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Abstract

The ability to extract a rich set of semantic workspace labels from sensor data gathered in complex en-
vironments is a fundamental prerequisite to any form of semantic reasoning in mobile robotics. In this
paper we present an online system for the augmentation of maps of outdoor urban environments with such
higher-order, semantic labels. The system employs a shallow supervised classification hierarchy to classify
scene attributes consisting of a mixture of 2D/3D geometricand visual scene information into a range of
different workspace classes. The union of classifier responses yields a rich, composite description of the
local workspace. We present extensive experimental results using two large urban data sets collected by our
research platform.
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1. Introduction

Significant advances in recent years in the development of localisation and mapping frame-
works have inspired an expectation for mobile robots to operate in increasingly complex environ-
ments, both autonomously and in concert with human beings. In recent years, appearance-based
techniques developed in the computer vision domain have emerged as a valuable complement to
standard SLAM solutions [40,32]. As a result, mapping techniques have reached adolescence in
the sense that low-level geometric representations can be built for an environment over several
hundred meters of track [26]. However, the maps that are produced are typically agglomerations
of laser points or an arrangement of geometric primitives (often simply points, lines and planes).
Such representations only have a limited discriminative capacity and fail to adequately represent

1 The work reported in this paper was funded by the Systems Engineering for Autonomous Systems (SEAS) Defence
Technology Centre (DTC) established by the UK Ministry of Defence.
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the subtleties of complex environments. In particular, they are of limited use to the operational
decisions required by an autonomous agent.

We argue that successful environmental interaction in complex outdoor urban environments
requires at least a rudimentary operational awareness of higher-levelsemanticconcepts. At the
most basic level, such an operational awareness can be obtained by automatically extracting
meaningful and pertinent semantic labels from a range of sensor data. Consider, for example,
a navigational policy which prefers operation on pavements(appropriate for our ATRV Junior
vehicles) to operating on busy roads. Similarly, exploration can be driven by semantic cues in the
sense that roads, pavements and paths lead to other, possibly interesting places. The extraction
of appropriate labels thus forms the basis of effective semantic reasoning.

Fig. 1. Semantic labels for typical urban scenes. The imagesdepict the output produced by the presented system, except
for the text boxes and arrows that were added manually for illustration purposes. Note that the points in the images refer
to 3D points in the robot’s workspace. An alternative representation would be a coloured 3D point cloud, where the
colour encodes the semantic labels.

This paper presents an appearance-based method for augmenting maps of outdoor urban envi-
ronments with higher-order, semantic labels using both scene appearance and 2D/3D geometry.
A 3D laser scanner is utilised to sense the local workspace geometry and a camera to capture its
visual appearance. In combination these two sensors provide a rich source of information with
which to characterise different aspects of the local area. In particular, we will focus on describing
regions of the ground plane, the surface type of walls, and the presence or otherwise of vehicles
and foliage. The geometric and visual properties of a particular scene are passed through a shal-
low hierarchy of classifiers each trained to respond to a given scene attribute — like pavement,
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tarmac or bush. The combination of all positive classifications yields a composite description of
the scene in question, for example,‘Path and Grass and Foliage’or ‘Road and Brick-Wall and
Car’, see Fig. 1.

We make several extensions to our previous work [34], as presented at the IEEE International
Conference on Robotics and Automation (ICRA) in 2007. Our classification framework has been
substantially refined and restructured, leading to significant savings in computational cost. This
enables us to present here a system which runs online and in near real time. Local smoothing of
the classification results is achieved by majority consensus based on automatic image segmen-
tation. Furthermore, we consider the benefits gained by leveraging a much richer set of features
in both 3D geometry and visual appearance and we provide a detailed comparison motivating
our final choice. In addition, we elaborate on our method for automatic 3D laser/vision cross-
calibration. Finally, we present an extensive analysis of system performance in the field.

The next section gives a comprehensive account of related works. Section 3 describes the
research platform and data used for the experimental validation of our approach. This is followed
by a motivation of our choice of workspace labels in Section 4. A description of the features
considered as well as the feature extraction stage of our processing pipeline is given in Section 5.
Section 6 describes the classification framework. Finally,the efficacy of the system in a real
urban setting is demonstrated in Section 7, along with a detailed discussion.

2. Related Work

The semantic interpretation of sensor data in the context ofrobotic map building has received
much attention in recent years. The first step usually involves the extraction of suitable features
from the data. Given, for example, 2D laser range data, common geometric attributes include
2D lines and corners as well as different moments or heuristics drawn from the distribution of
distance and angle measurements. Assuming that certain semantic classes can be characterised
and distinguished by means of the resulting feature vector,machine learning techniques [4] are
commonly used to address the implied classification problem. Martinez et al. [24], for example,
classify 2D range scans into classes such as‘Corridor’ , ‘Room’, and‘Door’ , applyingAdaBoost
andHidden Markov Models. The respective labels are then assigned to the global scan positions
leading to a semantic annotation of 2D metric maps of indoor environments. In [8] a rectangular
shape model is used to detect rooms from 2D range data. Anguelov et al. [1] propose a method
that learns the position of doors in a hallway from 2D line segment maps using the expectation-
maximisation (EM) algorithm. The latter problem was also considered in [23], where contextual
information is used, by means of relational Markov networks, to classify 2D line segments in
indoor hallways as being‘Door’ or ‘Wall’ . These and other works indicate that augmenting
2D maps of indoor environments with the explicit notion of doors, hallways and rooms has valu-
able benefits for robot navigation, in particular, path planning and localisation, see also [36].
Mainly it allows to represent common structural propertiesand to refer to them by means of se-
mantics. Similar ideas have been put forward in the context of topological map building [21,22],
where the focus has been primarily on the definition of distinctive places and the navigation
between them, often only with limited use of semantics.

Although sufficient for many applications indoors, the information, semantic or otherwise,
that can be extracted from 2D laser range data is rather limited. A natural extension is to utilise
3D data. In [10], for example, elevation maps are used to annotate 2D maps with different nav-
igational behaviours. The notion of‘Floor’ , ‘Wall’ and ‘Ceiling’ is utilised in [27] to support
3D scan matching in indoor environments. Anguelov et al. [2]use a segmentation of 3D data
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to detect cars and classify terrain using Graph Cuts onMarkov Random Fields(MRF). The per-
formance of the MRF framework is compared to that obtained using Support Vector Machines
(SVMs). This work is closely related to our approach in that we also employ SVMs to clas-
sify 3D laser data. However, in combining information from two complementary modalities –
2D/3D geometry and visual appearance – our approach gains the capacity of providing more
detailed workspace descriptions, such as the surface-typeof buildings encountered or the nature
of ground traversed.

Over the last decade, a large body of work in computer vision has focused on the seman-
tic interpretation of image content, in particular object detection and recognition as well as
scene description. The resulting algorithms, whether theyapply probabilistic feature-based ap-
proaches [30] or use 3D geometric models [31] have matured toan impressive level. A detailed
overview, however, goes beyond the scope of this paper. It should be noted that most of these
works do not address the problem of robotic map building and as such are not directly compa-
rable to the work presented here. However, robot mapping hasfrequently drawn inspiration and
benefit from the field of computer vision. In particular, the use of visual appearance has recently
attracted increasing attention, see for example [33,9]. Hadsell et al. [15] use visual appearance
to classify outdoor terrain regarding its traversability by a mobile robot. In [33] image similarity
is utilised to perform an unsupervised partitioning of outdoor workspaces and thereby defining
descriptive classes such as‘Park’ and‘Building’ . Several approaches for the detection of doors in
office environments using simple geometric models have beenproposed, for example, in [20,35].
Visual appearance has also been successfully applied in topological mapping and place recogni-
tion [9], although with limited or no notion of semantics.

Finally, there exists a sizeable amount of work that leverages a combination of sensor modal-
ities. Douillard et al. [11] present a probabilistic framework for object recognition usingCon-
ditional Random Fieldsthat supports the integration of arbitrarily many sensors.They present
preliminary results based on image and 2D range data to detect cars. In [25] similar sensor
modalities are utilised to classify cars and pedestrians. The classification is carried out sepa-
rately for image and 2D range data. The results are combined by a Bayesian sum decision rule.
Several approaches to the classification of traversabilityutilise a monocular camera and a fixed
2D laser range finder that faces downwards in front of the vehicle [42,38]. The assumption is
that the 3D pose is known or can be determined with sufficient precision. As a consequence, the
laser measurements from different poses can be accumulatedand form a 3D point cloud, from
which features like planarity or goodness of plane-fit can becomputed. Together with visual ap-
pearance, these features are used to classify whether or notthe terrain in front of the vehicle is
traversable. These approaches are related to our work in that they draw their features from im-
age as well as 3D laser range data. However, multi-class classification is not considered. Similar
work by Happold et al. [16] utilise 3D data from stereo visionalong with appearance features
using a neural network for terrain classification.

3. Robot System Setup and Urban Data Sets

The work presented in this paper makes use of two extensive data sets, spanning nearly 18 km
of track, gathered with our research platformMarge(ATRV, Fig. 2). The robot is equipped with a
colour camera (Marlin, Allied Vision Technologies), an inertial sensor (XSens), a GPS sensor and
odometry from wheel encoders. The camera records images to the left, the right and the front of
the robot in a pre-defined pan-cycle triggered by vehicle odometry at 1.5 metre intervals. 3D laser
data are acquired using a 2D laser range finder (SICK) that is run with one degree resolution
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(180 degree range). It is mounted in a reciprocating cradle driven by a constant velocity motor,
see also [17]. Data were gathered in two different locations: Jericho/Oxford(13.2 km, 16,000
images) and theOxford Science Park(3.3 km, 8536 images), see also Fig. 2.

Fig. 2. Aerial map of theJerichodata set - 13.2 km, 16000 images (Left ), and theOxford Science Parkdata set - 3.3 km,
8536 images (Right). Vehicle trajectories are marked in white.Middle: Marge- our ATRV research platform

4. Workspace Classes in Urban Environments

When navigating in an urban context a higher-order knowledge of the environment is indis-
pensable: self-preservation dictates avoidance of highlydynamic regions such as roads; robust
localisation depends on distinguishing features beyond the recognition of ubiquitous general ob-
jects such as‘Ground’, ‘Wall’ or ‘House’. This necessity motivates the definition of classes and
the closely linked selection of features in this work. Intuitively, in an urban environment places
can be distinguished by the type of ground that is present, the colour and texture of surround-
ing houses (or, more appropriately, of surrounding walls) and the presence or absence of other
features such as bushes or trees. The detection of cars (moving or stationary) is also beneficial.
These considerations give rise to the classes defined in Tab.1.

Class Name Description

Brick red or yellow brick
Nat. Stone natural stone, sandstone

W
al

l

Concrete modern (e.g. concrete, glass)
Rendered rendered, plastered, painted

Pavement tiled, patched
Dirt Path sand, dirt, gravel
Grass grass

G
ro

un
d

Tarmac common road, pavement

Bush or Foliagebushes and parts of trees

M
is

c

Vehicle cars or vans

Table 1: Workspace classes.
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5. Geometric and Appearance Features

The classes as defined in Tab. 1 suggest that both visual appearance and 2D/3D geometric
features are suitable to facilitate reliable classification. For example, it seems straightforward
to distinguish between‘Wall’ and ‘Ground’ using the 3D plane normal of the ‘neighbourhood’
of a particular 3D point, but discriminating different‘Ground’ classes using only 3D geometry
may be difficult. As described in Sec. 3, our robot platform isequipped with a monocular colour
camera and a 3D laser range finder, which supply visual data aswell as direct measurements
of 3D geometry. Knowing the intrinsic parameters of the camera as well as the relative pose
between the two sensors allows for meaningful combination of the information from both. To
this end, we developed an accurate cross-calibration method that automatically determines the
3D transformation between the two sensors (Sec. 5.1). As a consequence, each laser measure-
ment, i.e. 3D point, is augmented with appearance information from the image data. The feature
extraction takes as input a colour image and a 3D point cloud,and compiles a feature vector
incorporating 3D geometric (Sec. 5.2) as well as 2D geometric and visual appearance (Sec. 5.3)
features. Sec. 5.4 summarises the overall feature extraction process and the different feature types
considered.

5.1. Camera and 3D Laser Cross-Calibration

In order to use the information of both a monocular colour camera and a 3D laser range finder
in a common frame, the relative position between these sensors must be estimated. Our first
approach was to use a planar target as proposed in [28]. However, we found that the accuracy
of the target localisation in the 3D point cloud is limited due to (A) the discrete nature of the
spatial sampling process as performed by a laser scanner, and (B) the well-known problem of
mixed measurements at depth discontinuities. (A) means that 3D measurements - depending
on the angular resolution and the distance to the target object - can only be close to the object’s
boundaries, but never represent its full physical extent. In addition, (B) means that measurements
that fall on edges frequently return distance readings thatare between the actual object and the
background, but lack physical evidence. Together this causes the localisation of the planar target
in a 3D point cloud and, in turn, the relative pose estimationbetween camera and 3D laser
scanner to not provide the accuracy we sought for our applications. Therefore, we developed
the cross-calibration scheme described here. The primary advantage is that, given the proposed
calibration target, the localisation of the target object in the 3D point cloud is performed using
robust plane fitting, which is more precise than finding particular corner points or edges directly
or assuming that the 3D measurements adequately represent the object’s actual size. In fact, if
the calibration object is observed (scanned) long enough, the respective planes can be sampled
with arbitrary density, and thus, arbitrarily accurate plane estimates can be obtained. Note, since
this process is performed while stationary the only source of error is the measurement noise of
the laser range finder. Assuming that this noise has zero-mean, it will be compensated for by the
plane estimation.

The objective of our approach is to first automatically determine the 3D corner points of both
target rectangles, i.e. in the foreground (red) and in the background (white-blue transition), from
the image as well as the laser data, see Fig. 3. The resulting 3D corner correspondences be-
tween the laser and camera coordinate frame are then used to compute the 3D transformation
between the two sensors. From theLaser Range Data, 3D corner points are determined using
intersections of planes, which are automatically extracted using iterative plane fitting based on
MLESAC [39]. Fig. 3 (right) shows the results of this segmentation step. Note that for all but the
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background plane only circular areas around the plane’s centre of gravity are used for the final
plane fitting to avoid errors induced by plane segment margins. Using the topology of the cali-
bration target, the 3D corner points are determined by plane-plane and plane-line intersections.
The final step applies constrained non-linear optimisationon the 3D point positions to improve
the compliance with the calibration target, i.e. the side length of the target rectangles as well as
their inner angles.

Fig. 3. Left: Our 3D calibration target as ‘seen’ by the camera.Right: The target as ‘seen’ by the 3D laser scanner. Also
shown are the 3D planes (grey) and the wire frame model (white) that were automatically segmented (see text below).

From theImage Data, 3D corner points are determined by means of projective geometry.
After the outlines of the target rectangles have been segmented, the resulting 2D line segments
are used to reconstruct the 3D corner points as described in [35]. The sought corner points can be
determined up to scale, which is resolved using the known size of the 3D rectangles. As a final
step (and similar to the case of laser data), we use constrained non-linear optimisation to allow
small deviations of the plane normal and the corner points onthe sensor in order to improve
the 3D reconstruction. Finally, given the 3D corner correspondences between the laserpi

L and
camerapi

C coordinate frame, non-linear optimisation is employed to find the parameters forR
andt, that minimise the sum of the squared differences betweenpi

L andpi
C , where:

pi
C = R · pi

L + t, i = 1...8.
The resulting minimum error is in the order of four to twenty millimetres per 3D point. More
interestingly, the pixel error ofpi

L andpi
C back-projected into the image is less than one pixel for

all points.

Fig. 4. Camera-laser cross-calibration.Left: A typical 3D laser point-cloud. Laser points within the camera frustum are
highlighted (white). The frustum outlines have been added for clarity. Right: The respective 3D points (from within the
frustum) as projected into the corresponding camera image.
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5.2. Extracting Geometric Features from 3D Laser Data

Given a colour image captured at timetI , 3D laser points are accumulated over a time window
(tI −∆T, tI). The resulting 3D point cloud refers to the same scene that the camera observed at
tI . The ‘Wall’ and‘Ground’ classes in Tab. 1 can be approximated geometrically with a planar
model. Therefore, the 3D point cloud is first segmented into planar patches following a divide-
and-conquer approach outlined in [41]. The given point cloud is discretised into cubic cells and
planes are fitted locally using MLESAC [39]. Plane patches obtained in neighbouring cells are
merged according to the following constraints, which relate to the relative surface orientation and
the distance between plane segments:

|ni · nj| > arccos(αmax) and 1

2
(dij + dji) < dmax

ni andnj denote the plane normals in cellsi and j and ‘·’ denotes the scalar product.dij

and dji denote the distances from the centre of gravity (cog) of one plane to its orthogonal
projection onto the other plane (Fig. 5).αmax anddmax denote an angle and distance threshold,
respectively. Finally, merged plane patches are kept, if they comprise more thanNmin laser
points. A typical result of this segmentation process is shown in Fig. 6.

ni

nj

cogi

cogj

ni nj

cogi

cogj

Orientation Translation

dij dji

Fig. 5. Plane-merging constraints for two adjacent cubic cells i and j. Left: for orientation.Right: for translation. n -
plane normal, CoG- centre of gravity

From the segmented plane patches and the respective 3D points we derive the following 3D geo-
metric features that are assigned to each individual 3D point:
– Absolute cosine distance between the normal of the respective plane patch and the normal

of the ground planeπN . The z-axis of the coordinate system (CS) of the laser scanner is
aligned with the z-axis of the robot CS, and is pointing upwards. Assuming local approximate
planarity,πN is thus given by the z-axis, i.e.πN = [0 0 1]T .

– Goodness of plane fit: ratio of smallest/largest SV2 .
– Patch size: largest× 2nd largest SV, normalised by number of points and subject toa threshold.
– Height of 3D point wrt. ground plane and subject to a threshold.

Note that finally we aim at classifying single 3D points as observed by both the camera and
the 3D laser range finder. The fact that certain 3D points stemfrom the same planar patch and
that 3D point classes should be spatially consistent facilitates a post-processing step by means
of spatial smoothing using, for example,Majority Voting(Sec. 6.4 and 7.3) orMarkov Random
Fields.

5.3. Extracting Appearance Features from Image Data

The processing steps as described so far provide 3D laser points which lie on planes fitted to
the original laser data, representing the scene depicted inthe image and beyond. 3D points that

2 SV - singular value, comes from the final plane fitting using SVD.
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Fig. 6.Left: Original 3D point cloud.Right: Approximation of the 3D point cloud by planar patches as generated by the
segmentation algorithm.

would not project into the image, because they lie outside the camera’s viewing frustum, are dis-
carded using frustum culling. The remaining 3D points are projected into the image (Fig. 4) and
constitute 2D points of interest (POI). For each of the POIs,appearance features are calculated
over a local neighbourhood in the image. These features together with 2D geometric attributes are
assigned to the feature vector of the respective 3D point. Inthis work we consider the following
appearance and 2D geometric features:
– Hue and saturation histograms (15 bins each) to characterise colour appearance using a fixed-

size neighbourhood of15 × 15 pixels.
– Standard deviation of hue and saturation as a simple texture feature using a fixed-size neigh-

bourhood of15 × 15 pixels.
– SURF descriptors [3] for the POIs. The scale, and thus the size of the local neighbourhood,

is inversely proportional to the distance of the respective3D points. These descriptors capture
primarily texture properties, and are to a certain degree scale, lighting and view point invariant.

– Normalised position of the 2D POIs, as proposed by Hoiem et al [18].

5.4. Summary

Fig. 7 shows a flowchart of the processing pipeline that we employ for feature extraction.
The 2D/3D geometric and appearance-based features considered in this work are summarised
in Tab. 2. This information is used to learn appropriate classifiers that distinguish between the
different classes as defined in Tab. 1 (Sec. 4). We address this problem usingSupport Vector
Machinesin Sec. 6, which describes our classification framework. In Sec. 7.2 we investigate the
influence of different feature combinations on the classification performance.

Feature Type Dims. Feature Descriptions

3D Geometry 1 Orientation of surface normal of local planar patch
1 Quality of plane fit
1 Size of planar patch
1 Height of 3D point wrt. the ground plane

2D Geometry 2 Location in image as normalised x and y position
Colour 30 Hue & saturation histograms (15 bins)

Texture 2 Standard deviation of hue & saturation
64 SURF descriptors

Table 2: Summary of the features considered for classification.
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(i) For imageI taken at posexI and timetI :
(a) Obtain 3D laser data (L, tL) from time windowtI − ∆t < tL < tI

(ii) Segment planar patches from 3D point cloud, keep patches that comprise
more thanNmin points. Note thatNmin is different from the inlier threshold
used for MLESAC.

(iii) Filter out 3D points that do not lie within the viewing frustum
of the camera (frustum culling).

(iv) For each of the remaining 3D points, see also Tab. 2:
(a) Assign the 3D geometric features from the respective plane patch.
(b) Project the 3D point into the image.
(c) Compute 2D geometric, colour and texture features

from local neighbourhood.

Fig. 7. The processing pipeline employed for feature extraction.

6. Classification Framework

In [34] we employ a bank ofSupport Vector Machines(SVMs) for classification. This choice
was predominantly motivated by the wide-ranging successesachieved by SVM classifiers. The
classification framework adopted here extends our previouswork by introducing a hierarchi-
cal combination of two distinct discriminative approaches. At the top of the hierarchy a Bayes
classifier is employed to distinguish between ground and non-ground classes. For each of these
categories a combination of SVMs yields the final class decisions. In addition, the class posterior
from the raw SVM output is estimated such that the final classification amounts to a maximum
a posteriori decision amongst the individual classes [29]. An illustration of the classification
framework is given in Fig. 8. The hierarchical approach provides a speed-up of factor two com-
pared to the system presented in [34] and thus constitutes a significant gain in terms of online
workspace classification. The remainder of this section describes the individual components of
this framework.

6.1. Bayes Decision Rule for Ground/Non-Ground Separation

The first step in the classification hierarchy separates ground from non-ground classes. Intu-
itively, the height (wrt. ground) of the datum as well as the orientation of the plane patch the
datum is associated with will be the most conducive to this purpose. For reasons of computa-
tional efficiency we propose a simple thresholding scheme onthese features. Similar approaches
operating on different features have been proposed, for example, in [37,43]. In the work pre-
sented here, thresholds are determined such that the resulting probability of misclassification is
minimised. This is achieved by employing the Bayes decisionrule [12]. Suppose a feature vector
x ∈ ℜ2 derives from two classesC 1 andC2. A given threshold divides the feature space into
two adjacent and non-overlapping volumes,V1 andV2. The probability of error is given by

p(error) =

∫
V2

p(x,C1)dx +

∫
V1

p(x,C2)dx, (1)

wherep(x,Ci) represents the joint probability of featurex and classCi. The first and second
terms represent the cumulative density ofp(x,C1) over the volumeV2 and the cumulative den-
sity of p(x,C2) over the volumeV1. Intuitively, the probability of error is minimised whenx is
assigned to that class for whichp(x, C) is at a maximum. In this case the threshold is estimated
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Paved RoadSVMs

MAP

Class Decision

Data

Brick Bush VehicleGrass

p( C | data ) p( C | data ) p( C | data )

MAP

Class Decision

p( C | data ) p( C | data ) p( C | data )

Bayes Classifier

Calibration

Fig. 8. The classification hierarchy employed in this work.

from the available training data.p(error) is therefore estimated directly for a putative set of
threshold values such that

p(error) ≈
FP + FN

N
, (2)

where,FP , FN andN denote the number of false positives, false negatives and the total
number of data in the training set, respectively. This is directly analogous to Equation 1. Thus,
the value which minimises Equation 2 is chosen for further classification.

6.2. Support Vector Machine Classification
Support Vector Machines(SVMs) are based on a linear discriminant framework which aims to

maximise the margin between two classes. They are a popular choice since the model parameters
are found by solving a convex optimisation problem. This is adesirable property since it implies
that the final classifier is guaranteed to be the best feasiblediscriminant given the training data.
A detailed discussion of SVM training and classification lies outside the remit of this paper3 .
However, pertinent to the remainder of this section is a brief overview of the mechanism by
which future predictions are made.

Consider a set ofN training dataX = {x1, . . . ,xN}, wherex ∈ ℜd denotes a datum in
d-dimensional feature space. Associated withX comes a set of labelsY = {y1, . . . , yN} where
eachyi ∈ {−1, 1}. Once training has been completed, predictions on future observations are
made based on the signed distance of the observed feature vector from the optimal hyperplane [7],
such that:

f(x) =

N∑
i=1

αiyiK(xi,x) + b, (3)

3 For more details on SVM-classification the interested reader is referred to, for example, [4] or [7].
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whereαi refers to a Lagrange multiplier associated with datumi, b denotes a bias parameter
andK(xi,xj) denotes the kernel function. Bothαi andb are obtained by training. Note that,
in practice,αi will only be non-zero for a subset of the training data. Members of this subset
are referred to as thesupport vectorsof the classifier. The kernel function amounts to a scalar
product between two data, which have been transformed fromd-dimensional feature space into
some higher dimensional space. The nature of this mapping between spaces is inherent in the
choice of kernel and need not be specified explicitly (thekernel trick).

One disadvantage of SVMs lies in the necessary choice of the kernel and the computational
burden usually associated with determining the corresponding parameters. In this work we em-
ploy a Gaussian kernel [7], which is a common choice and has been found to perform well in a
variety of applications. The kernel parameter as well as a trade-off parameter specifying a tol-
erance for misclassifications during training are commonlydetermined by grid-search over the
parameter space.

SVMs are inherently binary classifiers. However, several schemes exist by which to extend the
SVM framework to multi-class problems. In this work, multi-class classification is performed by
training a chain of binary classifiers – one for each class – asone-versus-all [7].

6.3. Probabilistic Calibration

The use of an inherently binary classification framework such as SVMs in a one-versus-all
configuration comes with a caveat: the possibility of individual classifiers assigning an input to
multiple classes simultaneously is addressed using a winner-takes-all heuristic where the winner
is the classification resulting in the greatest margin (i.e.the largest distance from the separating
hyperplane). Even though satisfactory results are obtained in practice, there is no guarantee that
the real valued quantities representing the margins for different classifiers will have appropri-
ate scales. This problem can be addressed by a process referred to as probabilistic calibration:
the distance of a data point from the separating hyperplane is mapped onto a posterior proba-
bility p(C|f(x)) wheref(.) represents the classification function resulting in an (uncalibrated)
distance from the separating hyperplane for each data pointx (cf. Equation 3). In this work we
adopt a method of probabilistic calibration introduced by Platt [29]. In this approach a parametric
model is fitted directly to the posterior probabilityp(C|f(x)). Inspired by empirical data on the
class-conditional densities between the margins – Platt observes that they take an exponential
form – the parametric model takes the form of a sigmoid as obtained when applying Bayes’ rule
to two exponentials.

p(C|f(x)) =
1

1 + exp(Af(x) + B)
(4)

The parameters A and B are found by minimising the negative log likelihood of the training
data. In this work we employ the same model-trust minimisation algorithm used by Platt. The
datum is finally assigned to the class with the maximum posterior probability.

6.4. Voted SVM Classification

The multi-class SVM approach outlined so far does not take into account information about
the spatial cohesion of structures and objects in the real world. Voted SVM classification incor-
porates this information by assigning a given neighbourhood of data a class label determined by
majority consensus of individual,independentclassifications. In particular, given the probabilis-
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tic calibration of the classifiers, aweightedmajority vote can be performed where the estimated
class label̂C is given by

Ĉ = max
i

∑
r∈N

p(Ci|f(xr)) (5)

whereN refers to the set of points in the neighbourhood andp(Ci|f(xr)) is the probability
of classi given the uncalibrated SVM outputf(x) for datumx (cf. Equation 3). The nature of
the data available allows a natural determination of a neighbourhood setN : rather than fixing a
distance threshold, neighbourhoods are formed over regions of contiguous appearance within the
appropriate image. This patch-segmentation is performed automatically for the results shown in
the next section using an off-the-shelf image segmentationmethod [14], see Fig. 9 for segmen-
tation examples.

Fig. 9. Examples for the image segmentation used forMajority Voting in our online classification system.

7. Experimental Results and Evaluation in Urban Environments

Previous sections have introduced the classification framework and a selection of features.
In the following we present results obtained when applying the proposed approach to real data
as gathered by a mobile robot. Throughout this section theJerichodataset is used for training
purposes. TheOxford Science Parkdata are used as an independent test set. We proceed by
deriving the Bayes optimal threshold required for the top level of our classification hierarchy (see
Section 6.1). This is followed in Section 7.2 by a description of results obtained with different
combinations of features introduced in Section 5. Finally,using a set of selected features, we
present more detailed results of system performance on an independent test set.

7.1. Determining the Bayes Optimal Decision Threshold

The Bayes optimal threshold required for ground/non-groundseparation was determined using
approximately 201,000 unbalanced data from theJerichodataset. As indicated in Section 6.1,
each datum here consists of a two-element vector associatedwith a 3D point and containing the
relative height above ground as well as the orientation of the associated plane. The left and middle
panel of Fig. 10 show the histograms corresponding to the distributionsp(x,C1) andp(x,C2).
The right panel illustrates the correspondingp(error) estimated according to Equation 2 using
a grid search with a resolution of100 steps per dimension. The estimate of the Bayes optimal
decision threshold results in a mis-classification rate of approximately 2.9%.
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Fig. 10. Left, Middle: The joint densities as estimated from training data. Note the difference in scale.Right: The
estimate ofp(error). The dashed vertical line indicates the threshold which minimises the misclassification rate. The
cosine-distance of a patch is derived from the normal of the plane of which a point is a member and measured wrt. the
normal of the ground plane.

7.2. Feature-Set Selection

Section 5 provided a selection of features amongst which to choose. The purpose of this sec-
tion is to provide an intuition of how system performance varies with the choice of feature
combinations. Rather than provide a feature-by-feature analysis, we aim to show that a col-
lection of simple colour-based features and a single geometric feature provides a reasonable
speed/performance trade-off compared to more elaborate feature sets. For this purpose we have
defined four distinct combinations of features as detailed in Tab. 3, which will provide the input
for SVM training and classification.

Name of Feature
Set

Dimen-
sion

Description

Minimal 33 Orientation of the surface normal of the local plane patch, normalisedx− and
y positions within the image, hue- and saturation histograms.

ICRA07 35 All features of theMinimal set, standard deviations of hue/saturation his-
tograms. This is identical to the feature set used in [34] from where it takes
its name.

Extended
Geometry

36 All features of theMinimal set, goodness of plane fit, plane patch size, height
of 3D point wrt. ground plane.

Ext. Geom.
and Texture

100 All the features of theExtended Geometryset, SURF descriptors for additional
texture information.

Table 3: Feature sets considered in our comparison.

SVM training was conducted using theJerichodata set4 . The appropriate kernel width and
the regularisation parameter (i.e. the tolerance for misclassifications) were determined using a
grid-search over a section of the parameter space with five-fold cross-validation. The grid-search
was conducted with 8,000 training data per class. The data were balanced so that training was
conducted at an equal ratio of positive to negative examples. The parameter-set resulting in the
highest mean classification accuracy was chosen for each class and the corresponding classifier
was re-trained using the entire training set of 8,000 data points. Probabilistic calibration for each
class was performed as per Section 6.3 using a hold-out set of2000 data, again with an equal
ratio of positive to negative data. Our comparison of feature sets is based on the ability of the
resulting classifiers to separate the relevant class from all other classes. To this end we consider

4 SVM training and classification were performed using SVMLight [19].

14



the receiver operating characteristics (ROC) for the classifiers obtained after training using the
various feature sets for every class considered in our system. Five-fold cross-validation gives rise
to five ROC curves from five independent validation sets for every model considered. Therefore,
for every feature set considered, a mean ROC curve was obtained for every class by threshold
averaging [13]. These mean ROC curves are shown in Fig. 11. For clarity we avoid the inclusion
of error-bars in Fig. 11. Instead, an indication of the variability of classifier response due to the
use of different sample sets during cross-validation is provided in the form of the mean and the
standard error of thearea under the ROC curve(AUC). The AUC can be interpreted as equivalent
to the probability that the classifier will rank a randomly chosen positive instance higher than
a randomly chosen negative instance [13] and provides a convenient single-figure measure of
classifier performance commonly used in the machine learning community [5]. The mean and
standard error of the AUC have been calculated for every feature set and class as outlined in [5]
and are provided in Table 5.

It should be noted that reasonable performance is achieved across all classes even for the worst
feature set. However, the richest feature set (Extended Geometry And Texture) always performs
as well as or better than the others — an intuitive result since the additional information should,
by design, aid class separation. Performance gains with respect to the most basic feature set
(Minimal) are particularly noticeable for the‘Tarmac’ and‘Modern/Glass Wall’classes, where
the added texture information appears to contribute significantly towards the difference. More
marginal improvements are achieved for‘Nat. Stone Wall’and ‘Plastered Wall’. No noticeable
improvement is obtained for‘Grass’, ‘Paved’, ‘Dirt Track’ , ‘Brick Wall’ or ‘Vehicle’. A further
point to note is the consistently equal performance of the classifiers based on theMinimal and the
ICRA07feature sets. This implies that the standard deviations contained in theICRA07feature
set do not contribute to class separation and are thus superfluous — this is another intuitive
result since the information is already contained in the histograms themselves and is therefore
redundant.

Classifier Accuracy [%] Precision [%] Recall [%]

Grass 97.6 97.8 97.4
Paved 81.0 78.8 84.8
Dirt s 82.1 81.7 82.7
Tarmac 88.7 85.5 93.2
Brick Wall 75.7 72.3 83.3
Nat. Stone Wall 84.5 84.4 84.7
Modern/Glass Wall 80.0 74.9 90.4
Rendered Wall 89.6 84.8 96.5
Bushes/Foliage 91.8 92.6 90.9
Vehicles 83.4 82.9 84.2

Table 4: Classifier performance on a balanced hold-out set taken from theJerichodata set (2000 data per class). The
classifiers are based on theMinimal feature set.

In summary, the inclusion of richer geometric and texture-based information only significantly
improves the classification result in two cases. For all but these two classes theMinimal feature
set, based on colour and basic geometry only, remains a competitive alternative. However, there
exists a significant difference in computational cost in both the SVM classification and compu-
tation of features. The complexity of SVM classification isO(M · N), whereM is the number
of support vectors (SVs) andN is the dimension of the feature vectors5 . In our experiments we

5 In generalN is the number of operations necessary to evaluate the distance to one support vector, which in our case is
the dimension of the feature vector.
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found the number of SVs for the classifiers to be of the same order across the different feature
sets. Thus, the dominating factor on SVM classification run-time is the dimension of the feature
vector. That means that with less than half the number of features for theMinimal feature set
as compared to the largest (Table 3), the respective SVM classification is more than twice as
fast. This implies a considerable speed-up, given that the SVM classification using theMinimal
feature set takes about 1.8 seconds on average, as stated in Tab. 4. In addition, extracting more
complex textural features like SURF descriptors is computationally expensive due to the rela-
tively large number of points-of-interest (POIs) considered in the presented system. Generally,
our system produces of the order of 1500 POIs per image. In comparison, using an image based
POI detector usually only 100-400 POIs are found, often less. Consequently, the computation of
SURF descriptors in our system would increase the overall processing time, as given in Tab. 4,
by about 20 percent. Therefore, with a view towards real-time performance, a decision was made
to trade a limited gain in classification accuracy for a notable gain in computational speed by
adopting theMinimal feature set for this system. Performance figures for the final(i.e. retrained
using all available training data) classifiers as applied toa balanced hold-out set are given in
Sec. 7.6.
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Fig. 11. SVM-ROC curves per class for the feature sets considered:Minimal (blue, crosses),ICRA07(green, circles),
Extended Geometry(red, squares),Extended Geometry and Texture(orange, diamonds). Each curve represents a combi-
nation of results from five independent validation sets as obtained by threshold sampling [13].
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Fig. 11 continued: SVM-ROC curves per class for the feature sets considered.
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Class

Feature Set
Minimal ICRA07

Ext. Ext. Geom.

Geometry and Texture

AUC AUC AUC AUC

Mean Std. Error Mean Std. Error Mean Std. Error Mean Std. Error

Grass 0.9968± 0.0006 0.9968± 0.0006 0.9957± 0.0013 0.9969± 0.0016

Paved 0.9102± 0.0094 0.9124± 0.0095 0.9127± 0.0225 0.9281± 0.0208

Dirt 0.9077± 0.0118 0.9050± 0.0066 0.9093± 0.0332 0.9360± 0.0447

Tarmac 0.9513± 0.0088 0.9531± 0.0084 0.9825± 0.0063 0.9946± 0.0014

Brick Wall 0.9597± 0.0044 0.9601± 0.0044 0.9032± 0.0268 0.9539± 0.0230

Nat. Stone Wall 0.9588± 0.0086 0.9549± 0.0056 0.9730± 0.0138 0.9879± 0.0052

Mod./Glass Wall 0.9074± 0.0155 0.9059± 0.0160 0.9064± 0.0472 0.9647± 0.0210

Rendered Wall 0.9544± 0.0093 0.9543± 0.0095 0.9559± 0.0173 0.9770± 0.0070

Bush/Foliage 0.9821± 0.0072 0.9826± 0.0068 0.9717± 0.0147 0.9837± 0.0086

Vehicle 0.9680± 0.0062 0.9685± 0.0062 0.9512± 0.0209 0.9573± 0.0234

Table 5: Mean and standard error of the area under the curve (AUC) as derived from five-fold cross-validation. The
corresponding mean ROC curves are shown in Fig. 11. See text for details.

Class Details Point-Wise Voted

Name # Patches # Points Precision [%] Recall [%] Precision [%] Recall [%]

Gr 99 5393 94.3 91.3 95.3 95.4
Pa 466 11342 21.6 61.9 22.2 69.0
Di 147 7988 37.1 83.4 41.5 84.6
Ta 907 65914 89.8 47.5 92.0 46.5
Br 480 18802 31.0 21.5 32.0 21.2
Na 1760 50739 66.7 56.7 68.6 64.5
Co 437 13037 17.6 17.3 20.6 15.7
Re 469 16844 28.2 42.2 31.1 44.2
Bu 181 8364 66.0 61.4 71.0 66.2
Ve 169 4499 32.5 75.0 35.4 84.6

Legend for class shortcuts:Grass,Paved,Dirt Path,Tarmac,Br ick Wall,

Natural Stone Wall,Concrete Wall,Rendered Wall,Bush/Foliage,Vehicle

Table 6: Classification results for theOxford Science Parkdata: Original Classes.

7.3. Discussion of the Point-Based Classification Performance

So far in this section the Bayes optimal threshold for ground/non-ground classification has
been obtained, an appropriate feature set has been selectedand classifiers have been trained
together with their respective probabilistic calibrations. Thus, all required components of our
classification framework (cf. Fig. 8) are in place. The generalisation performance of the entire
system has been tested using labelled data from theOxford Science Parkdata set (ca. 203,000
data). It should be noted that our test data are unbalanced, in the sense that there are many more
instances of some classes than others, reflecting their relative frequency in the world. We delib-
erately chose not to balance the data because such an evaluation more accurately reflects system
performance as obtained online. However, as a consequence,performance figures such as overall
or per-classaccuracyare not informative since they mostly represent classifier performance on
the largest class. Instead, we quote the per-classprecisionandrecall. Detailed numerical results
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of system performance, for both point-wise classificationsand voted classification, using classes
as outlined in Section 4 can be found in Tab. 6. We also presenta complementary set of results
in the form of confusion matrices obtained for voted-SVM classification in Fig. 12. These ma-
trices are normalised, on one hand, such that the values along the diagonals represent per-class
precisionand, on the other hand, such that the values along the diagonals represent per-class
recall. Thus, the former provides information (along the rows) on how reliable the given labels
are compared to ground truth — i.e. how much trust can we put inthe obtained labels — whereas
the latter provides information (along the columns) of how well ground-truth data are retrieved.

Fig. 12. Confusion matrices forOxford Science Parkdata obtained using voted-SVM classification.Left: Rows are
normalised such that the diagonal representsprecision. Right: Columns are normalised such that the diagonal represents
recall.

Tab. 6 indicates good precision/recall performance in the point-wise classification of‘Tarmac’,
‘Nat. Stone Wall’and‘Bush’. Results for‘Grass’ are particularly encouraging. This is attributed
to the significant difference in colour between grass and other ground-classes. In comparison,
performance of most wall classes other than‘Nat. Stone Wall’is poor in both precision and
recall.‘Brick Wall’ , ‘Concrete Wall’, ‘Rendered Wall’as well as‘Paved’and‘Dirt Track’ suffer
from relatively low precision, implying a high false positive rate. While considering the point-
wise classification results it should also be noted that, as expected, the individual performance
in precision and recall is consistently worse compared to that obtained on the balanced hold-out
data (cf. Tab. 4). This is primarily due to the skew in the number of data for each class present in
the test set. It stands to reason that classifiers trained using unbalanced data might perform better
in an unbalanced system. We leave this to future work.

7.4. Incorporating SVM Majority Voting for Patch Classification

Substantial improvements in performance can be obtained when applying voted-SVM classi-
fication where local neighbourhoods are determined automatically as described in Section 6.4.
Tab. 6 reveals overall substantial increases in bothprecisionandrecall with only three classes
suffering marginally in recall. In this case the image segmentation parameters were determined
empirically by inspection of segmentation performance on the original training data. However,
significantly larger improvements in performance have beenobserved when using manually seg-
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mented data. It therefore stands to reason that further improvements may be obtained when the
optimal image segmentation parameters are determined on independent test data.

Fig. 13. Example for the majority vote based on patches determined by image segmentation.

Inspection of Fig. 12 reveals both confusion matrices to be broadly diagonally dominant. Good
separation is achieved between ground and non-ground classes with a misclassification rate of
1.5%. This is comparable to the figure obtained for the training set in Section 7.1. The strong per-
formance in precision for the‘Grass’, ‘Tarmac’, ‘Nat. Stone Wall’and‘Bush’ classes is mirrored
in the left panel of Fig. 12. In comparison, performance of most wall classes is poor. Consid-
erable confusion exists amongst the wall classes where‘Brick Wall’ and ‘Nat. Stone Wall’are
commonly confused as well as‘Concrete Wall’and‘Rendered Wall’. Further,‘Tarmac’ is com-
monly mistaken for both‘Paved’ and‘Dirt Track’ . This again is attributed to a similarity in the
colour profiles between these respective classes. In contrast, strong recall performance is ob-
tained for‘Grass’, ‘Paved’, ‘Dirt Path’ , ‘Bush/Foliage’and‘Vehicle’ (cf. left panel of Fig. 12).
However, the considerable confusion amongst several of thewall classes is also evident here.

Class Details Point-Wise Voted

Name # Patches # Points Precision [%] Recall [%] Precision [%] Recall [%]

Gr 99 5393 94.7 92.5 96.6 98.1
Ta 1373 77256 97.5 82.7 97.7 89.0
Di 147 7988 34.5 85.2 46.4 84.8
Te 2240 69541 81.4 71.1 82.7 73.5
Sm 906 29881 53.4 59.3 56.9 64.4
Bu 181 8364 56.8 58.9 60.6 62.8
Ve 169 4499 35.1 76.8 43.7 80.1

Legend for class shortcuts:Grass,Tarmac/Paved,Dirt Path,

Textured Wall,Smooth Wall,Bush/Foliage,Vehicle

Table 7: Classification results for theOxford Science Parkdata: Meta Classes.

7.5. Combination of Classes

Thus, although broadly correct classifications are obtained, the results presented so far indi-
cate that the system can not discriminate adequately between several of our chosen workspace
classes. In particular, confusion exists between the classpairs‘Brick Wall’ and‘Nat. Stone Wall’,
‘Concrete Wall’and‘Rendered Wall’as well as‘Tarmac’ and ‘Paved’. This is attributed to the
similarity in colour profile within these classes, but not across. However, the consistency of the
classification results can be improved by combining conceptually related classes for which the
current combination of descriptive features does not allowfor robust classification. In particu-
lar, ‘Tarmac’ and ‘Paved’ are combined into the class‘Tarmac/Paved’, ‘Brick Wall’ and ‘Nat.
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Stone Wall’are combined into the class‘Textured Wall’and, finally,‘Concrete Wall’and ‘Ren-
dered Wall’are combined into the class‘Smooth Wall’. In analogy to our analysis of results with
the original workspace classes, Tab. 7 and Fig. 14 show detailed results of this revised system.
Typical classification results are shown in Fig. 1.

Comparatively high precision and recall values can be observed for the combined classes.
Voted-SVM classification once again improves performance significantly. This is emphasised by
much stronger diagonal dominance of the corresponding confusion matrices compared to Fig. 12.
In particular the recall-matrix indicates that most ground-truth data over all classes are now re-
trieved correctly. However, the precision matrix indicates some considerable confusion remains.
A significant proportion of the‘Dirt Path’ detections actually originate from the‘Tarmac/Paved’
class. Likewise, a significant proportion of the‘Bush/Foliage’and ‘Vehicle’ detections actually
originate from‘Tarmac/Paved’and/or‘Textured Wall’. The reason for this can be found in Tab. 7,
which indicates that data from each of the two classes‘Tarmac/Paved’and‘Textured Wall’out-
numbers data from the‘Dirt Path’ , ‘Bush/Foliage’and‘Vehicle’classes by an order of magnitude.
Therefore, a small percentage error in the classification ofdata from the large classes results in
a relatively large drop in the precision of the small classes. In this particular case, 779 out of
77256 ground-truth‘Tarmac/Paved’data were classified as‘Vehicle’. Thus, 9.5 % of all vehicle
detections (8235 in total) actually originated from the‘Tarmac/Paved’class (cf. left panel of
Fig. 14) whereas that figure only amounts to 1% of all ground-truth ‘Tarmac/Paved’data hav-
ing been misclassified as‘Vehicle’ (cf. left panel of Fig. 14). It follows, of course, that a small
percentage reduction in misclassifications for a large class may have a significant impact on the
classification precision of smaller classes. This consideration has currently not been included in
the choice of features detailed in Section 7.2, where the twolargest classes were amongst the
main beneficiaries when more elaborate feature sets were considered.

Fig. 14. Confusion matrices forOxford Science Parkdata obtained using voted-SVM classification and merged classes.
Left: Rows normalised such that the diagonal representsprecision. Right: Columns normalised such that the diagonal
representsrecall.
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7.6. Overall System Runtime Performance

The scene classification engine as presented here has been implemented to run online, inter-
facing to the Mission Oriented Operating Suite (MOOS)6 installed on our mobile robotMarge.
Detailed estimates of timing for every stage of the processing pipeline are provided in Tab. 8.
The mean total processing time amounts to 4.8 s per frame. Themaximum speed of the vehicle
is restricted by the need to gather high-quality 3D laser data to ca. 0.5 m/s. An image is recorded
every 1.5 m, leading to a real-time processing constraint of3 s per frame. Although the system
currently runs (just) behind time, further computational savings are expected from optimising
both the plane segmentation stage as well as the classification stage. In particular, the latter could
be achieved by reducing the complexity of the SVMs used via methods such as outlined in [6],
where a reduction in complexity by a factor of ten is achievedwith no loss in generalisation
performance.

Process Mean [s]Max [s]

Plane Segmentation 2.00 2.80
Feature Extraction 0.09 0.15
Image Segmentation 0.96 1.13
Classification 1.78 6.70

Overall 4.83 10.78

Table 8: Per-Frame Timing Information. Estimates were obtained on a vanilla 2.0 GHz Pentium laptop as used in the
field.

8. Conclusions and Future Work

In this paper we give a detailed account of an appearance-based scene-labelling engine in-
tended for the augmentation of common SLAM maps of outdoor urban environments. The sys-
tem runs online and close to real-time as per our requirements. Our approach is based on a hier-
archy of binary classifiers labelling individual laser dataaccording to their origin. Laser points
are characterised by both 3D geometric data and visual cues obtained from monocular vision.
Spatial smoothing is performed automatically by considering locally consistent (in appearance)
scene patches via image segmentation. We motivate our current choice of features by trading
off speed against accuracy amongst several sets of proposedfeature combinations. The gener-
alisation performance of the resulting classification scheme is sufficient to consistently separate
different types of terrain and walls, including bushes and foliage. The system also has a capacity
to recognise common objects such as vehicles.

A natural extention of the current system is the enforcementof scene-wide spatial as well
as temporal consistency of the obtained labels. This can be achieved via, for example, aMarkov
Random Fieldusing any of a multitude of available inference methods. Oursystem is particularly
amenable to such an approach since the intuitive labelling by majority vote of local scene patches
– rather than the raw laser data – enable the construction of relatively sparse graphs, thereby re-
ducing the computational cost of graph-construction and inference. In addition to incorporating
prior knowledge by means of co-appearance of semantic labels, we expect the enforcement of
temporal consistency, e.g. by prediction and tracking, to further improve our systems classifi-
cation performance. However, we have a clear vision of how the semantic workspace descrip-
tions generated by our system will contribute to mobile robot autonomy and human-machine

6 http://www.robots.ox.ac.uk/∼pnewman/TheMOOS/
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interaction. Part of our on-going endeavour are (1) exploration strategies and planning based on
semantic knowledge, (2) the enhancement of our appearance-based (natural visual landmarks)
navigation system, where landmark grouping according to semantic labels is expected to reduce
ambiguities, (3) and the development of human-machine interfaces that, for example, generate
semantic path descriptions and allow to address or characterise particular places in the environ-
ment by means of semantic attributes.
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