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Abstract

This paper presents a novel approach for tracking static and dynamic objects for an autonomous vehicle operating in com-

plex urban environments. Whereas traditional approaches for tracking often feature numerous hand-engineered stages,

this method is learned end-to-end and can directly predict a fully unoccluded occupancy grid from raw laser input. We

employ a recurrent neural network to capture the state and evolution of the environment, and train the model in an entirely

unsupervised manner. In doing so, our use case compares to model-free, multi-object tracking although we do not explicitly

perform the underlying data-association process. Further, we demonstrate that the underlying representation learned for

the tracking task can be leveraged via inductive transfer to train an object detector in a data efficient manner. We motivate

a number of architectural features and show the positive contribution of dilated convolutions, dynamic and static mem-

ory units to the task of tracking and classifying complex dynamic scenes through full occlusion. Our experimental results

illustrate the ability of the model to track cars, buses, pedestrians, and cyclists from both moving and stationary plat-

forms. Further, we compare and contrast the approach with a more traditional model-free multi-object tracking pipeline,

demonstrating that it can more accurately predict future states of objects from current inputs.
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1. Introduction

For an autonomous vehicle to operate safely and effectively,

it must interpret its surroundings and predict the state of

its environment over time. Such capabilities are relied upon

by decision-making processes such as motion planning and

control. In particular, the vehicle must be able to success-

fully track the state of objects in the environment through

occlusion and predict how they will evolve in the future.

Commonly, tracking systems achieve this by employing

multiple hand-engineered stages, such as object detection,

semantic classification, data association, state estimation,

motion modeling, and occupancy grid generation (Petro-

vskaya and Thrun, 2009; Vu et al., 2007; Wang et al., 2015).

However, as robots begin to operate in increasingly com-

plex environments this approach becomes more and more

infeasible.

Recent research in machine learning has shown the abil-

ity of deep neural networks to capture complex structure,

achieving state-of-the-art performance in numerous com-

puter vision and natural language processing tasks (see,

for example, Dahl et al., 2012; Krizhevsky et al., 2012;

Wang et al., 2012). Such models usually require large,

task-specific corpora of annotated ground-truth labels to

master the desired task. However, such a data-intensive

supervised learning paradigm is infeasible for object track-

ing in crowded urban environments, as we are required

to learn a model of the environment without access to

corresponding ground truth.

In this paper, we take an alternative approach and propose

an end-to-end trainable framework to learn a model of the

world dynamics in an entirely unsupervised manner. Build-

ing on the deep tracking paradigm introduced by Ondrúška

and Posner (2016), we focus on the specific task of learn-

ing to track (and later classify) objects in complex and only

partially-observable, real-world scenarios from both a static

sensor as well as a moving platform.

For the case of a static sensor, we motivate and com-

pare various neural network architectures and demonstrate

improved tracking accuracy as compared to a more tradi-

tional model-free tracking approach. For a sensor exhibiting

ego-motion, we extend the network architecture to account
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for the movement of the sensor frame and demonstrate

improved tracking accuracy as compared to prior art.

Our experimental evaluation leverages point cloud data

gathered over 27 km of driving in busy urban environ-

ments of mixed static and dynamic occupancy, including

cars, buses, pedestrians and cyclists. We further demon-

strate that deep tracking learns rich latent representations of

the environment that can be leveraged for other tasks such

as semantic classification.

The exposition in this paper unifies and augments that of

a number of conference and workshop publications and pro-

vides a more detailed description of the models used, with

an extended discussion of results as well as a more elaborate

experimental evaluation.

Section 2 highlights related work and Section 3 sum-

marizes the problem definition. Section 4 provides a brief

overview of the deep tracking framework as introduced

by Ondrúška and Posner (2016). Section 5 describes the

extensions required to apply deep tracking in real-world sce-

narios considering sensors on both static and dynamic plat-

forms (Dequaire et al., 2016). Section 6 discusses how the

deep tracking framework can be utilized for semantic classi-

fication by inductive transfer as first described by Ondrúška

et al. (2016). Section 7 presents an empirical evaluation of

our method. We conclude in Section 8.

2. Related work

This paper addresses the problem of tracking objects in

the workspace of a mobile robot. Traditional approaches

to this problem comprise a multi-stage pipeline, with sepa-

rate components to perform object detection, associate new

measurements with existing tracked objects, and perform

state estimation for each individually tracked object. Sev-

eral such approaches perform model-free tracking (Vu et

al., 2007; Wang et al., 2015; Yang and Wang, 2011), and

assume a general motion model for objects, but suffer in

terms of robustness. In contrast, model-based techniques

(Arras et al., 2007; Petrovskaya and Thrun, 2009; Zhao and

Thorpe, 1998) explicitly consider the type of object being

tracked, which limits their generality but improves track-

ing performance for the object classes considered. In all of

these cases, however, the use of multiple hand-engineered

stages in the framework is cumbersome, requires manual

tuning of parameters, and introduces unnecessary addi-

tional failure modes to the tracking process.

Ondrúška and Posner (2016) propose to replace these

multiple stages with a single end-to-end learning frame-

work known as deep tracking, by leveraging neural net-

works to directly learn the mapping from raw laser input to

an unoccluded occupancy grid. Here, the end-to-end model

implicitly performs the individual steps implemented in the

traditional multi-stage pipeline, without the need for hand

engineering or tuning of parameters for each component.

While deep tracking leverages a recurrent neural net-

work (RNN, Medsker and Jain, 2001) to capture the state

and evolution of the world in a sequence of laser frames,

Choi et al. (2016) follow a different approach using recur-

rent flow networks. The model explicitly encodes a range of

velocities in the hidden layers of a RNN, and uses Bayesian

optimization to learn the network parameters responsible

for updating the velocity estimation and occupancy predic-

tion. However, the model is not trained to explicitly track

objects through occlusion. Another work (Byravan and Fox,

2016) utilizes deep networks to capture rigid body motion

between objects in pairs of 3D point clouds.

Deep tracking is related to deep learning approaches

applied to predictive video modeling (Lotter et al., 2016;

Patraucean et al., 2015), in that it is trained to predict the

future state of the world based on current input data. This is

of vital importance to achieve accurate prediction and track-

ing, as to successfully predict the future location of dynamic

objects in the scene, the model must implicitly store the

position and velocity of each object in its internal memory

state.

The original work on deep tracking (Ondrúška and Pos-

ner, 2016) eradicates the need to design individual com-

ponents by hand, and demonstrates the efficacy of the

framework on a synthetic dataset comprised of circular

objects exhibiting linear motion in a cluttered environment.

Ondrúška et al. (2016) then extend this to real-world data

from a static vehicle, which introduces additional complex-

ity due to the different sizes, shapes, and velocities of

objects in the environment, and larger occlusions in the

raw sensor input. To achieve this, the RNN-based mod-

els proposed by Ondrúška and Posner (2016) were scaled

up for real-world application, and alternative architectures

proposed.

As both of these approaches assume a static sensor, the

framework is then extended to operate on a moving plat-

form by Dequaire et al. (2016). This is a challenging task

because it introduces an array of complex relative motions

between the vehicle and objects in its environment. If vehi-

cle motion is ignored in this scenario, the model is forced

to learn all possible motion interactions between the vehicle

and its environment as if the vehicle were stationary. For the

moving platform, estimates of visual ego-motion are used

as a proxy for vehicle motion, and incorporated into the

deep tracking framework by exploiting spatial transformer

modules (Jaderberg et al., 2015), which allow the internal

belief state of the RNN to be transformed according to the

estimated ego-motion.

It is also possible to exploit the fact that the learned rep-

resentation captures latent higher-order information in the

data, such as the location, shape, and velocity of an object,

which is also pertinent to semantic classification tasks. This

was initially explored by (Ondrúška et al., 2016), and means

that we can infer semantic labels for the tracked objects

using only a small amount of labeled data. This is a form of

inductive transfer of knowledge between machine learning

tasks (Pan and Yang, 2010). In the context of neural net-

works it has been successfully applied to a range of tasks,
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Fig. 1. A typical training sequence where input frames from t + 1 to t + 5 are blacked out to simulate total occlusion. The unoccluded

occupancy map is predicted directly from the input grid data, allowing objects to be tracked through occlusion and in future frames.

Any observed false positives, which represent the network’s capacity to predict in occlusion, are therefore beneficial. Comparison to the

visible ground truth shows that the model is able to capture the dynamics of the moving vehicle (pink rectangle) and moving pedestrians

further occluding one another (orange contours). A quantitative evaluation is conducted in Section 5.2.

in the areas of multi-task learning (Caruana, 1995; Mitchell

and Thrun, 1993) and in the form of unsupervised pre-

training and supervised fine-tuning (Le, 2013; Pennington

et al., 2014).

3. Problem formulation

This work addresses the challenge of uncovering the true,

unoccluded state of the world, in terms of a 2D occupancy

grid yt, given a sequence of partially observed states of

the environment x1:t computed directly from raw LIDAR

measurements. The input observation at each time step t,

xt ∈ {0, 1}2×M×M , is represented as a pair of discretized

2D binary grids of size M × M , parallel to the ground and

centered on the sensor frame. The first of these matrices

encodes visibility: whether a cell is directly observable by

the sensor at time t; while the second matrix encodes occu-

pancy: whether a cell is observed to be free (value of 0)

or occupied (value of 1). These two matrices are denoted

as xt,vis and xt,occ respectively. The true unoccluded map is
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another grid yt ∈ {0, 1}M×M encoding the occlusion-free

state of the world.

Thus, the goal is to solve for P( yt|x1:t), the conditional

probability of the complete, unoccluded state of the world

at time t given a sequence of partial observations at all

previous time steps. Under the same formulation, future

states can also be predicted by solving for P( yt+n|x1:t) after

masking the future inputs, i.e. xt+1:t+n = 0.

To estimate P( yt|x1:t), we use the deep tracking frame-

work (Ondrúška and Posner, 2016). However, in its original

formulation, this framework is only demonstrated on simu-

lated scenarios composed of simple geometric objects using

a simple network architecture. A number of modifications

to this architecture are needed to scale up its capacity to

deal with complex and dynamic real-world data, as well as

scenarios where the sensor may additionally be mounted on

a moving platform, as commonly encountered in robotics

applications.

The tracking problem of solving for P( yt|x1:t) can

also be further extended to predicting the scene seman-

tics P( ct|x1:t). This takes the form of predicting one

of the K objects for each cell. The semantic map

c ∈ {1, . . . , K}M×M can reflect object classes such as

pedestrian, cyclist, car, static background, or whether an

occupied cell belongs to a dynamic or static object.

Next, we briefly outline deep tracking as a solution to the

first part of the problem; namely to estimate P( yt|x1:t).

4. A brief review of deep tracking

Deep tracking (DT) is a framework initially introduced by

Ondrúška and Posner (2016) to model the conditional dis-

tribution P( yt|x1:t) using a RNN (Medsker and Jain, 2001).

Motivated by recursive state estimation, the underlying pro-

cess modeled by the deep tracking framework is assumed to

exhibit the Markov property. That is, the latent state at time

t, denoted by ht, captures the complete information required

to predict the output yt, which may denote scene appear-

ance and dynamics, locations of all objects, their shapes,

and velocities. Thus, we have

P( yt|x1:t) = P( yt|ht) (1)

Evolution of this latent state, including the propagation of

model dynamics and integration of new sensor measure-

ments, is modeled by an update operation

ht = f ( ht−1, xt) (2)

Crucially, both the latent state update f ( ht−1, xt) and the out-

put decoding step P( yt|ht) are modeled and trained jointly

as parts of a single neural network. The prediction and

update steps in equations (1) and (2) can then be performed

repeatedly as part of a recurrent neural network that updates

the current belief, or network memory state, ht, and uses it

to predict the unoccluded output yt. In this way, the model

can be used for online filtering of the sensor input.

Since the true state of occluded objects is not known in

real-world scenarios, the output ground-truth yt is not read-

ily available. To circumvent this issue, we train the network

in a self-supervised fashion. To do this, consider that pre-

dicting the movement of objects under occlusion at time

t is similar to predicting a future state yt+n without any

future input provided to the network, i.e. xt+n = 0. The lack

of input observations equates to complete occlusion of the

scene. Given that the observable ground truth is available,

we alter the problem of outputting yt+n to that of predicting

the parts of yt+n that are directly observable, denoted y′
t+n,

which is equivalent to the observed input xt+n. Training the

network to instead predict the probability of the observ-

able ground truth P( y′
t+n|x1:t) is equivalent to only back-

propagating errors in the observable parts of the scene. In

other words, the network is trained to correctly predict the

subset of the ground-truth occupancy present in the future

input. The training procedure is illustrated in Figure 2. As

demonstrated by Ondrúška and Posner (2016), an important

consequence of this training strategy is that, at deployment,

the trained network starts to correctly imagine objects and

their movement in the occluded regions (Figure 15). This is

because the situation with an occluded input at deployment

is similar to that at training when no input was provided at

all for the future time t + n, and the network was trained to

predict the observable regions.

5. Deep tracking in the wild

The simple recurrent neural network proposed by Ondrúška

and Posner (2016) was demonstrated to be sufficient for the

simulated dynamic scenario evaluated in that work. How-

ever, an effective deployment in real-world robotics applica-

tions poses a set of challenges for which a more appropriate

architecture must be chosen. In the following sections, we

present our choice of extensions to scale up the baseline

framework’s capacity to deal with a complex real-world

robotics task, for sensors mounted on either stationary or

moving platforms. We also extend our solution to estimate

the scene semantics ct via the application of the principle of

inductive transfer.

5.1. Deep tracking from a static sensor

For application to real-world scenarios, the framework must

specifically be able to simultaneously track objects of differ-

ent sizes such as vehicles and pedestrians, and effectively

remember information for long periods of time to deal with

occlusions. In the case of a static sensor, it can additionally

be valuable to learn to exploit place-dependent information

such as the presence of static obstacles.

An overview of the proposed network is shown in

Figure 3. The input xt at time t is processed by multiple

layers. The activations for each layer l at time t are a func-

tion of the activations of layer l − 1 below, as well as its

own activations at time t − 1, and thus implementing the
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Fig. 2. Training of the recurrent neural network to produce both space occupancy yt and semantic labels ct. The network is trained to

predict outputs consistent with future inputs. This allows training without the need for ground-truth information of the full, unoccluded

scene. First, the network learns how to track by predicting correct occupancy using large amounts of unlabeled data, then a small set of

labeled data is used to induce semantic classification.

Fig. 3. The architecture proposed for tracking and semantic classification. It features dilated convolution, enhanced static and dynamic

memory capabilities and produces information of both cell occupancy and its semantic class. The STM is only utilized in a moving

vehicle scenario. These architectural choices are motivated in the main text.

recurrence. The incorporation of dilated convolutions (Yu

and Koltun, 2015) allows the model to simultaneously track

objects of very different sizes, such as buses, cars, and

pedestrians. A variant of gated recurrent units (GRUs) (Cho

et al., 2014; Xingjian et al., 2015) allows the network to

extract and remember information from the past and use

it to predict occluded objects or future states of the world.

Finally, an additional static memory can also be utilized, in

which the network is given the capacity to learn individual

pixel-wise biases that are added to the output of each con-

volution. A simple convolutional sigmoid function decoder

is then applied to the feature maps from all the layers of

the network, to obtain the final cell occupancy output grid

yt. For model performance comparison, we also experiment

with architectures that decode only the 16 feature maps

of the last hidden unit. We specify this in the text when

applicable. These features are described in greater detail in

the following sections.

5.1.1. Multi-scale convolution. In order for the network to

correctly predict the occupancy and label of a moving object

at location i, the object must fall within the receptive field

of the hidden unit in the final layer. The receptive field spec-

ifies the part of the input data that can affect the activation

value of the hidden unit. For a traditional convolution, the

receptive field is the K × K neighborhood where K is the

size of the convolution kernel. The size of the receptive

field, however, limits the size (in terms of the input data)

of objects that can be effectively tracked. This is unreal-

istic in real-world settings, as dynamic objects can be of

vastly different sizes, from pedestrians to buses. This can be
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Fig. 4. Multi-scale context aggregation preserve the image reso-

lution by stacking dilated convolutions (Yu and Koltun, 2015). At

layer k the red pixels are convolved with a skip of 2k−1 − 1 pixels.

This results in exponential growth of the blue receptive field (bot-

tom) as opposed to stacking classical convolutions, which result

only in linear growth (top).

ameliorated by increasing the receptive field size, either by

increasing the kernel size or stacking multiple convolutions

on top of one another. However, this creates a computational

challenge as the number of parameters and computational

complexity grows quadratically with K in the first case and

linearly in the second case.

We circumvent this issue by instead exploiting dilated

convolutions (Yu and Koltun, 2015) through the network

layers, where the receptive field grows exponentially with

the number of layers. That is, we perform the classical 3×3

convolution but skip 2k−1 − 1 pixels in between convolved

pixels at each layer k, as illustrated in Figure 4. This results

in a ( 2K+1 − 1) ×( 2K+1 − 1) receptive field at final layer K.

This dilated convolution is then used as a building block to

implement the dynamic memory described in the following

section. This technique affords the ability to capture struc-

ture at multiple scales while reducing the amount of weights

necessary to obtain the desired receptive field.

5.1.2. Dynamic memory. To be able to track a moving

object through extended periods of occlusion, the network

must keep in memory the location of the object and other

properties such as its shape and velocity. Prior art on recur-

rent neural networks stresses the importance of specially

dedicated units such as long short term memory (LSTM)

to support information-caching (Hochreither and Schmid-

huber, 1997), to ensure training is not hampered by the

vanishing gradient problem (Pascanu et al., 2012). Inspired

by Xingjian et al. (2015), we implement a convolutional

variant of GRUs (Cho et al., 2014) as the processing step at

each layer. GRUs are computationally simpler than LSTM

units, and have been shown to exhibit a very similar per-

formance. The output of each unit is given by the weighted

combination of its previous output at time t − 1 and a can-

didate memory h̄t computed from the output of the layer

below. The amount of information retained or forgotten can

be modulated by the unit using the reset and forget gates

rt, ft

ft = σ ( Wxz ∗ xt + Whz ∗ ht−1 + bz) (3)

rt = σ ( Wxr ∗ xt + Whr ∗ ht−1 + br) (4)

h̄t = tanh( Wxh ∗ xt + rt ◦ Whh ∗ ht−1 + bh) (5)

ht = ft ◦ ht−1+( 1 − ft) ◦h̄t (6)

Here ∗ denotes dilated convolution described earlier and ◦

denotes element-wise multiplication.

5.1.3. Static memory. Another extension of the model is

to allow each cell to learn a unique and universally acces-

sible piece of information different from all other cells.

This is achieved by biases bz, br, and bh in equations (3)

to (5) which are not a per-layer constant as in the case of

classical convolution, but are learned individually for each

neuron during training. As shown in Section 7 this allows

the network to learn place-specific information such as the

static occupancy of the cell or the usual motion patterns and

classes in a particular area, which can then be used to aid

the network prediction.

5.2. Deep tracking from a moving vehicle

In order to track a dynamic scene from a moving platform,

it is necessary to address the additional challenge of decou-

pling the motion of the vehicle from the motion of dynamic

objects in the environment. This ensures that the internal

memory state of the RNN only captures the state of the envi-

ronment, without superimposing the motion of the vehicle

itself.

For a static vehicle, information related to an object

located at index {i, j} in the input xt is contained within a

spatial neighborhood {i + 1i, j + 1j} in the layers of the

latent representation, with the neighborhood 1i,j depending

on the receptive field of each hidden unit. The latent state

update would then pass the information along spatially in

accordance with the observed relative motion of the input

object (Figure 5). In the static scenario, the dynamics of the

scene as viewed from the world frame are coherent with that

viewed from the local sensor frame.

In the dynamic vehicle scenario, however, the latent rep-

resentation would additionally need to account for the sen-

sor’s ego-motion, as it affects the position of the object

relative to the sensor frame. Although this is a major draw-

back of the baseline deep tracking architecture, it can be

compensated for by transforming the memory state in accor-

dance to the estimated ego-motion. That is, a static obstacle

at position {it−1, jt−1} in the sensor frame at t − 1, will be
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Fig. 5. Example of outputs produced by the system (GRU3DilConv_48) along with a selection of activations in the hidden layers. The

figure is best read from bottom to top, with the bottom layer providing the raw sequence input to the network along with ground truth

annotation. As highlighted in color-coded circles, the network is able to propagate the assumed motion of the objects even when in

complete occlusion. The sample hidden layer activations shown highlight the fact that lower layers in the hidden units (corresponding to

a low dilation of the convolutions) capture the motion of small and slow moving objects such as pedestrians (e.g pink circle) and static

background (e.g yellow squares), whereas a higher-level layer learns to detect moving vehicles (green contour).
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transformed to position {it, jt} in the sensor frame at time t

according to

[xt, yt, 1]T = Tt,t−1 × [xt−1, yt−1, 1]T (7)

where Tt,t−1 is the SE( 2) forward transformation of the

sensor source frame at t − 1 into the sensor destination

frame at t. This formulation naturally extends to 3D motion

with SE( 3). SE( 2) and SE( 3) refer to the Lie groups rep-

resenting rigid transformations in respectively 2D and 3D

space.

The network can be encouraged to decouple ego-motion

and object motion in this way by introducing a spatial trans-

former (Jaderberg et al., 2015) module (STM) in the hidden

state (Figure 3). The original STM introduced by Jaderberg

et al. (2015) is a learnable module that actively transforms

feature maps to aid tasks such as the classification of spa-

tially distorted datasets. However, in the context of tracking

from a moving platform where ego-motion is readily avail-

able (e.g. from visual odometry algorithms), the STM can

simply utilize the forward transformation Tt,t−1 obtained

from ego-motion estimates, transforming the hidden feature

maps centered in the sensor frame at time t − 1 into the

sensor frame at time t (equation (7)).

As the visual odometry module provides SE( 3) transfor-

mations for the ego-motion of the vehicle, we convert these

to SE( 2) transforms for use in the STM. This is achieved

by selecting the x, y and yaw planar components of the vehi-

cle frame, where the z-axis is locally vertical to the ground.

As this is performed at every timestamp, we find that the

approximation involved introduces negligible error in the

sequences considered. We further discuss the choice and

limitations involved with this implementation in Section 8.

The STM is thus incorporated within the hidden state,

transforming all feature maps ht−1 at time t − 1, into the

sensor frame at time t. This is performed before the update

of the memory with the new incoming input xt. We illustrate

this in Figure 3.

6. Semantic classification through inductive

transfer

In this section, we extend our solution to the partial problem

P( yt|x1:t) presented in Section 4, to the full problem of

simultaneously estimating both occlusion-free occupancy

and scene semantics yt, ct. We show that this can be

achieved relatively easily by exploiting the knowledge the

network has already learned to predict yt, through the prin-

ciple of inductive transfer (Pan and Yang, 2010). The signif-

icance of this is that only a small amount of labeled training

data is needed to allow the same network to master this

additional task.

The clue resides in the hidden representation ht learned

in the unsupervised training for tracking, which can be

viewed as a universal descriptor of the state of the world.

It captures not only the positions of individual objects,

but also their motion patterns, shapes and other properties

necessary for the successful prediction of scene dynamics.

Fig. 6. Location of the experiment from the robot’s point of view

with a superimposed illustration of laser measurements. The area

is occupied by a variety of different dynamic objects such as

pedestrians, cyclists, and cars.

Because the network was trained to perform well in this

task, a reasonable assumption to make is that any infor-

mation necessary for the prediction of the position of the

objects in the near future must be already contained in this

hidden representation. The semantic class of an object falls

in this category as different objects differ mainly in their

shape and motion patterns. Similar to predicting yt from

ht in equation (1), extracting ct can be achieved simply by

building a classifier to predict P( ct|ht). This is achieved by

employing a simple convolutional softmax function decoder

to decode the hidden state ht to a semantic grid ct of 1 of K

class labels.

7. Results

7.1. Deep tracking from a static sensor

In this section we demonstrate the efficacy of the proposed

system in the task of tracking in complex, real-world sce-

narios. We show that the trained network is able to track

a variety of different objects even through complete occlu-

sion, and is able to predict the evolution of the scene in

the near future. The achieved tracking accuracy is supe-

rior to the original architecture presented by Ondrúška and

Posner (2016), as well as to that of an alternative state-of-

the-art model-free tracking solution targeted at the same

problem (Wang et al., 2015).

7.1.1. Dataset. The dataset for this analysis was obtained

with a robotic platform equipped with a Hokuyo UTM-30LX

2D laser scanner, and consists of 75 min of data acquired

while stationary in the middle of a busy urban intersection,

as depicted in Figure 6. This was subsampled at 8 Hz and

split into a 65 min unsupervised training set and a 10 min

long test set to measure the occupancy prediction perfor-

mance. The dataset is challenging due to the dense traffic of
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Fig. 7. Trained network output when provided no input (bottom)

and corresponding aerial view of the robot workspace (top). The

ability of the network to learn per-pixel information allows adap-

tation to the training environment. This allows the network to

confidently predict the position of static obstacles such as build-

ings, as well as the probability of any given cell being occupied

even without any sensor input. Pavements show higher probabil-

ities than the center of the roads. For clarity of visualization, we

show here the log of the probabilities of occupation.

buses, cars, cyclists, and pedestrians, which results in exten-

sive amounts of occlusion. Consequently, at no point in time

is the complete scene fully observable.

7.1.2. Network parameters. The occluded occupancy map

used as input to the network xt is computed from raw 2D

laser scans by performing ray-tracing. Cells corresponding

to a laser range measurement are marked as occupied, all

cells from the sensor origin to the ray ending at the occupied

cell are marked as free, and cells beyond the ray are marked

to be unobserved. Thus, a 100 × 100 grid is constructed,

with the origin centered at the sensor location. Each cell

covers a 20 × 20 cm2 area, and the input grid thus spanning

a total area of 20×20 m2. We consider an architecture with

three hidden layers of 16 GRU feature maps each. Computa-

tion of the hidden state consists of 3×3 convolutional filters,

applied on the three layers (from bottom up) with strides of

one, two, and four pixels, and receptive fields of 3×3, 7×7,

and 15 × 15, respectively. With a hidden state consisting of

48 feature maps, the additional static memory contributes to

H × W × D = 489, 648 of the total 1, 506, 865 parameters

of the network.

7.1.3. Network training. The network is presented the

input sequence x1:t and trained to predict the next n input

frames xt+1:t+n. The binary cross-entropy loss is calculated

and backpropagated only on the ground truth available, i.e.

the visible part of the space. This is achieved by simply

masking the output prediction yt with the visible input xt,vis

and multiplying the resulting grid element-wise with the

occupancy part grid xt,occ. Since the loss encourages the

model to predict future states of the environment, the model

is forced to capture the motion of each object in the hidden

representation.

The training set was split into mini-batch sequences of 40

frames (5 s). For every mini-batch, the network was shown

10 frames and trained to predict the next 10 frames, lead-

ing to two such sequences per 40-frame mini-batch. This

length of sequence covers the typical lengths of occlusions

observed but could be tuned accordingly on other datasets.

Our model architectures are implemented in the Lua pro-

gramming language using the Torch library.1 Models are

trained on an NVIDIA Tesla K40 graphics processing unit

(GPU) until convergence, using the unsupervised training

procedure described in Section 3. The Adagrad optimizer is

used for a stochastic gradient descent with an initial learn-

ing rate of 0.01, and the loss is monitored on the validation

set to perform early stopping and prevent over-fitting.

7.1.4. Benchmarking against an existing approach. To jus-

tify the proposed end-to-end system, its performance is

assessed in comparison to a more traditional multi-stage

pipeline. In particular, we evaluate the ability of the

model to predict the future location of dynamic objects

and compare it with a recently proposed state-of-the-art

approach (Wang et al., 2015) based on model-free track-

ing of dynamic objects using a Kalman filter. This method

also operates on raw laser scans, but explicitly performs

clustering, data association, and velocity estimation of mov-

ing objects. This information is then used to predict the

positions of individual points in the future. The parameters

of this method are tuned on the training set, and the out-

puts on the test set are converted into occupancy grids for

comparison with the proposed method.

7.1.5. Quantitative results. In the first experiment, we look

to quantify the gain in performance achieved by scaling up

the original deep tracking network with the proposed archi-

tecture, and individually explore the benefits of each of the

improvements proposed. Accordingly, we compare the per-

formance of a number of different architectures, ranging

from the original (Ondrúška and Posner, 2016) to the pro-

posed model, on the task of predicting the observable near-

future scene occupancy y′
t+1:t+n, given the input sequence
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x1:t. The predicted output occupancy P( yt+n|x1:t) is com-

pared to xt+n,vis = y′
t+n, which corresponds to the visible

(and therefore known) part of the world at time t + n. A

threshold of 0.5 is used to determine whether a cell is pre-

dicted as occupied or free, and an F1 measure computed for

each frame.

Figure 8 reports the F1 measures computed on each of

n = 10 blacked out future frames, given the 10 frames in

the past, for numerous model architectures. Intuitively, the

predictions of all models are poorer over time, as the uncer-

tainty of the state of the world increases with the prediction

horizon. There is a considerable increase in performance

when utilizing deep tracking architectures compared to the

model-free tracking pipeline from the work of Wang et al.

(2015), illustrating the efficacy of the proposed end-to-end

approach.

Figure 8(a) investigates the effect of scaling up the orig-

inal deep tracking framework by Ondrúška and Posner

(2016) in terms of the model capacity and memory unit

(GRU vs RNN). We find that merely increasing the capacity

of the original RNN architecture (RNN16_encoder) from

16 to 48 feature maps (RNN48_encoder) does not yield

any significant performance increase, indicating that the

capacity of the network is not the limiting factor. Remov-

ing the eight-feature map encoder, however, increases per-

formance (RNN48) suggesting there is no added value in

encoding the input. We discard the encoder in all subse-

quent models. We investigate the effect of a multi-stage

processing of the input by separating the 48 feature maps

of the hidden state into three hidden layers of 16 fea-

ture maps each (RNN48_split), similarly to the architec-

ture proposed in Figure 3. This model increases the output

receptive field from 5 × 5 to 13 × 13 and yields poorer

performance. However, we find that changing the internal

memory state from RNN to GRUs leads to the most signif-

icant performance increase (GRU3_16_ker5). Similarly to

RNN48_split, GRU3_16_ker5 decodes only the last 16 fea-

ture maps of the last hidden layer to the output occupancy

yt, and considers kernels of size 5 × 5. We consider GRU

architectures in all subsequent models.

Figure 8(b) investigates the effect of varying output

receptive fields and utilizing dilated convolutions. Simi-

lar to what was observed in the RNN architecture, we

do not find any significant model performance increase

between an output receptive field of 7 × 7 (GRU3_16_ker3

with 3 × 3 kernels) and output receptive field of 13 ×

13 (GRU3_16_ker5 with 5 × 5 kernels). Building upon

GRU3_16_ker5, replacing the standard convolutions with

dilated convolutions (GRU3DilConv_16) achieves a simi-

lar performance for a comparable receptive field of 15 × 15

using 3×3 kernels. GRU3DilConv_16 achieves commensu-

rate if not better performance (with fewer parameters) than

an architecture achieving similar receptive fields but with

dense kernels (GRU3_16_A). However, further increase of

the receptive field to 19 × 19 (GRU3_16_ker7 with ker-

nels of 7 × 7) results in a poorer performance than that of

GRU3_16_ker5. A small performance increase is obtained

by reducing the number of parameters with dilated convo-

lutions (GRU3DilConv_16_A). This model retains dense

kernels of 7 × 7 in the feature maps of the first hidden

layer, and uses dilation with kernels 3 × 3 in the rest of

the hidden state. This maintains receptive fields of 7 × 7,

11 × 11, and 19 × 19 in the hidden units, which is compa-

rable to those of GRU3_16_ker7. Performance nonetheless

remains below that of its lower receptive field counterpart

GRU3DilConv_16. These results suggest that a smaller out-

put receptive field of 7 × 7 suffices in capturing the overall

scene dynamics. We hypothesize that too large an output

receptive field may contribute to a loss of resolution. Fur-

ther, we find that dilated convolutions achieve similar recep-

tive fields in a parameter-efficient manner, without loss

of performance. Both dilated architectures considered here

allow for a parameter factor reduction of nearly three.

Figure 8(c) suggests that performance of the full

model obtained when adding static biases (GRU3Dil

ConvBias_16) remains commensurate to that of GRU3

DilConv_16, and the learned static bias values may convey

useful information such as that of the static background lay-

out. This is for example valuable when learning the scene

semantics as presented in Section 7.3.

One key departure from a traditional convolutional archi-

tecture would be to consider the full hidden state (all three

layers with 16 feature maps each) when decoding to the out-

put occupancy yt, rather than the feature maps in the final

layer. We compare both of these cases for our best two mod-

els (GRU3DilConvBias_16 and GRU3DilConv_16), and

find that these four architectures are commensurate in cap-

turing the scene dynamics and bring favorable improvement

to the original architecture. However, similarly to the role

of static biases, we find that decoding the full hidden state

favorably influences the model’s capacity to classify the

scene semantically. We discuss this further in Section 7.3.

7.1.6. Qualitative results. To measure the effectiveness of

the desired ability to learn place-specific information, we

visualize the network prediction yt without providing it with

any input as displayed in Figure 7. Even without input sen-

sor information, the network is able to provide an estimate

of the expected occupancy probabilities, which is higher

at the locations of static obstacles and at crowded areas

of the scene such as pavements. As no propagation of the

information through the network occur this is clearly only

made possible by the ability of the network to remember

this information in its static memory during training. This

visualization was performed on a higher resolution network

after 10 epochs of training.

To better understand what the network has learned, we

also perform qualitative analysis of a typical 3 s test

sequence, visualizing the network output and selected hid-

den state feature maps in Figure 5. The network is able to

track pedestrians through full occlusion and the unobserved
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Fig. 8. F1 scores of network architectures when attempting to predict the future occupancy of the scene in a 1.25 s time horizon. The

F1 measure is computed with a threshold of 0.5 when considering a cell to be predicted as occupied or free. (a) Investigating model

capacity and memory unit suggests that incorporating GRUs accounts for the most significant performance gain. (b) Investigating output

receptive field and dilated convolutions suggests that dilated convolutions achieve commensurate performance in a parameter-efficient

manner and that small output receptive fields (7 × 7) suffice. (c) Investigating static biases and full hidden state decoding suggests that

these do not affect model performance.

hallucinated tracks are represented in blue in the output

sequence.

It can be seen that some of the first layer feature maps

(GRU1) appear to have learned to capture the static back-

ground during the sequence with:

(a) a stationary set of activations;

(b) track moving pedestrians, as highlighted through the

pink circles.

The second layer (GRU2) also captures the motion of pedes-

trians moving upwards to the left, while, interestingly, the

GRU3 unit is activated only on the car that appears to the

top right at frame two (indicated by the orange box). This

provides empirical support for the use of dilated convolu-

tions, which make it possible to capture patterns of varying

width with limited computation.

In general, we observe that information regarding objects

in the scene are captured in the hidden state, and move spa-

tially through the feature maps according to the motion of

the object in the input.

7.2. Deep tracking under ego-motion

This section evaluates our best tracking model

(GRU3DilConv_48) which features GRU3 units and

dilated convolutions (baseline DT), with an equivalent

architecture which additionally incorporates the STM into

the into the hidden belief state as represented in Figure 3.

Both these models decode the whole of the hidden state

to the output. This indicates the importance of the STM

when deploying the architecture on a moving vehicle. As

Fig. 9. Training and Testing set collected in a busy urban envi-

ronment and used for evaluating the importance of the Spatial

Transformer when tracking from a moving platform.

with the static case, we evaluate the ability to predict future

frames given masked future input, and qualitatively discuss

the occlusion-free tracking performance on a series of

examples selected from the test set.

7.2.1. Dataset. The evaluation dataset spans 27 km and 85

min of driving. It was collected in a busy urban environ-

ment and split 80/20 into training and testing sets with no

overlap in geographic locations as shown in Figure 9. The

data were collected from a vehicle equipped with two Velo-

dyne HDL64E lasers, resulting in a 360◦ field of view. The

3D point clouds were reduced to a 2D scan by considering

the range of points within a height of 0.6–1.5 m from the

ground, as shown in Figure 10.
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Fig. 10. Conversion of 3D point cloud data into a 2D occupancy

and visibility grid as the input to the network. The points consid-

ered in the original point cloud range within 0.6–1.5 m vertical

from the ground plane local to the robot’s location.

7.2.2. Network training. The network was trained on mini-

batches of 40 sequences with a frame rate of 10 Hz, alter-

nating between the five inputs shown, and the five inputs

hidden. This is a higher frequency than for the static case,

and is more appropriate for a moving vehicle given the

input field of view of 28 × 18 m2 and a vehicle mean

velocity of 30 km/h. Longer occluded sequences signif-

icantly lower the overlap between the fields of view of

the first and final frames of the sequence, since the vehi-

cle is moving through the scene. The GRU3DilConv_48

model was trained on an NVIDIA Tesla K40 GPU until

convergence, using the Adagrad stochastic gradient descent

optimizer with an initial learning rate of 0.01. We moni-

tor the loss on the validation set to perform early-stopping

and prevent over-fitting. Our architecture is implemented on

Torch and uses a GPU-based implementation of the spatial

transformer.2

In the static sensor scenario, errors are only backpropa-

gated at observable ground truth locations, i.e. the visible

part of the space. In the case of a moving sensor, however,

we must also consider the fact that as the robot moves in

future frames, it will explore new space that falls outside

the field of view of the current frame. Consequently, the

model should not be falsely penalized for failing to accu-

rately guess objects located within this new space when

the input is masked. This is similar in nature to the static

case, where the input grid also represents a frontier between

what the robot can perceive, and what the model cannot

be expected to predict as it is located outside of the sen-

sor horizon. To address this, an additional mask is applied

during training on the cost computation and error backprop-

agation to represent the space that is predictable in future

frames. Accounting for this drift in the field of view is cru-

cial to achieve good tracking performance, as otherwise,

the model is penalized for failing to predict objects out-

side the sensor horizon. This mask has been overlaid in

transparency over the ground truth comparison outputs of

Figure 1, and indicates the predictable free space shrinking

on future timesteps.

Fig. 11. Positive contribution of the spatial transformer to the

network’s ability to correctly predict the future occupancy of the

scene in a 0.6 s time horizon. The baseline DT does surprisingly

well which we attribute to the benign test set where the vehi-

cle mostly evolves at constant velocity down straight roads. We

illustrate this hypothesis in Figure 13.

Quantitative results. Figure 11 reports the F1 measure

computed with STM and with baseline DT. The baseline

DT case utilizes the same architecture as STM with the

exception that no ego-motion is taken into account. In

other words, the spatial transformer is not used to trans-

form hidden states into the next sensor frame, and no

additional mask is applied to the cost computation and

backpropagation.

Unsurprisingly, the STM offers improvement over the

baseline DT in all future frames, indicating the benefit of

incorporating visual ego-motion into the model. Without

considering the ego-motion of the vehicle, one might expect

a very poor F1 measure for the baseline model. Surpris-

ingly however, it has respectable performance (Figure 11).

We suggest three possible explanations for this. Firstly, we

posit that this may be due to the relatively benign nature of

the dataset: as most of the driving occurs along relatively

straight roads at relatively constant velocity (∼ 30km/h) the

baseline may have learned a constant velocity model to cor-

rect the hidden state update. We illustrate this in Figure 13

discussed in the following section. Secondly, the F1 mea-

sure may be dominated by static objects such as walls and

buildings, which form a large fraction of the dataset. As

such, a respectable F1 score can be attained by learning the

vehicle’s motion and merely capturing static scenes. Finally,

our system may in part suffer from noisy ego-motion esti-

mates accumulated on turns, for which we discuss possible

avenues of improvement in Section 8.

Qualitative results. We qualitatively evaluate the model,

indicating a selection of sequences where the model per-

forms well, and others where it does more poorly. We also

compare qualitatively to the baseline model where no vehi-

cle ego-motion is leveraged. As the frequency and duration

of occlusions in the dataset is not as high as the static vehi-

cle dataset, we look at the ability of the network to predict
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Fig. 12. Left to right, bottom to top: example sequence (0.8 s) of dynamic and static object tracking through occlusion by the STM.

The bottom row shows the camera view to the right side of the vehicle for illustrative purposes. The sensor is mounted on the roof of

the vehicle which is traveling at a constant speed of 16 km/h throughout the sequence. We highlight the occlusion of static pedestrians

(blue contour) caused by a moving vehicle passing between them and the sensor. The occlusion of the moving vehicle (yellow contour)

is created by our blanking out of the input from time step t2,...,6 included (illustrated by the black network input). The output of the

network is evaluated against the visible ground truth. We overlap the mask applied to the cost calculation on the network output grids to

highlight the shrinking of the field of view in memory caused by the vehicle ego-motion.

what happens in occlusion by masking the input for five

frames out of ten at test time.

Figure 12 illustrates an example of STM accurately track-

ing both dynamic and static objects through occlusion.

Specifically, the model accurately translates the position of

the occluded static pedestrians, as well as accurately cap-

turing the dynamics of the vehicle that passes between the

pedestrians and the sensor. The occlusion of the car is here

simulated by blanking out the input for five subsequent

frames.

Figure 13 compares the tracking performance of the STM

to that of the baseline model which does not consider the

vehicle ego-motion. The five-frame sequence represents full

prediction of the scene, as the input has been blacked out

to simulate total occlusion. The vehicle is driving at a con-

stant velocity of 45 km/h. Highlighted with a pink rectangle

is a moving vehicle passing by, and the tracking accuracy

is compared to that of the visible ground truth. Although

the STM model achieves very satisfactory tracking of the

moving vehicle (bottom output row), we find that the base-

line model gradually fails to produce any prediction overlap

with the actual position of the passing vehicle at the last

frame (top output row). The static background to the left of

the scene is however accurately tracked in both models. This

sequence suggests that the baseline model may be translat-

ing the scene with respect to a learned vehicle ego-motion.

As the dataset is over-weighted by static background, we

hypothesize that this may be one explanation for the high

F1 measure observed for the baseline model.

7.3. Semantic classification through inductive

transfer

To solve the problem of estimating both occlusion-free

occupancy and scene semantics ht, ct we consider the static

sensor dataset. We hand-label 1000 scans from the training
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Fig. 13. Left to right: output sequence (0.6 s) of dynamic and static object tracking through occlusion as predicted by the STM (bottom)

and the baseline model (top). In this sequence, the sensor’s ego-motion is relatively constant and linear. The input to the network is

blacked out for the entire sequence shown and simulates total occlusion of the scene. The bottom row shows the camera view to the

right side of the vehicle for illustrative purposes. We show the color-coded comparison to the visible ground truth, with false negatives

in red, false positives in blue, and true positives in green. Where the spatial transformer network accurately tracks a passing vehicle

(pink contour), the baseline model fails to capture the dynamics of the vehicle. This is particularly visible on the last frame, with most

of the area around the actual location of these objects showing false negative occupancy prediction for the baseline model. Both models

accurately capture the position of the static buildings to the left of the vehicle. This suggests that the baseline model may have learned

one of several vehicle ego-motions, and highlights the positive contribution of the STM module in the architecture. Lastly, we overlay

the mask applied to the cost calculation on the output grids to highlight the shrinking of the predictable free space as a result of the

sensor’s ego-motion. As expected, we find that the masked areas correspond to the regions in which the model fails to predict the static

background (false negative).

set into four classes for the purpose of network semantic

training, and 400 scans from the test set for the evalua-

tion of its semantic classification accuracy. We consider two

classification tasks. When performing multi-class semantic

prediction, the classes considered are: pedestrian, vehicle,

cyclist, and static obstacle. In this task, the cyclist and

pedestrian classes also contain a few examples of temporar-

ily static members. When performing binary classification,

we consider a static object class, and a dynamic object class.

In this classification problem, temporarily static pedestri-

ans and cyclists are considered members of the static class

along with the permanently static background.
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7.3.1. Training procedure. We train a classifier using the

same training procedure as the unsupervised tracking task.

The training process is illustrated in Figure 2. This is to

ensure that the model is forced to utilize the memory and be

able to predict the semantics of objects in occlusion. How-

ever, unlike the unsupervised task, the classification errors

corresponding to the visible part of the scene at xt+n are only

back-propagated through the classifier’s decoder layer. This

is unlike the unsupervised tracking task where errors were

back-propagated in time through the hidden states. Models

are trained until convergence using the 3 min long labeled

dataset, and we monitor the loss on the validation set to per-

form early stopping and prevent over-fitting. The Adagrad

optimizer is used for stochastic gradient descent with an

initial learning rate parameter of 0.01. Because the dataset

is skewed and contains many more objects of a particular

type, e.g. pedestrians, we used a weighting scheme assign-

ing class weights equal to the inverse of class frequency. We

do not consider any class weighting when training on the

binary classification task (static vs dynamic).

In order to assess the contribution of static biases in the

task of semantically labeling the scene, we consider two

of our best tracking models (GRU3DilConv_48), as well

as its corresponding full network which additionally con-

tains static biases (GRU3DilConvBias_48). Both networks

contain GRUs, dilated convolutions, and consider the full

hidden state for decoding to the output.

Similarly, to assess the contribution of decoding the full

hidden state vs only the 16 layers of the last hidden unit, we

compare our two full models (GRU3DilConvBias_48 and

GRU3DilConvBias_16) on the task of semantically label-

ing the scene. Both networks contain GRUs, dilated con-

volutions, and static biases, and the training procedure is

the same as previously described. All models are first pre-

trained on the task of predicting the unoccluded occupancy

scene on the previously described dataset.

7.3.2. Static vs dynamic objects.

Quantitative results. To quantify the network’s ability to

classify scene semantics we first consider a binary clas-

sification of the predicted output into dynamic and static

classes. We compare the F1 measure for the two models

(GRU3DilConvBias_48 and GRU3DilConv_48) with a 0.5

threshold for predicting dynamic objects. We find that both

models are commensurate in the binary prediction of static

vs dynamic obstacles. The full model with static biases pre-

dicts the dynamic objects with a mean F1 score of 0.92

while the model without static biases performs with an F1

score of 0.91.

Qualitative results. Figure 14 illustrates a 6 s sequence of

binary classification prediction (static vs dynamic) for both

models, along with the visible ground truth (Figure 14(a)).

As can been seen, both models accurately capture the over-

all dynamics of the scene, consistently predicting the static

background and moving pedestrians on the pavement and

road. Circled in red are two temporarily static pedestrians

which both models are able to capture. However, it remains

a challenge for both models to consistently label temporar-

ily static obstacles such as those illustrated by the unclear

classification of the dashed orange circles. We find that the

full model is able to utilize its dynamic memory to capture

temporarily static objects despite having the ability to rely

on its static memory to predict the permanent static back-

ground. This is supported by the high probabilities of cell

occupancy provided by the static biases in Figure 7. We

hypothesize that the accuracy of classification of temporary

static objects would further improve for both models with

more such examples in the data.

7.3.3. Multiple object classes.

Quantitative results. To quantify the network’s ability to

classify scene semantics, we compute the intersection over

union (IoU) for individual and combined classes, as well as

compute the confusion matrices for three of our best mod-

els (GRU3DilConvBias_48, GRU3DilConvBias_16, and

GRU3DilConv_48). These models differ by their use or

lack of static biases, and by their decoding of either

the last unit, or the whole of the hidden units. Results

for class IoU and class confusion matrices are respec-

tively shown in Table 1 and Figure 17. As can be seen,

GRU3DilConvBias_48, which contains static biases and

decodes the entire hidden state, produces the best clas-

sification for all classes considered, reaching an overall

classification performance of 0.93 (Table 1(a)).

We further investigate the confusion of classes by observ-

ing the recall of classification illustrated in the row normal-

ized table of Figure 17(a). The lowest precision, illustrated

in the column normalized table of Figure 17(a), addition-

ally suggests that one third (31.8%) of the model’s cyclist

predictions correspond to pedestrians. This is a confusion

that appears in all models pre-trained on the tracking task

(Figure 17(a) to (c) and Table 1(a) to (c)). We suggest this

is because in addition to exhibiting similar shapes in 2D

laser data, cyclists sometimes stop or cycle more slowly,

thus exhibiting the behavior of a pedestrian. Inversely, some

pedestrians were observed to run across the scene in both

training and testing sets, exhibiting the velocity of a cyclist

more than that of a strolling pedestrian.

Our second best model (GRU3DilConv_48), which does

not contain static memory, achieves lower performance on

all classes (Table 1). The background class particularly

achieves a lower IoU metric of 0.82 (vs 0.90). We fur-

ther observe enhanced confusion between the static back-

ground class and respectively the pedestrian and cyclist

classes as suggested by the confusion matrices. We hypoth-

esize that the static biases inform the classifier that cyclists

evolve on the road, whereas pedestrians are mainly on the

pavement and away from static obstacles. These results
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Fig. 14. Example sequence (6 s) of binary classification output (static vs dynamic) for the full model (GRUDilConvBias_48, (c)) and

best model (GRU3DilConv_48, (b)). Red labels refer to static obstacles while green illustrates dynamic obstacles. The ground truth is

shown for comparison (a). Both models capture the static background and motion of pedestrians in the scene (orange contour close-up,

(d)). The red circles show examples of two temporarily static pedestrians which both models capture well. The dashed orange circles

represent unclear classifications of the static pedestrians which reflects the difficulty of capturing momentarily static objects.

suggest a positive contribution of static biases to scene

understanding.

Performance of the full model when only considering the

last output unit in the decoder (GRU3DilConvBias_16) is

significantly lower than when considering the full hidden

state (GRU3DilConvBias_48), with an overall IoU metric

of 0.81. We find that there is more confusion between the

pedestrian, cyclist, and vehicle classes. We suggest that the

three hidden layers learn to recognize objects of different

sizes and motion patterns, consistent with their different
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Table 1. Intersection over union (IoU) for individual classes, the combined pedestrian and cyclist classes, and all classes combined,

when considering the GRU3DilConvBias model. As explicited by the confusion matrices of Figure 17 (top matrices), the main confusion

lies between the cyclist and pedestrian classes as they exhibit similar shapes and velocities in 2D laser data.

Class Background Pedestrian Cyclist Vehicle Global

(a) GRU3DilConvBias_48 0.90 0.94 0.58 0.98 0.93

(b) GRU3DilConv_48 0.82 0.91 0.55 0.97 0.89

(c) GRU3DilConvBias_16 0.85 0.84 0.35 0.86 0.81

(d) GRU3DilConvBias_48 (no pre-training on tracking) 0.93 0.66 0.1 0.66 0.62

receptive fields. Although information gets passed forward

through the units of the hidden state, we hypothesize that

allowing the network to directly access information from

the varying scales of the input, may assist positively in

discriminating between the semantic classes.

The three models present some small amount of confu-

sion between the static background and pedestrian classes,

although static biases contribute favorably in discriminat-

ing between the two. As pedestrians walk very close and

through the static background on the pavement (mostly

shops and buildings), we suggest that these errors are very

sensitive to mis-labeling the ground truth.

Qualitative results. A typical input sequence and the

corresponding predicted network output as given by the

best tracking network (GRU3DilConv_48) and full model

(GRU3DilConvBias_48) are shown in Figure 15. The net-

work is able to uncover the unoccluded scene occupancy yt

and object labels ct. Despite a long occlusion by a turning

bus, the full model is particularly able to retain the posi-

tion and presence of the occluded pedestrians and static

background. The four classes in the scene are accurately

captured by both models.

Moreover, it is able to update the positions of dynamic

objects through temporary occlusion demonstrating that it

has learned to track and recognize objects in the scene.

7.3.4. Value of inductive transfer. We verify the value of

the proposed inductive transfer of knowledge by comparing

these results to that of learning the semantics of the scene

when the model has not been pre-trained on the task of

tracking. Results can be seen in Figure 17(d) and Table 1(d),

and are qualitatively illustrated in Figure 16. The accuracy

of the system only achieves an overall IoU metric of 0.62

due to high confusion between the dynamic classes. The

permanent static background and buses, characterized by

long segments in the data, are however well captured. This

is reflected in high values for the row-normalized matrix

which suggests that 96.9% and 85.0% of these two classes

are correctly classified. Pedestrians and cyclists are how-

ever notably confused with vehicles (10.5% and 18.8%

mis-labeling respectively) which constitutes the greatest

error in the context of safe autonomous robotics. Finally,

this model was significantly slower to converge than its

pre-trained counterpart (×4 training epochs). This demon-

strates that ht offers a powerful semantic descriptor of the

scene and can be used as an input for accurate semantic

classification.

8. Discussion

The evaluation presented in this paper suggests a positive

contribution of GRUs, dilated convolutions and static biases

to the more traditional recurrent architecture used in the

original deep tracking framework. The most notable step

change in terms of improvement on the tracking task is

observed when using gated recurrent hidden units. Similarly

to the empirical evaluation of Chung et al. (2014), we find

that our GRU3_16 model converges faster to a better solu-

tion than RNN48. We do not, however, observe any issue

related to stability or overfitting of the validation set.

Further model architectures could be investigated.

We observe that although the static memory negligibly

improves the tracking task, it aids semantic labeling. It

would be interesting to find how to best utilize this static

memory for learning place-specific information for both

tasks. We further hypothesize that in the case of a moving

vehicle, static memory could learn something useful about

its near surroundings. Tangentially, an interesting follow-up

investigation could look into whether the supervised task

of decoding the scene semantics might in return improve

the tracking task. Unlike typical convolutional networks

this network does not feature max pooling and maintains

the same resolution in each layer. Max-pooling redu-

ces the computational and memory requirements by

reducing the size of feature maps. Although this is a

desired characteristic for robotics application, we suggest

that dilated convolutions provide additional freedom for

the network to learn which features to select, where max-

pooling would only select the most prominent ones. We

observe a forward pass of less than 15 ms on a GPU which

does not negatively impact a real-time deployment. How-

ever, the effect of max-pooling remains an interesting future

model architecture investigation.

Our current implementation of tracking under ego-

motion considers a 2D scan constructed from a section of

a sparse 3D point cloud. Adding RGB information from

a camera would increase the amount of scene information

and context available to the tracking and semantic tasks and

could supplant the need for static biases. This would move
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Fig. 15. Example sequence (6 s) of scene classification as produced by GRU3DilConvBias_48 and GRU3DilConv_48 along with the

available ground truth camera and laser (top two rows). Despite a long and full occlusion by the turning bus, both models retain an

accurate understanding of the scene. A pedestrian is partially and temporarily confused as a cyclist in the GRU3DilConv_48 model

(orange circle). This pedestrian is crossing the road at a traffic light (not visible in the camera view) suggesting that the model with

static memory may have a prior for pedestrian presence at this crossing. Both models present very partial and limited labelling of the

passing vehicles as cyclists.

our work closer to next video frame prediction (Lotter et al.,

2016; Patraucean et al., 2015). Alternatively, a multi-modal

approach combining both modalities could maintain the cur-

rent objective of predicting near-future scene occupancy

while reducing the amount of network architecture required.

An efficient and more favorable extension foreseen would

consider the initial 3D point cloud as a means of increasing

spatial context to assist the tracking and semantic classifica-

tion tasks. Sparse convolutions similar to the work by Wang

and Posner (2015) and Engelcke et al. (2016) could then be

leveraged to maintain computational efficiency.

9. Conclusion and future work

In this paper, we have proposed an approach to perform

object tracking for a mobile robot traveling in crowded

urban environments. Crucially, unlike classical techniques

which employ a multi-stage pipeline, this approach is

learned end-to-end with limited architectural choices. By

employing a STM, the model is able to exploit noisy esti-

mates of visual ego-motion as a proxy for true vehicle

motion. Experimental results demonstrate that deep track-

ing performs favorably to a more traditional model-free

tracker in terms of accurately predicting future states, and

shows that the model can capture the location and motion

of cars, pedestrians, cyclists, and buses, even when in com-

plete occlusion. Further, by inductive transfer of the latent

representations learned by the model from the tracking task,

it can be applied, with little effort, to the task of semantic

classification of surrounding objects.

Future work will look to estimate ego-motion for

improved tracking performance in the context of a moving
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Fig. 16. Visible scene semantics as classified by the full model (GRU3DilConvBias_48) without pre-training on tracking (a) by the full

model with pre-training on tracking (b) and by the available visible ground truth (c). For a fair comparison that does not require tracking

through occlusion, we only show the predicted labels of the visible occupancy grid. To the exception of the incoming bus and part of

the static background which are accurately labeled by the untrained network, the scene demonstrates the powerful semantic descriptor

offered by the ht.

Fig. 17. The confusion matrices of the semantic classification performance. (a) GRU3DilConvBias_48 represents the full model and

decodes the entire hidden state. This model achieves the highest classification results. (b) GRU3DilConv_48 decodes the entire hidden

state but does not consider static memory. This model is less able to differentiate the dynamic classes from the static background.

(c) GRU3DilConvBias_16 decodes only the last 16 hidden layers. This model is less able to differentiate cyclists and pedestri-

ans from the other classes which suggests that high resolution information may be diluted in the higher layers of the network. (d)

GRU3BiasDilConv_48 decodes the full hidden state but was not been trained to capture the scene dynamics in a prior task of tracking.

The static biases appear to positively contribute to classifying the static background but the dynamic classes suffer high confusion.
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platform, explore modalities such as radar, and extend the

approach to 3D. Another interesting extension would be

to allow the STM to be learned or fine-tuned during the

training process, to correct errors in the estimated ego-

motion. We release our dataset for further use within the

community.3
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