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Abstract— In this paper we present an appearance-based
method for augmenting maps of outdoor urban environments
with higher-order, semantic labels. Our motivation is to increase
the value and utility of the typically low-level representations
built by contemporary SLAM algorithms. A supervised learning
scheme is employed to train a set of classifiers to respond to
common scene attributes given a mixture of geometric and
visual scene information. The union of classifier responses yields
a composite description of the local workspace. We apply our
method to three large data sets.

I. INTRODUCTION

Localisation and Mapping frameworks have reached a
level of maturity such that a vehicle can traverse and map
substantial workspaces. The run-time complexity of state
estimation algorithms is no longer the primary bottleneck.
However, the maps produced are typically agglomerations of
laser points or an arrangement of geometric primitives (often
simply points, lines and planes). Such representations only
have a limited discriminative capacity and fail to adequately
represent the subtleties of complex environments. As a
consequence, data association, pivotal to the construction of
consistent maps, remains an open problem — perhaps the
Achilles’ heel of the research domain.

Appearance-based techniques developed in the computer
vision domain have emerged as a valuable complement
to standard SLAM solutions [1], [2]. An example is the
robust closing of large loops in a vehicle’s trajectory using
an appearance-based visual loop-closing engine [3]. The
salient point here is that the data-association problem can
be addressed without metric reasoning — considering what
things look like as opposed to where they appear to be. The
annotation of common SLAM maps by semantic information
seems a natural extension of this notion.

Our goal, therefore, is to add value to maps built by
SLAM algorithms by augmenting them with higher-order,
semantic labels. Such labels are vastly more descriptive than
the geometric primitives used previously and thus contribute
considerably to a correct data association. In this paper we
achieve this by using both scene appearance and geometry
to produce a composite description of the local area in urban
settings. Outdoors, we use a 3D laser scanner to sense the
local workspace geometry and a camera to capture its visual
appearance. In combination these two sensors provide a rich
source of information with which to characterise different
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aspects of the local area. In particular, we will focus on
describing regions of the ground plane, the surface type of
any walls in view and the presence or otherwise of cars and
foliage. The geometric and visual properties of a particular
scene are passed through a bank of classifiers each trained to
respond to a given scene attribute — like pavement, tarmac or
bush. The combination of all positive classifications yields a
composite description of the scene in question, for example,
“Path and Grass and Foliage” or “Road and Brick-Wall
and Car” (Fig. 1). The classifiers process a mixture of
geometric and appearance information which is extracted in
the following way. Firstly, using the 3D laser data, planar
patches are extracted and the normals recorded. Then, each
constituent laser point in a patch is back projected into the
camera image and neighbourhood parametrised (via a colour
histogram) and recorded along with its image coordinates.
Training is done using hand-labelled data.

Fig. 1. Labels for a typical urban scene

The next section gives a brief overview of related works.
Section III describes the data used. A motivation of our
choice of workspace labels is given in Section IV. This
is followed by a detailed description of the features used
and the data processing applied in Section V. The learning
of appropriate classifiers is outlined in Section VI. The
applicability of the presented approach to urban settings
is demonstrated in Section VII. We conclude with a brief
summary and discussion of future work in Section VIII.

II. RELATED WORK
The extraction of semantic information from sensor data

has received much attention in recent years and the amount
of relevant literature is substantial. In the computer vision
domain, approaches to appearance-based scene and object



Fig. 2. An aerial map of the Jericho data set (13.2 km, 16000 images).
The vehicle’s trajectory is marked in white.

classification include unsupervised statistical methods ap-
plied to bags of features, both including [4] and exclud-
ing [5] position within an image. In the robotics domain,
recent developments include the classification of traversable
regions from both laser and image data [6], the unsupervised
partitioning of outdoor workspaces using image similarity [7]
and the classification of 2D laser data into types of indoor
scenes using boosting [8]. Contextual information was used
explicitly in [9] by way of a model based on relational
Markov networks to learn classifiers from segment-based
representations of indoor workspaces. In [10] 3D laser data
is segmented to detect cars and classify terrain using Graph
Cut applied to a Markov Random Field (MRF) formulation
of the problem. The performance of the MRF framework
is compared to that obtained using (voted) support vector
machine classification. In a sense this work is most closely
related to our approach in that we also employ support vector
machines to classify laser data. However, in combining
information from two complimentary sensors – geometry and
appearance – our approach gains the capacity of providing
more detailed workspace descriptions such as the surface-
type of building(s) encountered or the nature of ground
traversed.

III. URBAN DATA
The work presented in this paper makes use of three

extensive data sets spanning nearly 18 km of track gathered
with an ATRV mobile platform. The robot is equipped with
a colour camera mounted on a pan-tilt unit, an inertial
sensor (XSens) as well as a GPS sensor and odometry from
wheel encoders. The camera records images to the left, the
right and the front of the robot in a pre-defined pan-cycle
triggered by vehicle odometry at 1.5 m intervals. 3D laser
data are acquired using a standard 2D SICK laser range
finder (75 Hz, 180 range measurements per scan) mounted
in a reciprocating cradle driven by a constant velocity motor.
Data recorded from all sensors are time-stamped on arrival.

Data were gathered in three different locations: Jeri-
cho/Oxford (13.2 km, 16,000 images, Fig. 2), Edinburgh
(1.3 km, 3561 images) and the Oxford Science Park (3.3 km,
8536 images, Fig. 3).

Fig. 3. An aerial map of the Oxford Science Park data set (3.3 km,
8536 images). The vehicle’s trajectory is marked in white.

IV. WORKSPACE CLASSES IN URBAN
ENVIRONMENTS

When navigating in an urban context a higher-order
knowledge of the environment is indispensable: self-
preservation dictates avoidance of highly dynamic regions
such as roads; robust localisation depends on distinguishing
features beyond the recognition of ubiquitous general objects
such as ‘ground’, ‘wall’ or ‘house’. This necessity motivates
the definition of classes and the closely linked selection of
features in this work. Intuitively, in an urban environment
places can be distinguished by the type of ground that is
present, the colour and texture of surrounding houses (or,
more appropriately, of surrounding walls) and the presence
or absence of other features such as bushes or trees. The
detection of cars (moving or stationary) is also beneficial.
These considerations give rise to the classes defined in
Table I.

TABLE I
WORKSPACE CLASSES.

Class Name Description
Wall Structure
Brick red or yellow brick
Nat. Stone natural stone, sandstone
Concrete modern (e.g. concrete, glass )
Plastered plastered, painted
Ground
Pavement tiled, patched
Path sand / dirt / gravel
Grass grass
Tarmac common road, pavement
Nature
Bush or Foliage bushes and parts of trees
Miscellaneous
Vehicle cars or vans



Fig. 4. The left image shows an original 3D laser scan, the right depicts its approxmation by planar patches as generated by the segmentation algorithm.

V. FEATURE EXTRACTION

The classes defined in Table I suggest both visual (colour
and texture) and 3D geometrical features. Our vehicle is
equipped with a 3D laser scanner, which supplies direct mea-
surements of geometry. Knowledge of the intrinsic as well as
the extrinsic (wrt the laser range finder) camera parameters
allows a meaningful combination of laser measurements and
image data: each laser measurement can be augmented with
local colour and texture information. Starting with a colour
image and a ‘cloud’ of laser measurements, an appropriate
feature vector can be compiled incorporating both 3D geo-
metrical (laser) and appearance (camera) features. The choice
of features from the two modalities and their extraction is
described in the following.

Laser Features. Using the time at which the colour image
was taken as reference, 3D laser points are accumulated
over a time window of length ∆t into the past. Thus, a
3D point cloud is assembled which represents the original
scene subject to the colour image. The structural and ground
classes in Table I can be approximated geometrically with a
planar model. Therefore, the 3D laser data associated with an
image were segmented into planes following a divide-and-
conquer approach outlined in [11]: a given point cloud is
discretised into cubic cells and planes are fitted locally using
RANSAC [12]. Plane segments for which the support (i.e.
the number of inliers) is less than a threshold, are discarded.
Amongst the survivors, planes obtained in neighbouring cells
are merged according to two constraints relating to relative
surface orientation and translation. The merging criteria for
orientation and translation are specified as:

| ni · nj |> arccos(αmax) and
1
2
(dij + dji) < dmax

ni and nj denote the plane normals in cells i and j
and ‘·’ denotes the scalar product. dij and dji denote the
distances from the centre of gravity of one plane to its
orthogonal projection onto the other plane (Fig. 5). αmax

and dmax denote an angle threshold and a distance threshold,

respectively. Finally, merged plane patches are kept if they
comprise more than Nmin laser points. A typical result of
this segmentation process is shown in Fig. 4.

Currently only the absolute cosine distance between a
plane normal and the normal of the ground plane is used
as a 3D geometric feature.

ni

nj
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Orientation Translation
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Fig. 5. The plane-merging constraints for orientation and translation for
two adjacent cells i and j. n and cog denote the plane normals and the
centres of gravity, respectively.

Appearance Features. The processing pipeline as described
above provides 3D laser points which lie on planes fitted to
the original laser data, covering the scene depicted in the
image and beyond. Visual features can only be extracted for
laser points which fall within the field of view of the camera.
Thus, irrelevant laser data are filtered out using a standard
frustum culling technique. The remaining laser points are
projected into the image (Fig. 6). Using these projections
as ‘points of interest’, appearance features are calculated
over a fixed-size (15×15 pixels) local neighbourhood in the
image. Colour and texture were deemed the most important
visual features as they provide information about the material
a surface is made of. Colour is represented by local hue
and saturation histograms (15 bins). A very basic additional
texture feature was computed for each colour channel simply
by taking its variance. The use of more advanced texture
descriptors derived from Gabor filters, for example, was
considered but decided against at this stage in favour of
simplicity.

In addition to these visual features the normalised 2D
position of the projections, as proposed by Hoiem et al



Fig. 6. Camera-laser cross-calibration: a typical 3D laser point-cloud (left). Laser points within the camera frustum are highlighted (white) and projected
into the corresponding camera image (right).

[13], was also added to the feature vector. The motivation is
that, since the camera only rotates around the vertical axis,
observations of the ground plane are more likely to appear in
the lower part of an image whereas walls of buildings extend
into the upper part.

A flowchart of this processing pipeline for feature ex-
traction is given in Fig. 7. It currently runs offline as a
Matlab implementation at about four seconds per image. The
features extracted are summarised in Table II. It remains the
task of assigning a certain semantic label to each of the laser
points based on this information. This is a classical machine
learning problem and will be addressed in Section VI.

1) For image I taken at pose xI and time tI :
(a) Obtain 3D laser data (L, tL) temporally close

to tI , i.e. tI −∆t < tL < tI

2) Segment planar patches from 3D point cloud, keep
patches that comprise more than Nmin points.
Note: Nmin is different from the inlier threshold
used for RANSAC.

3) Filter out 3D points that do not lie within the viewing
frustum of the camera (frustum culling).

4) For each of the remaining 3D points:
(a) Assign the 3D geometric features from the

respective plane patch (Table II).
(b) Project the 3D point into the image.
(c) Compute 2D geometric, colour and texture

features (Table II) from a local neighbourhood.

Fig. 7. The processing pipeline employed for feature extraction.

TABLE II
GEOMETRIC AND APPEARANCE-BASED FEATURES USED FOR

CLASSIFICATION

Feature Descriptions Dimensions
3D Geometry
Orientation of surface normal of local plane 1
2D Geometry
Location in image: mean of normalised x and y 2
Colour
HSV: hue & sat. histograms (15 bins) 30
Texture
HSV: hue & sat. variance in local neighbourhood 2

VI. CLASSIFICATION

For classification we chose a chain of support-vector
machines (SVMs) with a Gaussian kernel1. SVMs are based
on a linear discriminant framework which aims to maximise
the margin between two classes. They are a popular choice
since the model parameters are found by solving a convex
optimisation problem. This is a desirable property since
it implies that the final classifier is guaranteed to be the
best feasible discriminant given the training data. SVMs
are inherently binary classifiers. In this work, multi-class
classification is performed by training a chain of binary
classifiers – one for each class – as one-versus-all [15].

TABLE III
CLASSIFIER PERFORMANCE STATISTICS ON A TEST SET [%] .

Classifier Accuracy Precision Recall
Grass 98.5 99.4 97.5
Paved 86.7 89.0 83.7
Dirt 86.6 93.7 78.5
Tarmac 93.8 94.8 92.5
Brick Wall 89.9 94.7 84.5
Nat. Stone Wall 90.6 94.0 86.9
Concrete Wall 83.7 90.0 75.8
Plastered Wall 85.1 80.5 92.8
Bushes/Foliage 95.2 97.8 92.5
Vehicles 91.3 96.2 85.9

Training. SVM training was conducted using the Jericho
data set. The appropriate kernel width and the regularisation
parameter (i.e. the tolerance for misclassifications) were de-
termined using a grid-search over a section of the parameter
space. The grid-search was conducted with 6,000 training
points and 4,000 test points per class. The data were balanced
so that training was conducted at an equal ratio of positive
to negative examples. The parameter-set resulting in the
highest overall classification accuracy was chosen for each
class (see Table III) and the corresponding classifier was re-
trained using the entire training set of 10,000 data points. A
good indication of the generalisation performance of these
classifiers across data gathered in independent locations and

1SVM training and classification were performed using SVMLight [14].
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Fig. 8. A graphical representation of the normalised confusion matrices for the Oxford Science Park data set (left) and the Edinburgh data set (right).

under vastly different conditions can be gained by inspection
of the confusion matrices in Section VII.

Classification. The predicted class of a datum is that for
which it is classified with the greatest margin [15]. If none
of the classifiers in the chain associate the datum with their
respective class, the data point remains unclassified.

VII. RESULTS

The previous section outlined the training of a chain of
binary classifiers using the Jericho data set. The generalisa-
tion performance of these classifiers was tested using labelled
data from both the Oxford Science Park and the Edinburgh
data sets (ca. 52,300 and 38,700 data, respectively). A
graphical representation of the confusion matrices for both
data sets is given in Fig. 8. Full details are given in Tables IV
and V.

The matrix originating from the Oxford Science Park
data is dominated by high values on the diagonal. Grass,
bushes/foliage and vehicles are classified with consistently
high precision. Striking is the consistent block-separation
between ground and non-ground (walls, bushes/foliage and
vehicles). This is attributed to the features describing the
orientation of plane patches and the location of laser points
within an image. Types of terrain other than grass are
harder to distinguish between. Paved or patched walkways,
dirt paths and roads/pavements with a tarmac surface can
be similar in colour and texture, giving rise to confusion.
Nevertheless, the majority of classifications are consistently
correct. Greater confusion can be observed amongst the
different types of walls, where a similar argument applies
with regards to colour. Block-cohesion can be observed
amongst brick and natural-stone walls as well as concrete
and plastered walls. This may be attributed to a difference
in texture.

The matrix originating from the Edinburgh data exhibits a
broadly similar structure but is considerably more noisy. This
is attributed to the sub-optimal lighting conditions prevailing

while the data was gathered, since it may have given rise
to higher variability in feature values describing colour and
texture.

The consistency of the classification results can be further
emphasised by combining conceptually related classes for
which the current combination of descriptive features does
not allow for robust classification. For example, the Oxford
Science Park data (Fig. 8) suggest a block-cohesion between
the ‘Concrete’ and the ‘Plastered Wall’ classes as well as
the ‘Brick Wall ’ and the ‘Nat. Stone Wall’ classes. This is
most likely due to texture (and possibly colour) similarities
within those groups, yet not across. Fig. 10 depicts the
confusion matrices for the respective data sets with two meta
classes ‘Textured Wall’ and ‘Plain Wall’. These represent
the combined class pairs ‘Brick Wall ’ and ‘Nat. Stone
Wall’, and ‘Textured Wall’ and ‘Plain Wall’, respectively.
The dominance in the diagonal has increased.

So far, discrete laser points sampled from a continuous
world have been classified independently, thus discarding
all information about the spatial cohesion of structures and
objects. Taking this information into account leads to an
intuitive extension: the smoothing of individual classifica-
tion results by majority vote of laser points constituent to
the same plane patch. As a preliminary investigation, this
technique was applied to the data obtained from the Oxford
Science Park. The resulting confusion matrix (Fig. 9) exhibits
a more pronounced diagonal and less noise. This suggests
that such ‘spatial’ smoothing may indeed improve overall
classification performance. A typical example of an actual
classified scene where a majority vote scheme is applied is
given in Fig. 1.

VIII. CONCLUSIONS AND FUTURE WORKS

In this paper we present an appearance-based method of
augmenting maps of outdoor urban environments with local
scene labels. The approach is based on a chain of binary
classifiers labelling individual laser data according to their
origin. Laser points are characterised by both 3D geometric
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Fig. 9. The normalised confusion matrix for the ‘spatially smoothed’ data
of the Oxford Science Park data set.
data and visual cues obtained from monocular vision. The
generalisation performance of the classification scheme is
sufficient to consistently separate different types of terrain
and walls, including bushes and foliage. The system also
has a capacity to recognise common objects such as cars and
vans. The results suggest that this approach can be extended
towards the smoothing of individual classification results
by taking into account the spatial cohesion underlying the
point cloud. However, such a scheme relies on an automatic
separation of plane patches into surfaces of different types.
Currently, this is beyond the segmentation-scheme applied
here and is subject to further work.

In the future, attention will also focus on an evaluation
of the feature set used. At this point, no comment can be
made on the relative importance of individual features to the
classification process. Though the classification performance
is satisfactory, it may well transpire that our system would
benefit from, for example, more advanced texture features or
more elaborate geometric features.

Furthermore, the use of an inherently binary classification
framework in a one-verses-all configuration comes with
a caveat: the possibility of individual classifiers assigning
an input to multiple classes simultaneously is addressed
using a ‘winner-takes-all’ heuristic where the ‘winner’ is
the classification resulting in the greatest margin. Even
though satisfactory results are obtained in practise, there
is no guarantee that the real valued quantities representing
the margins for different classifiers will have appropriate
scales [16]. In future, this will be addressed by investigating
alternative classification frameworks such as relevance vector
machines which do not suffer this limitation.
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TABLE IV
CONFUSION MATRIX FOR THE OXFORD SCIENCE PARK DATA SET.

Ground truth class labels
Grass Paved Dirt Tarmac Brick Natural Stone Concrete Plastered Bushes Cars

Grass 4320 31 38 21 0 0 0 0 13 10
Paved 59 3178 239 1808 2 37 3 33 5 108
Dirt 398 917 4078 1771 18 68 88 27 17 89
Tarmac 19 733 33 1175 2 23 12 4 2 128
Brick 60 80 458 99 3072 2526 2215 2362 2601 1660
Natural Stone 9 20 0 12 921 1682 301 414 611 22
Concrete 9 15 2 14 341 231 1121 1221 106 300

C
la

ss
ifi

ca
tio

n

Plastered 0 1 0 6 340 342 854 792 110 357
Bushes 111 8 8 7 76 7 60 3 1310 17
Cars 2 15 12 69 158 58 321 120 181 2224
Unclassified 2 2 131 6 65 21 4 6 22 72
Ground Truth 4999 5000 4999 4999 5002 4997 4997 4998 4999 5000

TABLE V
CONFUSION MATRIX FOR THE EDINBURGH DATA SET.

Ground truth class labels
Grass Paved Dirt Tarmac Brick Natural Stone Concrete Plastered Bushes Cars

Grass 19 80 0 33 0 14 1 0 88 7
Paved 0 660 0 831 4 13 9 0 40 202
Dirt 6 3088 0 2584 3 133 28 0 33 208
Tarmac 0 721 0 1004 0 0 0 0 19 7
Brick 0 154 0 192 1723 3100 2504 166 698 1402
Natural Stone 0 0 0 17 49 656 404 15 62 353
Concrete 0 29 0 15 191 386 568 43 522 748

C
la

ss
ifi

ca
tio

n

Plastered 0 2 0 0 388 392 833 3414 89 402
Bushes 0 19 0 41 11 38 380 30 1415 110
Cars 0 97 0 108 20 120 133 3 217 663
Unclassified 0 146 0 169 34 80 99 5 10 223
Ground Truth 25 4998 0 4995 2427 5000 4999 3679 3235 4347
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Fig. 10. A graphical representation of the normalised confusion matrices for the meta classes of the Oxford Science Park data set (left) and the Edinburgh
data set (right).


