/background
schemes (the F/B binary scheme, see section IV-D). The detected cars,
pedestrians and bicyclists are coloured in red, blue and green respectively,
with background showing in grey. This figure is best viewed in colour.

classification of these objects. In fact, the latter often assume
(explicitly or otherwise) that a suitable segmentation of the
3D point cloud into complete entities of interest is already
available [7] or is straight-forward to obtain [8]. However,
obtaining such a segmentation is widely acknowledged to be
a hard problem [7], [8], [9] since the number of objects in the
scene is commonly not known and only a small proportion
of the data contain relevant class information. This motivates
the work presented here.

The objective of this work is to group salient subsets of
the raw data stream into contiguous and complete entities
corresponding to objects of interest without prior knowledge
of the number and location of the objects present. Since
we have knowledge of the object classes of interest (and
the set of them is comparatively small) we employ a su-
pervised approach. We investigate the application of graph
based techniques to the problem, and establish that, for the
specific classes considered in this work, solving a binary
classification task (i.e. separating the data into foreground
and background first) outperforms approaches that tackle
the multi-class problem directly. We consider this to be
the primary contribution of this paper. Further, in order to
provide the layout for an end-to-end pipeline, we demonstrate
the use of a particular graph-based clustering algorithm as
a back-end to our segmentation approach (see Fig. 1 for a
typical example of the output of the end-to-end system).

After a survey of related works in the next section, we
introduce the graph-based clustering algorithm used in this
work in Section III. A number of schemes for the extraction
of foreground data from a stream of raw 3D laser points
are detailed in Section IV. We evaluate these schemes in
Section V and conclude in Section VI.



II. RELATED WORKS

Existing works on object detection and recognition in 3D
laser data can be coarsely divided into three categories.

The first commonly assumes that point clouds representing
entire objects have already been segmented out of the data
and, therefore, focus mainly on classification. Examples
include Teichman et al. [7], [10], who classify complete
tracks of segmented objects into one of the classes car,
pedestrian, bicyclist or background. Lai et al. [8] combine
advantages of both shape and appearance with a Kinect-style
sensor to classify indoor objects using sparse distance metric
learning with a Group-Lasso regulariser. In this case the
segmentation task is facilitated by the controlled environment
the objects are placed in. Endres et al. [9] on the other hand
take an unsupervised approach to discover object categories
in the presented segments using Latent Dirichlet Allocation
(LDA).

The segmentation of desirable objects from amongst an
often large amount of background clutter in 3D laser data is
a pivotal precursor to such systems. Existing works include
that by Douillard et al. [11], where the existence of a ground
plane is assumed and object segments are derived in an
unsupervised fashion from non-ground data only. Klasing
et al. [12] perform clustering based on Euclidean distance
between individual laser points, implicitly assuming that
objects are not connected by scene clutter.

The second class of methods label a scene directly
into regions belonging to object classes (with possibly a
background class), but do not distinguish separate object
instances. Anguelov et al. [13], for example, take a super-
vised approach based on a Markov Random Field (MRF)
using local features computed at individual data points to
produce globally consistent labels. Triebel et al. [14] employ
an approach based on Conditional Random Fields (CRFs)
constructed in both feature space and Euclidean space to
obtain a scene segmentation into object categories that often
correspond to repeated patterns.

A third class of approaches focus on a targeted segmen-
tation of the data. Here the class of interest is known and a
segmentation scheme is devised which accommodates this
specifically. An example is work by Spinello et al. [15],
which concentrates expressly on the detection of pedestrians.

The approach we present here populates the space between
the second and third categories above. While we also have
prior knowledge of the classes of interest our work aims to
cater for a range of categories (i.e. cars, pedestrians and
bicyclists), thus sacrificing the benefit of a relatively narrow
segmentation problem. To achieve this we leverage the same
pre-segmentation algorithm and the same descriptors as are
used in [14]. However, in contrast to [14], our supervised
approach produces object clusters which correspond only to
object categories of interest. In addition, the output of our
system distinguishes between object instances rather than
partitioning the scene into regions generally belonging to
object classes.

Finally, we mention a related body of work catering for
the detection of instantaneously dynamic objects, i.e. objects

that are moving at the time of detection (see, for example,
Katz et al. [16] or Yang and Wang [17]). In contrast to these
works the problem addressed here includes the detection and
classification of entities that could move but may not be
moving at the time data are recorded.

III. GRAPH-BASED CLUSTERING

Oftentimes an unknown number of objects of interest
exist in a single scene. A successful categorisation of these
objects requires the ability to distinguish between separate
object instances within the data stream, even under clutter-
free conditions (e.g. after removal of the background, see
Section IV). In this section we formulate this problem as a
clustering task.

Unsupervised data clustering has been an active area
of research for decades and many methods exist which
circumvent the lack of prior information, such as the number
of clusters present. Variational Bayesian methods [18], for
example, provide an attractive mechanism but are often
plagued with convergence issues. Jenssen et al. [19] use
an information theoretic measure for model selection to
determine the optimal number of clusters from amongst
various possibilities.

Another popular approach is graph-based clustering using
a Euclidean Minimum Spanning Tree (EMST) constructed
from the data [20]. EMST-based techniques made their
appearance in the literature as early as the 1970’s [21] and
are often used when cluster boundaries are expected to be
irregular. Given a finite point set P ⊂ Rd EMST-based
algorithms first compute the Minimum Spanning Tree over
the complete graph G = (V, E) where V = {i : pi ∈ P} and
E = {{i, j} : pi ∈ P , pj ∈ P , i 6= j}, with edge weights
given by the pairwise Euclidean distances. Edge statistics
gathered throughout the tree are used to determine where
to break the linkage. For example, it was shown in [22]
that, by removing the K − 1 longest edges in the EMST, a
clustering is obtained which maximises the minimum inter-
cluster distance in the space of all possible disjoint partitions
of the point set into K groups. When K is unknown, as in
our case, heuristics are used to determine which edges to
remove.

For example, Zahn [21] defines inconsistency measures
using local statistics of the edge weights in the MST and
removes edges which violate any one of a set of consistency
criteria. Grygorash et al. [23] propose a sequence of edge
removal operations such that the standard deviation of the
edge weights is minimised. The optimal number of clusters
is found when a (local) minimum has been reached.

Our approach also leverages an EMST. In particular, we
observe that, as a result of the formation process of the
spanning tree, edges connecting points of the same object
instance tend to be of similar lengths (up to sensor noise)
corresponding to the sample width of the sensor. Edges
linking individual object instances, on the other hand, tend to
be comparatively long. We exploit this observation by using
the RANSAC paradigm [24] to estimate outliers amongst
the edge weights. The spanning tree is broken wherever



an outlier is found. To illustrate, consider Fig. 2, where
clustering is performed on a synthetic scene containing a
car, two pedestrians and a bicyclist (all examples from a real
dataset). In subsequent sections we refer to this clustering
algorithm as the EMST-RANSAC algorithm. It can be used
to segment a point cloud into multiple entities without prior
knowledge of the number of objects contained in the scene.
However, since the algorithm clusters data based on Eu-
clidean distance, unwanted points belonging to background
clutter (i.e. anything other than the object classes of interest)
must be removed before the algorithm can be applied. In the
following section we formulate this removal of background
clutter as a supervised classification task.

IV. FOREGROUND EXTRACTION

Consider a set of points P ⊂ R3 generated by a 3D laser
scanner. In order to apply the EMST-RANSAC algorithm
described in the previous section we require to split P into
the set of foreground data, Pf ⊆ P - i.e. those belonging
to object classes of interest - and its complement, the set of
background data Pb = P − Pf .

We employ a bottom-up approach, starting by prepro-
cessing the point cloud to obtain an over-segmentation in
the form of a set of point-cloud patches. While we do
not require the segmentation to be perfect, it is necessary
for each segment to span no more than a single class of
interest. Features are then extracted for each patch. This
representation is used for classification of each patch as to
its membership of Pf .

A. Preprocessing

In common with other works we perform an off-the-shelf
pre-segmentation step based on point normal estimates in
the point cloud to obtain a set of super-voxels as atomic
inputs for our entity segmentation approach (see Section IV-
B). To obtain reliable normal estimates for input to the pre-
segmentation algorithm, we follow a popular approach for
normal computation, which finds the local set of nearest
neighbours within a search radius r for each datum pi

and then, assuming local planarity, performs PCA on it.
The eigenvector corresponding to the least eigenvalue is
taken to be the estimated normal direction, thus essentially
performing a least-square plane fit to the neighbourhood.
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Fig. 2. The output of the EMST-RANSAC clustering algorithm when
applied to a synthetic scene containing fours objects of interest: a car, two
pedestrians and a bicyclist (all examples from real data). Different colours
denote different clusters produced. Cyan line segments show edges in the
EMST. This figure is best viewed in colour.

This approach has been shown empirically to perform best in
terms of the trade-off between robustness and computation
overhead [25].

The edge set needed for the super-voxel segmentation is
given by N nearest neighbour linkage. That is

E = {{i, j} : pi ∈ P , pj ∈ NN
i } , (1)

where NN
i denotes the set of N nearest neighbours of the

point pi, excluding the point itself.

B. Patch Segmentation

To obtain the initial patch segmentation, we follow the
approach proposed by Triebel et al. [14] who adapted the
popular segmentation algorithm introduced by Felzenszwalb
and Huttenlocher [26] to operate on normal estimates for
points in P . The algorithm operates on an undirected graph
G = (V, E), with the edge weights representing a dissimi-
larity measure between adjacent points. Starting with each
vertex i ∈ V as a single segment, the algorithm traverses
the edges in order of non-decreasing weight, merging the
adjacent segments when there is no evidence of a boundary.
Consider the set of vertices V = {i : pi ∈ P} and the set of
edges E as in (1). The dissimilarity measure is defined by

w(i, j) = 1− |ni · nj | , (2)

where ni denotes the normal estimated at point pi. In-
tersections between smooth surfaces will thus give rise to
segmentation boundaries.

C. Feature Extraction

For each patch a fixed-dimensional feature vector is con-
structed by concatenating five sets of common invariant
descriptors. The descriptors consist of 50-dimensional spin
images [27] computed at the centroid and about the vertical
Z axis, 32-dimensional shape distributions [28] using pair-
wise Euclidean distances as shape function, 32-dimensional
shape distributions using magnitude of dot products between
normals at point pairs as shape function, three-dimensional
shape factors [29], and the three dimensions of the bound-
ing box along PCA directions. These give rise to a 120-
dimensional feature vector.

D. Patch Classification

For foreground-background separation any of a number of
classification frameworks can be employed. The foreground
class simply constitutes the union of the car, pedestrian and
bicyclist classes. We propose two schemes of merging these
three foreground classes in the patch classification stage to
produce a clean foreground-background segmentation of the
scene so that the EMST-RANSAC algorithm is applicable.

F/B binary: in this scheme the three foreground classes
are pooled into a single class and a binary classifier is trained
to separate them.

F/B N-class: here, N one-versus-all binary classifiers are
employed for the car, pedestrian, bicyclist and background
classes, respectively. After classification is performed the
outputs for the three foreground classes are merged into a
single set.



Fig. 3. The Bowler Wildcat research mobile platform, equipped (on top)
with a Velodyne HDL-64E S2 sensor.

In the next section we show the effectiveness of these two
schemes in terms of both patch classification and overall
performance at the object detection level. The two schemes
are also benchmarked against a third, N-class, where the
individual foreground classes are treated separately up to,
and including, the object detection level.

V. EXPERIMENTAL RESULTS

We evaluate our segmentation approach using both a
publicly available dataset as well as data gathered using
our own autonomous vehicle. In particular, we make use of
the Stanford Track Collection (STC) dataset released to the
public with [7]. The STC contains a significant number of
labelled objects of interest (cars, pedestrians and bicyclists)
and has the added advantage of being gathered using the
same sensor as deployed on our car. However, the dataset was
originally produced for the task of track classification and
therefore contains only instances of trackable objects. Scene
clutter is especially underrepresented (see Table I). For this
work we therefore augment the STC with data gathered using
our Bowler Wildcat research platform (Fig. 3) equipped with
a Velodyne HDL-64E SE2 laser range finder.

A. Patch Classification

The performance of the three patch classification schemes
introduced in Section IV-D was evaluated using the data
detailed in Table I. Our approach is agnostic to the patch
segmentation scheme employed as long as it produces an
over-segmentation of the data with respect to the classes of
interest. The parameters for the patch segmentation algorithm
used here (see Section IV-B) were determined empirically
based on a qualitative evaluation of performance on a small
number of scenes. For classifier training and evaluation, 70%
of the data were selected at random to form the training
set. The remainder were used as a hold-out set for classifier
evaluation. For classification we employ Support Vector
Machine (SVM) classifiers with the non-linear Radial Basis
Function (RBF) kernel. Parameters are trained using five-
fold cross-validation. For scheme F/B binary a single binary
SVM classifier is trained for the foreground and background
classes. For schemes F/B N -class and N -class, four individ-
ual SVM classifiers are trained in a one-versus-all configura-
tion for each of the car, pedestrian, bicyclist and background
classes. Final class decisions are made greedily such that

TABLE I
DETAILS OF THE EVALUATION SET COMPOSITION FOR PATCH

CLASSIFICATION IN UNITS OF PATCHES OBTAINED FROM THE INITIAL

PRE-SEGEMENTATION. COLUMNS DENOTE THE SOURCE OF THE DATA.

STC Wildcat Total
Car 13998 580 14578

Pedestrian 4619 0 4619
Bicyclist 4601 2 4603

Background 10000 30500 40500
Total 33218 31082 64300
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Fig. 4. Precision-recall curves for schemes F/B binary, F/B N -class and
N -class. For the latter, individual curves are shown for each one-versus-all
classifier. Numbers in brackets represent the area under the curve (AUC).

the winner takes all. Fig. 4 shows precision-recall curves
generated for the three schemes using the held-out data. It
is evident from Fig. 4 that the binary foreground/background
separation in this particular case presents an easier task for
the classifiers than separating the data into the individual
classes car, pedestrian, bicyclist and background. When
combining the output of the classifiers for the three individual
foreground classes into a single class for the F/B N -class
scheme the performance is almost identical to that of the
binary foreground/background classifier of the F/B binary
scheme. Note also that, by definition, the performance of
the background-versus-all classifier of the scheme N -class
is identical to that of the binary foreground/background
classifier evaluated for the background class. This indicates
that the separate classification of the car, pedestrian, bicyclist
classes introduces significant confusion amongst only these
classes which is remedied by collating them into a single
foreground class. Further evidence of this can be found in
the confusion matrices for the N -class scheme depicted in
Fig. 5. These imply that the biggest confusion between fore-
ground and background is caused by background data being
mistakenly classified as car. On the other hand, significant
confusion exists amongst the individual foreground classes.
These results indicate that, for the task of separating car,
pedestrian and bicyclist from background in 3D laser data,
the predominantly shape-based features employed here are
not sufficient. This lends further support to the intuitive
notion that over-segmented patches do not carry enough
shape information to be classified correctly. Formulating the
task as a binary classification problem, on the other hand,
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Fig. 5. Confusion matrices for the N -class scheme normalised to precision
(left) and recall (right) along the diagonal.

remedies this problem as the foreground and background
classes appear much more amenable to separation when
characterised by shape features.

B. Overall System Evaluation

In this section we evaluate the performance of the overall
system starting with a raw data stream as input and perform-
ing preprocessing, patch classification and EMST-RANSAC
clustering. However, in order to demonstrate the efficacy of
foreground/background-based schemes against the N -class
scheme, the clusters obtained have to be classified into one
of the three foreground object classes. For this purpose we
trained a N -class SVM classifier using the same set of
features listed in section IV-C, now computed over entire
entity clusters (as opposed to patches representing object
parts) returned by the F/B binary scheme. For the F/B
N -class scheme, since it uses an N -class classifier in an
intermediate stage, we retain the prediction scores from patch
classification and determine the class of an entity cluster
by a majority vote amongst the constituent laser points.
The votes are weighted by prediction confidence. For the
N -class scheme, detections are obtained by running the
EMST-RANSAC algorithm over the three foreground regions
independently and entity cluster classes are self-evident.
However, we stress that classification is not the focus of
this paper. More sophisticated classification approaches exist
(see, for example, [7]) .

For the purposes of this evaluation we collate data points
returned within a full 360◦ rotation into a single scene
(frame) for processing. The EMST-RANSAC algorithm in-
volves only a single parameter: the inlier support width
w to evaluate hypotheses [24]. This parameter was trained
for on 200 frames extracted from the STC dataset that are
disjoint from those used in producing the training data for
patch classification. For the F/B binary and F/B N -class
schemes, a single value for w was determined since the
EMST-RANSAC algorithm is applied only once on patches
belonging to the foreground class. For the N -class scheme,
EMST-RANSAC is applied to each of the object classes,
resulting in a three-element vector w. We trained the three
support widths independently for the N -class scheme.

To evaluate the performance of the system, we hand-
labelled 100 randomly chosen frames from a busy urban

scene taken at a local town centre. These data are entirely
independent from those used during any of the training
phases. A set of qualitative results on a sample frame for
the F/B N -class scheme is shown in Fig. 6. A similar
result for the F/B binary scheme is shown in Fig. 1. For
quantitative analysis we adopt evaluation metrics derived
from those used in a popular object detection challenge in
the vision community, the PASCAL Visual Object Classes
Challenge [30]. In particular, a detection is marked as correct
if it overlaps with a ground-truth annotation more than 50%.
The measure of overlap is computed as

ao =
|Cp ∩ Cgt|
|Cp ∪ Cgt|

, (3)

where Cp and Cgt denote sets of points belonging to the
predicted and ground-truth object clusters respectively. Each
detection is assigned to at most one ground-truth object, and
multiple detections are treated as false positives. Table II
thus lists evaluation results for each of the foreground object
classes obtained on the 100 evaluation frames containing, in
total, 818 cars, 899 pedestrians and 39 bicyclists. The F1-
measures indicate that the schemes based on a foreground-
background formulation of the problem outperform the N -
class scheme where the classes are treated differently from
the patch level. However, the latter still does surprisingly well
considering the findings in the patch classification evaluation.
This observation can be explained by the two extra degrees
of freedom found in the EMST-RANSAC algorithm for
this scheme. For example, the system has the freedom to
learn that instances of people tend to be closer together
than instances of cars. The comparatively poor result on the
bicyclist class (especially the precision) can be attributed
to the low number of class instances present in the test
data, thus causing a notable effect of false positives from
the patch classification. Performance differences between
the F/B binary and F/B N -class schemes are due to the
difference in entity classification schemes.

C. Timing

A prototype of our system has been implemented in C++
and Matlab and was deployed on a vanilla MacBook Pro
equipped with a dual core Intel i5 processor (2.4GHz) with
4GB of RAM. For point normal estimation our implemen-
tation takes advantage of the facilities provided in the Point
Cloud Library (PCL) [31]. SVM training and prediction were
carried out using LibSVM [32]. For efficient EMST compu-
tation, we implemented the fast EMST algorithm proposed
by March et al. [33]. Based on measurements from our 100
evaluation frames (containing of the order of 100,000 points
per frame), the per-frame run-time is currently dominated by
the EMST-RANSAC clustering step (3.3s) and the normal
computation (1.7s). We are currently investigating various
options to achieve real-time performance with our next
implementation, which will be deployed on our research
platform.



(a) (b)

(c) (d)
Fig. 6. Sample scene frame showing results of the F/B N -class scheme. (a) Ground truth scene labels. (b) Objects detected by F/B N -class. (c) Ground
truth objects in the scene. (d) Object clusters produced by F/B N -class. In both (a) and (b), regions coloured red, blue, green and grey correspond to points
belonging to the car, pedestrian, bicyclist and background classes, respectively. In both (c) and (d), different colours denote different object instances, with
colours chosen at random. This figure is best viewed in colour.

TABLE II
SYSTEM EVALUATION RESULTS BY CLASS. P , R AND F1 STAND FOR PRECISION, RECALL AND THE F1-MEASURE, RESPECTIVELY. NUMBERS IN

BRACKETS DENOTE THE GROUND-TRUTH NUMBER OF OBJECTS OF A GIVEN CLASS IN THE EVALUATION DATA.

Car (818) Pedestrian (899) Bicyclist (39)
P R F1 P R F1 P R F1

N -class 0.1856 0.5122 0.2725 0.4415 0.5751 0.4995 0.0294 0.4359 0.0551

F/B binary 0.2795 0.4401 0.3419 0.4696 0.3782 0.4190 0.0256 0.4103 0.0483
N -class 0.2102 0.5037 0.2966 0.5877 0.4360 0.5006 0.0989 0.4615 0.1629

VI. CONCLUSION AND FURTHER WORK

This paper presents an approach to segmenting objects of
interest from a raw data stream as commonly obtained from
a 3D laser range finder. In particular, we consider the domain
of autonomous driving and focus on the supervised extraction
of potentially dynamic objects such as cars, pedestrians and
bicyclists. The output of the system are clusters of points
representing entire objects, which is often assumed to be
available by work on object classification in 3D point clouds.
We show that, for the specific classes considered, solving
a binary classification task (i.e. separating the data into
foreground and background first) outperforms approaches
that tackle the multi-class problem directly. This is primarily

the case because parts of objects, as commonly obtained
by a pre-segmentation step, do not contain enough shape
information to be robustly categorised as belonging to the
classes considered here. While our pipeline is agnostic to the
graph-based clustering algorithm used we explore the use the
EMST algorithm, and extend it by a RANSAC-based outlier
rejection step to automatically determine the number of clus-
ters present in a scene. In doing so, we explicitly exploit the
sampling characteristics of the laser range finder. While the
results on patch classification presented here are particular to
the popular car, pedestrian, bicyclist and background classes,
the EMST-RANSAC approach is agnostic to the choice of
classes and, therefore, more generally applicable.

Our prototype pipeline produces promising results and



harbours potential for real-time performance. However the
current frame-based detection framework would clearly ben-
efit from introducing tracking information for the detected
objects. The dynamic nature of our classes of interest also
suggests that system performance could benefit from the
inclusion of motion cues. This will be the focus of future
research.
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