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Abstract—Traditional Simultaneous Localization and Map-
ping (SLAM) algorithms have been used to great effect in
flat, indoor environments such as corridors and offices. We
demonstrate that with a few augmentations, existing 2D SLAM
technology can be extended to perform full 3D SLAM in less
benign, outdoor, undulating environments. In particular, we will
use data acquired with a 3D laser range finder. We use a simple
segmentation algorithm to separate the data stream into distinct
point clouds, each referenced to a vehicle position. The SLAM
technique we then adopt inherits much from 2D Delayed State (or
scan-matching) SLAM in that the state vector is an ever growing
stack of past vehicle positions and inter-scan registrations are
used to form measurements between them. The registration
algorithm used is a novel combination of previous techniques
carefully balancing the need for maximally wide convergence
basins, robustness and speed. In addition, we introduce a novel
post-registration classification technique to detect matches which
have converged to incorrect local minima.

Index Terms—Mobile Robotics, Outdoor 3D SLAM, 3D Laser
Data, Delayed State EKF, Point Cloud Segmentation

I. INTRODUCTION AND PREVIOUS WORK

The SLAM problem has been thoroughly researched theo-
retically, and has been demonstrated many times on mobile
robots in flat, 2D environments. Some successful implemen-
tations working in corridors and offices include those in [1]
and [2]. Recently, some researchers have looked towards
performing SLAM on mobile robots in fully 3D, outdoor
environments, including work in [3] and [4].
Perhaps the most successful work to date has been in [5] and

[6], which present very compelling results. However, unlike
this work they do not use a probabilistic framework which
if adopted can offer principled behavior in terms of error
distribution when loop closing.
In this paper, we extend some of the methods used in 2D

environments, and take advantage of their desirable qualities.
We also offer several contributions to enable the 2D to 3D
extension, which combine to form a system for SLAM in 3D,
outdoor, non-flat terrain.
At present, we use laser data acquired with a custom

built 3D laser range finder, along with odometry. As the
vehicle moves, we divide this data into 3D point clouds, each
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Fig. 1. A 3D scanning laser range finder mounted on a research vehicle.

referenced to a vehicle pose. This is achieved using a relatively
straightforward segmentation algorithm, avoiding entirely the
need to periodically stop and take data. As vehicle poses with
attached 3D point clouds are formed, odometry provides dead-
reckoned transformations between them. These are then used
in augmenting a Delayed State Extended Kalman Filter (EKF)
with new vehicle poses.
Consecutive point clouds are registered together, or ’scan-

matched’ (with the odometry derived transformation as an
initial estimate) using our modified registration algorithm to
provide additional observations between poses. This process
can include invoking a classification technique based on a
scan match’s nearest neighbor statistics to detect any matches
that have converged to incorrect local minima. Whilst such
a strategy requires supervised training, it proves to be a
useful technique for identifying poor registrations which could
otherwise progress undetected.
Using existing 2D SLAM techniques has several distinct

advantages, predominantly due to the probabilistic nature of
the Delayed State EKF. Firstly, maintaining a state vector of
poses and corresponding pose uncertainties can be used to
detect potential loop closures; if for example a past vehicle



Fig. 2. The black line represents a vehicle trajectory, along which 3D laser
data was taken (each scan with a different elevation angle). The grey dashes
separate periodic ‘potential point cloud’ regions of odometry. If a change in
angle threshold is not broken along a ‘potential point cloud’ region, OR is
only broken after a point cloud has a certain number of points in it, a point
cloud from that region is accepted. The point cloud generated is described
relative to the vehicle pose at the beginning of the region.

pose enters the current uncertainty bounds. Secondly, if a
loop closure is detected, and we are able to find an accurate
registration derived transformation between the two poses
concerned (an observation), the Delayed State Architecture
means that the entire state can be updated with a single
observation. The errors will then be redistributed around the
loop probabilistically. Additionally, the framework offers a
convenient and concise representation.
The rest of this paper is structured as follows: Section II be-

gins by describing our segmentation algorithm, for generating
3D laser point clouds from a moving vehicle. Section III then
covers the mathematics behind the Delayed State EKF SLAM
algorithm. Section IV describes the registration algorithm
used for generating improved pose to pose transformation
‘observations’, whilst Section V describes a novel technique
for checking the integrity of scan matches— especially useful
for confirming loop closing transformations. Section VI then
shows the current mechanism used for detecting loop closures.
Section VII finally describes how we combine these techniques
into a functioning 3D SLAM system, and shows the results
we have obtained using real data. We end with Section VIII,
where we draw some conclusions regarding the system, and
suggest areas for improvement and future work.

II. SEGMENTATION
The 3D laser range finder we use consists of a standard

2D SICK scanner, continually oscillating at 0.6 Hz about a
horizontal axis, as shown in Fig. 1. This is to ensure data is
collected from a whole series of elevations. In [5] and [6],
3D scans were built by executing a ‘stop, acquire, move’
cycle. Whilst this does produce more accurately referenced
point clouds, we feel that such constrained motion is awkward
for general robotic applications. In this work we gather data
continuously and therefore require a scheme to produce chunks
(scans) of 3D data suitable for registration.
The heuristics we have chosen to achieve this produce

satisfactory point clouds, each referenced to a vehicle pose,
motivated by the fact that gross local odometry error is

significantly correlated with changes in orientation. Other
strategies, based on observing the inflation of the vehicle
pose’s covariance matrix have also been examined, but in
practice offer little advantage.
Let us assume the vehicle begins at a ‘base’ vehicle pose.

For a distance d
d

, all scans taken (with varying elevation
and odometry values) are transformed back into the base
pose’s frame of reference, unless a change in orientation
threshold is exceeded. If this is the case, the construction
of the current point cloud ends. If, as with the magenta
arrow in Fig. 2, termination occurs when the point cloud
has too few points in it, it is disregarded. Alternatively, if,
despite the early termination, the point cloud is sufficiently
large, as with the last green arrow in Fig. 2, it is accepted.
Regardless of whether all scan planes in a distance d

d

are
accepted, or whether premature termination occurs, the full
potential trajectory length, d

d

, is measured. Upon completion,
a trajectory distance d

p

is observed before a new base pose
and point cloud is begun.

III. DELAYED STATE ARCHITECTURE
The Delayed State or View Based Framework has been used

several times in recent work in [7], [8] and [9], evolving from
original work in [10], [11] and [12]. In contrast to conventional
feature based approaches, the world is represented by a series
of past vehicle poses with associated uncertainties. Previous
observations, whether 2D laser based as in [7], or visual as
in [8] and [9], are then ‘attached’ or associated to each pose.
These can then be referred back to, compared and perhaps
registered, to offer potential constraints on the global map of
vehicle poses. This is most commonly done immediately after
odometry-based state augmentation, but is also essential when
revisiting previously traversed areas for ‘loop closing’.
Generally speaking, a Delayed State or View Based Frame-

work only refers to the representation used to build a map of
the world. Such a representation could be used with a variety
of estimators; for instance an Information Filter or an EKF.
In this paper we arbitrarily choose to use the EKF, but may
consider using other approaches in the future.

A. Delayed State Equations: State Augmentation
For full 3D SLAM, vehicle poses need 6 degrees of

freedom. We choose to represent poses with 3 Euclidean
coordinates, and 3 Euler angles, conforming to the classical
‘Roll, Pitch, Yaw’ convention. At time t = 0, the 6-vector
global state, x, only contains an initial vehicle pose, and the
corresponding zero filled 6 £ 6 covariance matrix, P. Our
method is similar to that described in [7] which proceeds as
follows. Given a noisy control input u(k + 1) at time k + 1,
the vehicle state evolves as shown:

x
v(n+1)(k + 1|k) = x

vn

(k|k)© u(k + 1) (1)

Where x
v(n+1)(k +1|k) is the estimate of x

v(n+1), the (n+
1)th vehicle pose at time k + 1 and the © operator signifies
the composition operator, defined in [13]. If we also use the
previous pose’s covariance matrix, P

vn

(k|k), and a control



Fig. 3. Here is an example showing the evolution of vehicle poses around a
building. The corresponding ‘x, y, z’ marginal covariance ellipsoids are also
shown

Fig. 4. Here we see the 3D point clouds corresponding to each vehicle pose.
The vehicle poses and uncertainty ellipsoids are plotted again for comparison.

input noise covariance matrix, U, the new pose’s covariance
matrix can be found as follows:

P
v(n+1)(k + 1|k) = J1(xvn

,u)P
vn

(k|k)J1(xvn

,u)T

+J2(xvn

,u)UJ2(xvn

,u)T (2)

Where the k and k + 1 have been dropped from x
vn

and u
for clarity, and J1 and J2 are jacobians of the composition
operator, ©, as defined below and described explicitly in [13]:

J1(x1,x2) , @(x1 © x2)
@x1

(3)

J2(x1,x2) , @(x1 © x2)
@x2

(4)

Upon calculation of the new vehicle pose, x
v(n+1)(k + 1|k),

and a corresponding covariance matrix, P
v(n+1)(k +1|k), the

global state vector, x, and corresponding covariance matrix,

P, can be augmented as follows:

x(k + 1|k) =
∑

x(k|k)
x

vn

(k|k)© u(k + 1)

∏
(5)

=

2

6664

x
v0
...

x
vn

x
v(n+1)

3

7775
(k + 1|k) (6)

P(k + 1|k) =
∑

P(k|k) P(k|k)J1(xvn

(k|k),u)T

J1(xvn

(k|k),u)P(k|k)T P
v(n+1)(k + 1|k)

∏
(7)

Fig. 3 shows such equations applied to real data from around
a building. We can see the evolution of the 6 degree of
freedom poses, along with the corresponding ‘x, y, z’ marginal
uncertainty ellipsoids. Fig. 4 also shows the point clouds
attached to each of the poses.

B. Delayed State Equations: State Update
Let us assume that an inter-pose registration has been

triggered at time k between two scans, S
i

and S
j

, the first
belonging to pose x

v

(i) from time i, the second belonging
to pose x

v

(j) from time j. This will yield an improved
transformation estimate between the two poses.
This is most frequently encountered when registering point

clouds from consecutive poses, which is performed after all
state augmentations. In this instance, the immediately previous
pose would be from time i, whilst the current pose would
be from time j (ie.i = k ° 1 and j = k). However, it
could be a loop closing transformation. If this is the case,
the earliest pose would be from time j, whilst the current
pose would be from time i (ie.i = k and j < k). In actual
fact, an observation between two poses could theoretically be
postponed and implemented later - when computation allows
(ie. k 6= i or j).
Both poses are present in the global state vector, x, and

therefore a predicted ‘measurement’ between the two poses
can be found from the observation model as follows:

T
i,j

(k + 1|k) = h(x(k + 1|k))
= ™(™x

vj

(k + 1|k)
©x

vi

(k + 1|k)) (8)

Where the ™ operator signifies the inverse transformation
operator, as defined in [13], and x

vi

(k+1|k) and x
vj

(k+1|k)
refer to the t = i and t = j vehicle poses in x(k + 1|k)
respectively. This is then used as the initial estimate for our
registration algorithm as follows (as well as the predicted
measurement in the update equations below):

T
i,j

(k + 1) = ™(T
i,j

(k + 1|k),S
i

,S
j

) (9)

Where ™ represents our registration algorithm, detailed in
Section IV. The state update equations are then identical to
the conventional EKF update equations. The innovation ∫ and
corresponding covariance S can be found as follows:

∫ = T
i,j

(k + 1)°T
i,j

(k + 1|k) (10)



S = rH
x

P(k + 1|k)rHT

x

+ ¢ (11)

Where ¢ is a registration transformation covariance matrix1
and rH

x

is the jacobian of the observation model defined as
follows:

rH
x

=
@h
@x

,

2

66664

@h

@x

q=0
@h

@x

q=1
...

@h

@x

q=n

3

77775

T

(12)

Where:

@h
@x

q

=

8
>><

>>:

0 if q 6= i, j
J1(™x

vi

(k + 1|k),x
vj

(k + 1|k))
£J™(x

vi

(k + 1|k)) if q = i
J2(™x

vi

(k + 1|k),x
vj

(k + 1|k)) if q = j

Where J™ is the jacobian of the inverse transformation
operator, as defined below and described explicitly in [13]:

J™(x1) , @(™x1)
@x1

(13)

And finally, the global state and covariance update equations
can be used as standard:

x(k + 1|k + 1) = x(k + 1|k) + W∫ (14)

P(k + 1|k + 1) = P(k + 1|k)°WSWT (15)

Where the Kalman gain, W, is:

W = P(k + 1|k)rHT S°1 (16)

IV. REGISTRATION
There has been a large amount of literature published on

registration algorithms over the past 15 years, and several
SLAM related papers use variants of such algorithms such
as [5], [6] and [7]. The problem is generally posed as a
search for a transformation T , to transform a data ‘scan’ or
set of points ≠

d

(denoted as T(≠
d

)), onto a stationary model
‘scan’, termed ≠

m

. This is frequently achieved by minimizing
a cost function based on the trial transformations and original
points. Depending on the type of data being registered, such
algorithms fall into two main categories.
In [2] and [7], the registration of 2D laser range scans is

performed using a semi-exhaustive search (ie. exhaustive over
a local region), and whilst expensive, the small, 3-dimensional
transformation search space make these techniques viable.
Alternatively, when registering 3D scans, more directed

searches are favored, given the higher 6 dimensional trans-
formation search space. Often, the cost function is based on
the sum of the square of distances between corresponding
points. The classical Iterative Closest Point (ICP) algorithm,
introduced by Besl and McKay in [14] does exactly this, with

1At present we use an average registration derived transformation co-
variance. It would be preferable to perturb the transformation around the
converged registration minimum, sampling the cost function surface multiple
times. A quadric could then be fitted to the surface, to estimate the transfor-
mation’s covariance.

Inputs : Model Point Cloud ≠
m

, Data Point Cloud ≠
d

,
Initial Transformation T

0

, Initial LM parameter
∏0, Termination Threshold r

T

Output: Final Transformation T

∏ = ∏0;
§=BuildTree(≠

m

);
T = T0;
while |(||r0||2 ° ||r||2)| < r

T

do
≠0

d

=T(≠
d

);
r=GetResiduals(≠0

d

,§);
J=Get dr by dT(T,≠

d

,§);
%Use LM to step towards a minimum
¢T = (JT J + ∏I)°1JT r;
T

p

= T + ¢T;
≠0

d

=T
p

(≠
d

);
r0=GetResiduals(≠0

d

,§);
if ||r0||2 > ||r||2 then

∏ = ∏£ 100;
else

∏ = ∏ ÷ 100;
T = T

p

;
end

end
Algorithm 1: Our registration technique: a unique combination
of previous methods. An ICP-like cost function defined between a
model and data scan is minimized. However, a Geman-McClure
non-linear kernel is included for robustness. Subsequent mini-
mization is then performed using a Levenberg-Marquardt non-
linear optimizer. Approximate kd-trees are also used, providing
a data structure for efficient nearest-neighbor correspondence
searches.

the nearest model point used as each data point’s correspon-
dence. Horn’s closed form minimization [15] is subsequently
used to find a minimizing transformation, given that set of
correspondences, before new correspondences based on that
transformation are then found. This process is repeated until
convergence. This is the main method used in the work by
Surmann, Nüchter and Hertzberg [5] and Surmann, Nüchter,
Lingemann and Hertzberg [6]. However, we have found that
this algorithm does not always perform well when used in this
domain. This is because the two scans being matched often
contain different objects. The quadratic cost function can be
overly biased by such outlying points, resulting in convergence
to an undesired minimum.

Consequently, we use an error metric similar to that of the
ICP algorithm, but with a Geman-McClure robust kernel (as
illustrated in Fig. 5). This effectively transforms the Euclidean
distance between corresponding points (x) into a score for the
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Fig. 5. The general shape of the Geman-McClure robust kernel. Note the
variation in profile, for different values of the æ parameter. The optimal choice
for æ generally depends on the density of the scans being registered, and the
degree of overlap between them. At present we have no analytic method for
making such a choice, and it consequently requires some experimentation.
However, this is an area of ongoing research.

vector of residuals (denoted Ω(x)), and is defined as follows:

Ω(x) =
x2

æ2 + x2
(17)

Unfortunately this also means that Horn’s closed form
minimization no longer applies, and we have to use Levenberg-
Marquardt non-linear optimization to find a minimum. This
is similar to the technique used by Fitzgibbon in [16]. We
also accelerate our registration algorithm, using an efficient
kd-tree data structure to make correspondence searches fast,
as Besl and McKay [14] recommended. In addition, we
use approximate kd-tree querying, as suggested originally by
Greenspan and Yurick [17], for further saving.
The full algorithm is summarized in algorithm 1, where

inputs and outputs have been defined. However, the following
intermediate variables are also used: ∏, the current Levenberg-
Marquardt parameter; §, the model point kd-tree; ≠0

d

, a set
of transformed data points; r, a vector of residuals; J, the
Jacobian of the residual vector r, with respect to the current
transformation T; ¢T, a putative transformation change; T

p

,
a putative transformation and finally, r0, a vector of putative
residuals. In addition, note that the Geman-McClure robust
kernel is not referred to explicitly as it has been incorporated
into the ‘GetResiduals’ function call.
Several practical issues arise when using this algorithm. The

first; choosing a value for ∏0, the initial Levenberg-Marquardt
parameter value, is not particularly critical. This is because it
only affects the rate of convergence of our algorithm, and does
not alter the solution obtained. With experimentation, we have
found a value of 106 to work relatively well, but in general this
depends on the exact nature and initial transformation estimate
of the point clouds used.
The second; selecting a value for the residual termination

threshold, r
T

, is slightly more important. One solution we
favor is to use a value commensurate with the machine’s
precision, although higher values can be used if required,
trading off accuracy for increased speed.

V. REGISTRATION INTEGRITY CHECK
Whilst the Levenberg-Marquardt approach offers significant

computational advantages over the exhaustive search variety,
it can often fall into unwanted local minima. This is especially

(a) (b)

(c) (d)

Fig. 6. Example training data, showing a successful and unsuccessful scan
match (top). The black points represent the model scans, red represents the
initial data scans and green represents the converged data scans. Below are
the corresponding nearest-neighbor histograms, beginning with 0-0.5m on the
left hand side, with each successive bin of 0.5m width (in this example).

Fig. 7. A plot showing 2D scan-match training data, including the 2D exam-
ples from Fig. 6. The three axes represent values from the first three histogram
bins. The green ellipsoid shows the successful scan match Gaussian’s 1æ

bound, whilst the red ellipsoid shows that for the unsuccessful matches.

true when the initial transformation estimate between scans is
poor, and additionally when there is low overlap between them.
We have developed a method, to recognize, post-registration,
when this has occurred. Our method uses supervised learning
to train a classifier based on scan match’s nearest-neighbor
statistics. Whilst this requires a set of hand labelled good
and bad scan matches, along with the corresponding nearest-
neighbor statistics, once trained, it does offer an accurate, fast
and robust mechanism for rejecting poor scan-matches.
We begin with a series of point cloud pairs derived from real

data. The data set of each point cloud pair is then artificially
perturbed relative to the corresponding model set, using a
series of transformations. The resulting set of point cloud pairs,
each with multiple relative starting positions, are in turn, input
to our registration algorithm. Upon termination, a histogram of
nearest neighbor distances is calculated for each scan match.



This histogram approximates the distribution of the distances
between each point in the data scan, and its nearest neighbor
in the model scan. This is illustrated in Fig. 6. The top two
sub-figures show model points in black, and the initial position
of the data points in red. Once registered, the converged data
points are plotted in green. (a) shows a pair of scans which
converged to the correct minima, while (b) shows a pair that
did not. The corresponding histograms are also plotted in (c)
and (d). We can see a high peak in (c), in a low distance
bin, as the scan match was successful, and many data points
had very close model points. Conversely, (d) shows that when
registration had failed, a different histogram resulted. More
of the data points lay in more distant, intermediate bins, as
they did not have close correspondences to the model scan.
It is worth noting that the furthest histogram bins, should
not be used in this learning algorithm. This is because these
will be predominantly made up of the points which lack
any correspondence between scans, ie. the non-overlapping
sections.
Each scan-match is then hand-labelled successful or not.

Once a whole series of these have been labelled, we fit
Gaussians to the distributions of histograms corresponding
to ‘good’ matches, and to ‘bad’ matches (as each histogram
represents a point in high dimensional space). This is illus-
trated, in 3 dimensions, in Fig. 7. Here, the axes indicate the
values of the first 3 histogram bins for training data generated
with the simple 2D example looked at earlier. Each point
corresponds to a scan-match and a resulting histogram. We
can also observe the 1æ covariance ellipsoids for the successful
and unsuccessful matches.
Once the classifier is trained, scan match classification is

a straightforward task. This is because the parameters for
the two Gaussians fitted are known. The histogram of a
novel scan match can be found, and used as an input to our
Gaussian models which return probabilities of a successful or
unsuccessful matching. At present we then take the category
with greatest probability as the correct classification.

VI. DETECTING LOOP CLOSURES

We presently use our estimate of position and its corre-
sponding uncertainty to prompt loop closures. Unfortunately,
this strategy is far from ideal, as our maintained Gaussian
Probability Density Function (PDF) diverges from the actual
one. This is primarily due to compounded linearizations,
but is also due to incomplete knowledge of transformation’s
covariance matrices (if they have been found via registration).
This could potentially lead to falsely triggered loop closure
detection, or worse still, miss loops that need detecting.
This paper focuses on the details of the laser registration
and associated SLAM formulation, not on the loop closing
problem. We refer the reader to the companion paper [18] for
a full description of a robust, multi-modal way to detect and
affect loop closure, which is then used in conjunction with the
techniques discussed in this paper.

Fig. 8. Here we can see the entire state of vehicle poses, immediately
prior to loop closure detection, and the subsequent loop closure itself. The
corresponding ‘x, y, z’ marginal covariance ellipsoids for each pose are also
shown. Notice the vertical discrepancy between the first and last pose due to
accumulated error, even though the vehicle was in approximately the same
location.

Fig. 9. Here are all of the state’s vehicle poses, immediately after loop
closure. The corresponding ‘x, y, z’ marginal covariance ellipsoids for each
pose, suitably reduced, are also shown. Notice that the first and last poses
do not line up exactly, as the vehicle had a slightly different position on its
return to the initial region.

VII. RESULTS
A vehicle was driven around the exterior of a medium

sized building on a smooth but non-flat surface, to test our
system’s performance. Fig. 8 shows the evolution of vehicle
poses around the building, along with corresponding ‘x, y, z’
marginal covariance ellipsoids. In particular, notice the large
2.2 meter vertical discrepancy between the first and last pose,
caused by accumulated error.
After the state was augmented with the last pose shown in

Fig. 8, the simple loop closure detection stage found that a
previous pose, here the very first pose, fell close to it. This
prompted a registration between the point clouds belonging
to those poses. Due to the large accumulated error in the
initial transformation used to seed the registration, a poor scan



Fig. 10. The entire state’s attached point clouds plotted simultaneously. The
windows of the building can be made out in the foreground, along with a small
fire escape staircase. The strong white line on the left of the figure is laser
shadow, caused by the roadside kerb. Camera locations for the subsequent
close up shots are also shown.

Fig. 11. In this close up of the post loop closure point clouds we can make
out the facade of a building, along with its windows and perimeter railing.
We can also identify individual bicycles in the adjacent bicycle rack.

Fig. 12. This close up shows the opposite side of the building. Identifiable
features include an emergency staircase, a parked vehicle, and as we move to
the right of the image, more of the building facade.

match resulted. A remedy for this is to repetitively perturb the
initial transformation until a satisfactory (see Section V) reg-
istration is achieved. The registration-derived transformation
then served as an observation to update the state, and ‘close
the loop’. The resulting state’s poses, along with reduced size
‘x, y, z’ marginal covariance ellipsoids, are shown in Fig. 9.
Finally, the point clouds corresponding to all of these poses
are plotted together in Fig. 10, with close up views in Fig. 11
and 12.

VIII. CONCLUSIONS AND FUTURE WORK

We have demonstrated that by extending existing 2D SLAM
techniques, and augmenting them with a data segmentation
and scan match classification stage, we can perform 3D
probabilistic SLAM in outdoor terrain.
We have presented an algorithm for segmenting 3D laser

range data from a moving platform into distinct 3D point
clouds referenced to vehicle poses. Odometry derived inter-
pose transformations can then be used to augment a Delayed
State EKF with new six degree of freedom vehicle poses. After
each state augmentation, the consecutive point clouds can be
registered together, using odometry as an initial estimate, in a
fast, robust and reliable manner using a 6 degree of freedom
registration algorithm. The improved accuracy transformations
can then be used to update the Delayed State EKF. We believe
this is the first time 3D laser range data has been used in this
formulation, which redistributes errors probabilistically over
the vehicle’s past trajectory. Additionally we have presented a
classification based integrity check for detecting scan matches
which have converged to incorrect local minima. This is of
particular importance when initial transformation estimates are
in error.
One logical extension to the techniques described in this

paper would be to incorporate the integrity check’s quality
metric into the registration process itself. This would widen
and deepen the convergence basin leading to superior con-
vergence properties. Additionally, further work is required to
detect possible loop closures when traversing very large loops.
This becomes critical over large distances, as accumulated
linearization error can cause the method described in Section
VI to fail and miss loop closing opportunities entirely. One
possible remedy for this is discussed in a companion paper
[18].
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