
Context and Feature Sensitive Re-sampling from
Discrete Surface Measurements

David M Cole and Paul M Newman
Oxford University Mobile Robotics Group, Department of Engineering Science, Oxford, OX1 3PJ, UK

Email: dmc,pnewman@robots.ox.ac.uk

Abstract— This paper concerns context and feature-sensitive
re-sampling of workspace surfaces represented by 3D point
clouds. We interpret a point cloud as the outcome of repetitive
and non-uniform sampling of the surfaces in the workspace. The
nature of this sampling may not be ideal for all applications,
representations and downstream processing. For example it might
be preferable to have a high point density around sharp edges or
near marked changes in texture. Additionally such preferences
might be dependent on the semantic classification of the surface
in question. This paper addresses this issue and provides a
framework which given a raw point cloud as input, produces a
new point cloud by re-sampling from the underlying workspace
surfaces. Moreover it does this in a manner which can be biased
by local low-level geometric or appearance properties and higher
level (semantic) classification of the surface. We are in no way
prescriptive about what justifies a biasing in the re-sampling
scheme — this is left up to the user who may encapsulate what
constitutes “interesting” into one or more “policies” which are
used to modulate the default re-sampling behavior.

I. I NTRODUCTION AND MOTIVATION

This paper is about scene representation using point clouds
with application to mobile robot navigation. Sensors like
laser range scanners and stereo pairs are becoming ubiquitous
and finding substantial application to navigation and mapping
tasks. They return sets of 3D points which are discrete samples
of continuous surfaces in the workspace, which we shall refer
to as ‘point clouds’. There are two prominent and distinct
schools of thought regarding how point clouds might be used
to infer vehicle location and/or workspace structure. On one
hand, segmentation and consensus techniques can be used
to extract subsets of the data which support the existence
of geometric primitives - planes, edges, splines or quadrics
for example. Vehicle state inference is performed using the
parameters of these primitives and the world is modelled
as the agglomeration of geometric primitives. All raw data
is subsequently disregarded. More recently the ‘view based’
approach has become very popular. Here the raw data is
left untouched. Location estimation is achieved by perturbing
discrete instances of the vehicle trajectory until the overlapping
‘views’ match in a maximum likelihood sense. The workspace
estimate is then the union of all views rendered from the
vehicle trajectory.

There is a stark contrast between these two approaches - one
strives to explain measurements in terms of parameterizations
resulting in terse, perhaps prescriptive representations, but
which we can then reason with at higher levels. The other
makes no attempt to explain the measurements, no data is

Fig. 1. An example of a large 3D point cloud generated with an outdoor
mobile robot. In the foreground we can observe a rack of bicycles, to the
right a large tree, and in the background a building with protruding staircase.
Notice the large variation in local point density.

thrown away and every data point is treated with equal impor-
tance. The ensuing work-space representations look visually
rich but the maps are semantically bland.

This paper examines the ground between these two camps
and contributes a framework by which raw point clouds can
be used to generate new samples from the surfaces they
implicitly represent in a selective way. We will refer to this as
‘feature sensitive re-sampling’. The approach we describe here
allows us to avoid fitting data toa-priori prescriptive models
while still embracing the concept of a feature. Importantly it
retains the ability of view based approaches to capture irregular
aspects of the workspace as anonymous sets of points. The
framework consists of a generalized re-sampling mechanism
and a set of hooks to which any number of user-defined
sampling ‘policies’ may be attached. The central idea is that
the point cloud is a discrete sampling of continuous surfaces in
the workspace. Depending on application (mapping, matching,
localizing, indexing etc.), some parts of the surfaces in the
workspace are more useful, interesting, salient, or descriptive
than others. Such inclinations are entirely encapsulated in the
individual sampling policies which have access to the local
properties of the implicit workspace surfaces. For example
they may preferentially select regions of a particular color,
curvature or normal direction. In the light of this information
each policy modulates the generalized re-sampling mechanism
— biasing samples to originate from regions that, to it, are
‘interesting’.

To make this abstraction more tangible we proceed with a
few motivating examples. Imagine we are in possession of a
substantial point cloud obtained from a 3D laser scanner like
the one shown in Figure 1. Consider first the task of matching
such a scan to another. There is an immediate concern that the
workspace’s surfaces have not been sampled uniformly - the
fan-out of the laser and the oscillating nature of the device
mean that close surfaces have more samples per unit area.
Furthermore, surface patches close to the intersection of the
workspace and the nodding axis also receive disproportionate
representation. It would be advantageous to re-sample the data
so that surfaces are sampled uniformly and that an ICP-like
scan-matching process is not biased towards aligning regions
of greater point density. Secondly, consider the case in which
we are presented with both a 3D laser point cloud of a scene
and color images of it from a camera - allowing the point cloud
to be colored as shown in Figure 6a. A workspace region that
may have appeared to be bland from a geometric perspective
might now be marked with transitions in color space. We might
wish to pay special attention to regions of a particular color,
gradient, or neighborhood texture - the resulting data points
might yield better registration results, provide discriminative
indexes into appearance based databases or simply decimate
the overall scene representation.

It is important to emphasize that the behavior of the frame-
work can also be influenced by semantic information as well
as low-level geometry and appearance.A-priori classification
and segmentation of point cloud regions (glass, shrubbery or
floor for example) can be used to inhibit existing policies as
needs dictate. For example, a policy for maintaining regions of
high curvature may be inhibited, if it is found to lie on a shrub,
rather than a building - corners on a building being deemed
more interesting than corners on a plant. Before proceeding, it
is worth noting that the method we propose is different from
that which simply sweeps through a point cloud and retains
points in interesting regions. To see why, we must clarify what
we mean by re-sampling. We do not draw new points from the
measurements themselves but from an implicit representation
of the workspace surfaces. If we constrained ourselves to re-
sampling from the original point cloud we could not so easily
address issues of under (or over) sampling. We would also be
ignoring the fact that a single range point is just a sample from
a surface - it is not an observation of an actual point in the
workspace. In light of this it appears overly restrictive to limit
ourselves to only working with the observed 3D points. Instead
we work with the surfaces that they represent implicitly.

The rest of the paper is structured as follows: Section II
begins by providing a brief summary of previous work. Section
III follows, split into sub-section III-A, which provides a brief
summary of the approach we have adopted and its relationship
to existing literature, sub-sections III-B and III-C, which
describe some of the key techniques in detail and sub-section
III-D, which examines the overall framework. Section IV then
shows some of the initial results obtained, and we conclude
in Section V with some conclusions and final thoughts.

II. PREVIOUS WORK

Over the last decade, there has been an enormous amount
of high quality research in mobile robot navigation. Many
papers have focused on building complex 3D environments
using vision or laser scanned point clouds. However, rela-
tively few have examined efficient representations that improve
performance, or facilitate task accomplishment. One approach
which has had considerable success extracts planar surfaces
from the data - for example [2], [3], [9] and [10]. This has
been taken a step further in [6], where a semantic net selects
particular plane configurations, and forces them to conform
to pre-conceived notions of how the world should look. This
can correct planes corrupted by noise. However, many typical
facades, surfaces and objects in realistic outdoor environments
cannot be simplified using planes alone. In contrast, there has
been a large amount of research in the computer graphics
community on point cloud simplification, for example [7].
In the next section we take just one of these and adapt it
into a context and feature sensitive re-sampling framework
for mobile robotics.

III. SAMPLING IMPLICIT SURFACES IN3D POINT CLOUDS

A. Approach Summary

Let us assume we have a set of 3D points, lying on an
unknown 2D manifold. The fundamental idea, a modified and
extended version of Moenning and Dodgson’s work in [5], is
to approximate the manifold as the set of 3D grid cells which
lie inside a union of ellipsoids, where an ellipsoid is fitted
to each data point and a fixed number of its neighbors. This
could be considered to represent a ‘crust’ over the data points,
and is similar to the approach of Memoli and Sapiro in [4].
After randomly selecting a small number of ‘seed’ points, to
initiate the process, we propagate fronts from each of their
corresponding grid cells. This is performed using the Fast
Marching Level Set Method [8] (described later in Section III-
C), and continues until fronts collide or reach the edge of the
problem domain. By storing the time at which a front arrived in
each cell, we effectively generate a distance function over the
cells considered (ie. the manifold). Furthermore, by looking
for local maxima over this function, we are able to extract
the vertices of a Voronoi diagram painted over the manifold.
This enables us to select a location for a new re-sample point
as prescribed by the Farthest Point Strategy in [1] (which
is described further in Section III-B). After selection, this
process can be repeated to find as many new points as required,
or until the surface density reaches a predefined threshold.
Note however, on subsequent iterations, it is not necessary
to recompute the distance function (Voronoi diagram) over
the entire problem domain. By maintaining front arrival times
over all cells, only the front belonging to the most recently
generated point needs propagating.

Another attractive and significant feature of this approach
is that fronts can move at different speeds through different
regions of the crust. These speeds can be found using the
set of re-sampling ‘policies’ or user-defined hooks (described

Fig. 2. Given a square image with three initial sample locations, one can construct a corresponding BVD, as shown in (a). Sub-figure (b) shows the results
of a BVD vertex extraction (shown as circles), which are efficiently searched to yield the vertex with greatest distance to its closest point (circled twice). This
forms the next iteration’s sample point, which can be observed in the BVD in (c). Sub-figures (d) and (e) progress similarly. Sub-figure (f) shows the sample
points generated after 9 iterations - note the distribution is becoming increasingly uniform.

earlier) which incorporate local surface attributes together with
local class information. Consequently, when the generalized
re-sampling mechanism (described above) comes to choose a
new site, it extracts a vertex of aweightedVoronoi diagram,
which is biased to be in the vicinity of a user-defined feature
and/or class.

B. The Farthest Point Sampling Strategy

Farthest Point Sampling [1] was originally developed as a
progressive method for approximating images. After initially
selecting a set of ‘seed’ pixels, the idea is to select each
subsequent ‘sample’ pixel to lie in the least known region
of the image. This progressively generates high quality image
approximations,given the current number of ‘sample’ pixels
available. Furthermore, it can be shown that the next ‘sample’
pixel to select lies on a vertex of the previous iteration’s
Bounded Voronoi Diagram (BVD) - which provides an effi-
cient means for future sample selection, as shown in [1]. This
is illustrated in Figure 2. Given a square image with three
initial sample locations, one can construct a corresponding
BVD, as shown in (a). Sub-figure (b) shows the results of a
BVD vertex extraction (shown as circles), which are efficiently
searched to yield the vertex with greatest distance to its closest
point (circled twice). This forms the next iteration’s sample
point, which can be observed in the BVD in (c). Sub-figures
(d) and (e) progress similarly. Sub-figure (f) shows the sample
points generated after 9 iterations - note the distribution is
becoming increasingly uniform.

C. The Fast Marching Level Set Method

Level Set Methods [8] are efficient techniques for calculat-
ing the evolution of propagating fronts. This is achieved by
considering a frontΓ, moving normal to itself inx, at time
t, with speed functionF , as the zeroth level set of a function
Φ(x, t) (ie. Φ(x, t) = 0). Given that the front’s initial position
is known, for the purpose of initialization, we can write the
function as:

Φ(x, t = 0) = ±d (1)

whered is the distance fromx to Γ and the plus or minus
sign indicates whether the point is outside or inside the front

Fig. 3. These examples illustrate how the Fast Marching Level Set Method
can be used to generate a 2D distance function. Sub-figure (a) shows 3
initial points with fronts propagating from each. The surface being generated
above the plane represents each cell’s arrival time, whilst the colors on the
plane show the status of each cell. Red signifies ‘dead’, whilst green signifies
‘active’. Sub-figure (b) shows how the front propagates over time, until the
full distance function is generated in (c).

respectively. Assuming we observe a ‘particle’ at positionx(t),
which always lies on the propagating front, we can write:

Φ(x(t), t) = 0 (2)

After differentiation, this becomes:

∂Φ(x(t), t)
∂t

+∇Φ(x(t), t).
∂x(t)

∂t
= 0 (3)

Given that the function F gives the speed normal to the front,
F = ∂x(t)

∂t .n, and thatn = ∇Φ/|∇Φ|, this can be simplified
to:

∂Φ(x(t), t)
∂t

+ F |∇Φ(x(t), t)| = 0 (4)

given Φ(x, t = 0) (5)

Generalized Level Set Methods proceed by iterating over
a grid in (x, Φ) space to solve this initial value partial
differential equation at each time step (ensuring that a careful
approximation is made for the spatial gradient to generate
a realistic weak solution). This implicitly yields the zeroth
level set or propagating front for all times considered. As
well as being straightforward to numerically solve, one of this
technique’s major advantages is that it can easily cope with
sharp discontinuities or changes in front topology - as ‘slices’
of a smooth, higher dimensional volume.

As an example, consider a two dimensional, initially circular
front. The initial three dimensional surface in (x,Φ) space
would form a cone. At each time step, after sufficient iter-
ations, the solution would represent the cone moving and/or
‘morphing’ within this space. Simultaneously, the zeroth level
set (or intersection with the plane,Φ(x, t) = 0) would show
how the true front propagates, correctly modelling discontinu-
ities or changes in front topology.

Unfortunately, given the dimension of a typical (x, Φ) space
and a reasonable temporal and spatial resolution, this can be
computationally expensive. However, under the assumption
that the speed function F is always positive, we can guarantee
that the front passes each point inx once and once only (ie.
Φ is single valued). This means that the Level Set Equation
(Equation 4) can be expressed in terms of a front arrival time
functionT (x), as an example of a stationary Eikonal equation:

|∇T (x)|F = 1 (6)

This time, T (x) need only be solved over a discrete grid
in x (rather thanx and Φ). Additionally, with careful choice
of spatial gradient operator, updates can become ‘one way’
(rather than depending onall neighboring cells) - whilst
still enforcing the realistic weak solution. This facilitates the
efficient Fast Marching algorithm, which is only required to
‘process’eachgrid cell once. In effect, it is able to calculate
the front’s arrival time, by working outwards over the discrete
grid from its initial position.

If we now assume the front propagates in 3D (ie.x ∈ R3)
and substitute an expression for the spatial gradient operator,
∇T (x), into Equation 6, we can write the 3D Fast Marching
Level Set Method’s update equation as follows:

[max(max(D−x
ijkT, 0),−min(D+x

ijkT, 0))2

+max(max(D−y
ijkT, 0),−min(D+y

ijkT, 0))2

+max(max(D−z
ijkT, 0),−min(D+z

ijkT, 0))2] = 1
F 2

ijk
(7)

Where i,j and k are grid cell indices along thex,y and z
axes respectively,Ti,j,k refers to the value ofT at grid cell
i, j, k and D+x

ijkT refers to the finite difference+x gradient
of T at grid cell i, j, k, which can be expressed asD+x

ijkT =
(Ti+1,j,k − Ti,j,k)/∆x, where∆x is the unit grid cell length
in thex direction.Fijk is then the speed of wave propagation
through grid celli, j, k.

Before describing how to put this into practice, let us assume
our domain is discretized into grid cells. We initialize the
process by marking all cells which coincide with the front’s
initial position as ‘active’ and giving them aT value of
zero (whilst all others are marked ‘far’, withT undefined).
The front can then start marching forward, progressively
calculatingT (x) for each ‘active’ cell’s neighbors (except the
‘dead’ ones), using the update shown in Equation 7. If one
of the neighboring cells is ‘active’, it will already possess
a value forT (x). In this instance, the smallest value of the
existing and newly calculatedT (x) should be accepted, as it

Inputs : Grid G, with cells g(i, j, k), i ∈ [1 : I],
j ∈ [1 : J] andk ∈ [1 : K]. Set of cells in initial
front Γ.

Output : Arrival times: g(i, j, k).T ∀g(i, j, k) ∈ G

Initialization:
for g(i, j, k) ∈ Γ do

g(i, j, k).active ← 1;
g(i, j, k).T ← 0;
H.PUSH(g(i, j, k));

end

while ¬H.empty()do
g(imin, jmin, kmin) ← H.POP();
N ← NEIGHBOURHOOD(imin, jmin, kmin);
for g(i, j, k) ∈ N do

if ∃g(i, j, k) ∧ ¬g(i, j, k).dead then
Fijk ← g(i, j, k).F ;
if g(i, j, k).active then

τ ← SOLVEPDE(Fijk,N)
g(i, j, k).T ← min(g(i, j, k).T, τ);
H ← HEAPIFY(H);

else
g(i, j, k).Active ← 1;
g(i, j, k).T ← SOLVEPDE(Fijk,N);
H.PUSH(g(i, j, k))

end
end

end
g(imin, jmin, kmin).dead ← 1;

end
Algorithm 1 : Pseudo-code for an efficient implementation
of the 3D fast marching algorithm for propagating fronts.
The algorithm propagates a frontΓ through a set of cells
recording the time at which the front first passes through
each of them. These times can be used to calculate the
vertices of a bounded Voronoi diagram over the gridG
which need not have homogenous propagation speeds.

can be assumed this front reached that cell first. Conversely,
if the neighboring cell is ‘far’, it should be made ‘active’ and
assigned a value forT (x). After all neighbors are dealt with,
the processed ‘active’ cell should itself be considered ‘dead’.
It is important to note that when moving to process the next
‘active’ cell (ie. one on the current front) it is important to
always process the one with a minimum value ofT (x) first.
This ensures that any of the other ‘active’ cells could not
possibly have had any influence on the processed cell’sT (x)
(as they have greater arrival time values) - allowing (after its
neighborsT (x) values are calculated) it to be declared ‘dead’
(ie. fixed). This process continues until all cells are declared
‘dead’ and consequently all haveT (x) values. As an example,
Figure 3 shows snapshots of this process propagating fronts on
a plane. The full 3D technique is then formally described in
Algorithm 1 where the fronts propagate over a gridG in which
each cellg(i, j, k) has the following properties: a front speed

Fig. 4. Sub-figure (a) shows a 2D manifold, with a set of points on its surface. The blue lines represent surface Voronoi edges. This is what we aim to
reproduce with our manifold approximation, to find where to place the next sample. Sub-figure (b) shows a series of spheres, with one centered on each
original data point. If we take all 3D grid cells that lie inside this union, as in (c), we find an approximation to the original manifold.

field F , an arrival timeT (initialized to∞) and three status
flags DEAD ACTIVE and FAR. The termH is a minheap of
cells sorted by arrival timeT . The functionSOLVEPDE refers
to solvingTi,j,k using the discretized P.D.E. in Equation 7.

Whilst this technique has many uses, its primary function in
this paper is to efficiently generate a Voronoi diagram over the
original point cloud manifold, as illustrated in the example in
Figure 4(a). This is implemented by approximating the mani-
fold with a thin ‘crust’ of 3D grid cells. These can be found by
locating spheres at each original point, as illustrated in Figure
4(b), and taking all those cells which lie within this union
(as shown in Figure 4(c)). However, this approach tends to
introduce large amounts of lateral noise — especially if regions
of the true surface are truly planar. Consequently, we choose
to fit ellipsoids to each point and its local neighborhood, and
take the union of these instead. This approach seems to work
particularly well, though some care does need taking in very
sparse regions, when a fixed number of nearest neighbors
span a large distance - and therefore produce excessively large
ellipsoids. We can then take this bounded 3D space, initialize
fronts in those cells which correspond to the set of points
concerned, and propagate fronts outwards. This continues until
all cells have been visited, when the resulting distance function
can be processed to yield the Bounded Voronoi Diagram.

It is worth noting that this technique also allows efficient
incremental construction of distance functions, when adding
points to existing clouds. This can be achieved by propagating
a front from each new point, until it reaches a region of
the distance function which has values less than the front’s
predicted arrival time. Furthermore, by changing the speed at
which fronts propagate through the discretized space, we are
able to bias the positions of the Voronoi vertices. This will be
examined in more detail in the next sub-section.

D. Imposing a Sampling Bias

Assume we have set ofNp data points, PNp =
{p1, p2....pNp}, which are non-uniformly distributed samples
of a 2D manifoldM embedded inR3, each belonging to a
single class of a total set ofNc classes,CNc = {c1, c2....cNc},
and each with a single associated vector of attributes, forming

the total set ofNp attribute vectors,ANp = {a1, a2....aNp}.
Our aim is to generate a new set ofNT points, P̃NT =
{p̃1, p̃2....p̃NT } with a local surface density at each original
point proportional to a weight given by:

wm = F(am, C(pm)) (8)

WhereF expresses how interesting the neighborhood of
pm appears to be in the context of its geometry and appear-
ance,am, and its semantic classification,cm. This aim can
be achieved by modifying Algorithm 1 in a straightforward
way. The stepFijk ← g(i, j, k).F can be replaced with
Fijk ← F(a(g(i, j, k)), C(g(i, j, k)). Here we have slightly
abused notation and useda(g(i, j, k)) to mean the attributes
of the region surrounding the raw data point closest to cell
g(i, j, k) (and similarly forC(g(i, j, k))). The upshot of this
is that now the distance function calculated by the solution
of the wave front P.D.E. will be biased (propagate slower)
around interesting places. Because the wavefront determines
the Voronoi vertices which in turn determine the new surface
samples generated, the inclusion of Equation 8 in Algorithm
1 constitutes context and feature-sensitive sampling.

IV. RESULTS

Initial experiments have been performed using the data
shown earlier in Figure 1, collected with a mobile robot.
One of the key things to notice is the large variation in local
point density. This is particularly evident on the floor, close
to the vehicle, and on object faces sensed perpendicular to the
scanning laser. The scene actually contains part of a building, a
protruding staircase (which is sandwiched between two bicycle
racks), and on the right, a large tree. Due to the nature of
laser ranging - points are particularly dense around the tree’s
branches, as many mixed (multiple return) measurements were
recorded. Figure 5a shows the same data, but includes semi-
transparent colored and lettered control volumes for analysis.
The number of points present is written adjacent to each (in a
corresponding color), and is included in a bar chart (top right)
for comparison. The total number of points in the entire cloud
is shown bottom left.

Fig. 5. Sub-figure (a) shows the original point cloud (as shown earlier in Figure 1), although this time includes semi-transparent colored and lettered control
volumes for analysis. Sub-figure (b) shows the result of uniform re-sampling (maintaining a uniform weight over all cells), terminated when 55000 points had
been produced. Sub-figure (c) shows the result of feature sensitive re-sampling based on modified ‘normal variation’, and was terminated at the same point.

Fig. 6. Sub-figure (a) shows the result of projecting each laser point into an image of the scene and assigning it with color information. Sub-figure (b) shows
a distribution of weights over the same cloud, proportional to a distance from each point (in RGB space) to a manually selected ‘building’ color. Sub-figure
(c) then shows the result of feature sensitive re-sampling using these weights, preferentially choosing points of a particular shade.

The first experimental result is shown in Figure 5b, and
later summarized in Table 1. This was produced using the re-
sampling algorithm described earlier (maintaining a uniform
weight over all cells), and was terminated when 55000 points
had been produced. Notice that as a consequence of such
weighting, the front propagated through all cells at the same
speed, and results in an output which is a uniform repre-
sentation of the implicit manifold. We also observe a 96%
reduction in the number of points used to represent the red (A)
control volume’s section of floor. Similar re-sampling behavior
throughout this cloud resulted in an overall representational
overhead cut of 86% (from 380389 down to 55000), whilst
preserving significant geometry.

The second experiment began with the same initial point
cloud, and the resulting re-sampled point cloud is shown in
Figure 5c. It is also summarized in Table 1. This shows that
by weighting front propagation speeds through each grid cell,
we can bias re-sample points to be in certain regions of the
manifold. Whilst such user-defined ‘policies’ are generally
functions of any number of local point attributes, here we make
use of modified ‘normal variation’ alone. After generating a
surface normal for each point (based on a close set of nearest
neighbors), ‘normal variation’ can be defined as the variance
of the angle between the point concerned and a fixed set of
nearest neighbor surface normals. These are then transformed

to ensure the distribution maps to a wide range of grid cell
weights. If this is not performed, a few, very dominant points
with very high ‘normal variation’ would tend to spread over
a large range of the weights considered, leaving the majority
of the grid cells with near identical propagation speeds. In
this particular point cloud, the tree’s foliage, the bicycles, the
building’s steps and its window frames all score highly. This
leads to faster local front propagation and a tendency to inhibit
nearby Voronoi vertices and the subsequent re-sample points.
As in the last experiment, we stopped re-sampling when 55000
points were selected. Notice in particular the red (A) control
volume located on the floor, and the green (B) control volume
incorporating foliage, and contrast to the uniformly re-sampled
cloud. The number of points in the predominantly planar red
(A) control volume increased by 152% from 1174 to 2958,
whilst those in the high curvature green (B) control volume
decreased by 65% from 5289 to 1851.

The next series of experiments aims to highlight the ver-
satility of our approach, as re-sampling policies can be based
on any individual or set of local point cloud attributes. In this
example, we choose to project each laser point into an image
of the scene and assign it with color information as shown
in Figure 6a. Figure 6b then shows a distribution of weights
over the same cloud, proportional to a distance from each point
(in RGB space) to a manually selected ‘building’ color. These

Fig. 7. Sub-figure (a) shows the point cloud from earlier, segmented into three distinct classes: ‘floor’, ‘foliage’ and ‘other’. This was performed manually
for the sake of demonstration. Sub-figure (b) then shows a weight distribution generated using local ‘normal variation’, along with the new class information.
The intention here is to preferentially re-sample points on the building by artificially boosting the ‘normal variation’ weights of points classified as ‘floor’ or
‘foliage’. Note that other ‘non-building’ points (on various objects) already have high ‘normal variation’ weights. Sub-figure (c) shows the result of context
and feature sensitive re-sampling using these weights.

were then used to bias the generalized re-sampling mechanism,
which preferentially chose points of this particular shade. Once
again, re-sampling was stopped after 55000 points had been
selected. The results of this process can be seen in 6c, and are
summarized in Table 1. A careful examination of these results
reveals some success in extracting points on the building -
the number of points in the cyan (D) control volume, located
on the building’s wall, has increased 170% from 315 to 851
(compared to uniform re-sampling). Furthermore, the dramatic
increase in the density of building points (to the left of the cyan
(D) control volume, all the way across to the magenta (E)
control volume) is clearly visibly, with a reduction in points
on bicycles and foliage. However, a 13% increase in red (A)
control volume points indicates that the color of the floor is too
close to that of the building for this approach to disambiguate
between the two. Additionally, we see a 32% decrease in blue
(C) control volume points, as colors around the window vary
dramatically compared to the main brickwork.

The third series of results demonstrates how the re-sampling
process can be influenced by semantic information. Figure 7a
shows the point cloud from earlier, segmented into three dis-
tinct classes: ‘floor’, ‘foliage’ and ‘other’. This was performed
manually for the sake of demonstration. Figure 7b shows a
weight distribution generated using local ‘normal variation’
(described earlier), along with the new class information. The
intention here is to preferentially re-sample points on the
building by artificially boosting the ‘normal variation’ weights
of points classified as ‘floor’ or ‘foliage’. Note that other ‘non-
building’ points (on various objects) already have high ‘normal
variation’ weights. These were subsequently used to bias the
re-sampling mechanism, which continued until the standard
55000 point target had been reached. The results generated
can be seen in Figure 7c, and are also summarized in Table 1.
Notice the massive increase in the number of points in the cyan
(D) and magenta (E) control volumes (located on the building),
when compared to the equivalent uniformly re-sampled cloud.
The number of points in the cyan (D) control volume increased
by 219% from 315 to 1006, whilst the number of points in
the magenta (E) control volume increased by 102% from 884

to 1790. There was also a reduction in the number of points
in all other control volumes (ie. those on the objects, foliage
and the floor).

The final experiment highlights one use for this technique:
re-sampling point clouds attached to vehicle poses in delayed
state SLAM formulations. This could offer superior registra-
tion convergence properties, reduce overall processing time (if
the point clouds are large or used frequently), reduce overall
storage requirements, and allow efficient viewing of the maps
constructed. Whilst this area does need significant further
study, we include a few results to demonstrate this technique’s
potential. Figure 8a shows two point clouds (belonging to sep-
arate vehicle poses), each containing approximately 190,000
points. Figure 8b then shows the same point clouds uniformly
re-sampled, each reduced to 50,000 points. Note that whilst
we choose uniform weighting in this example (for the sake
of clarity), there could be greater justification for another re-
sampling policy. The pair of graphs in Figure 8c then compare
the original pair of point clouds, and the re-sampled pair of
point clouds when each was aligned with a typical registration
algorithm. The top plot shows the normalized residual error
at registration termination versus independent x, y and theta
perturbations around the initial transformation estimate. Note
that the re-sampled registration (shown in green) not only
matches the performance of the original registration (shown
in black) - the bounds of the convergence basin are actually
increased. The lower plot shows corresponding processing
times for the registrations, and it is apparent that with less
points - the re-sampled registrations are significantly faster.
Given that in this example the re-sampling process took 50
minutes (2998 seconds) for pose 1, and 23 minutes (1380
seconds) for pose 2, re-sampling would be beneficial if per-
forming at least 6-8 registrations per point cloud (in terms
of overall processing time alone). Note that these times are
likely to reduce significantly when we engineer away the large
time constant in our initial exploratory implementation (which
scalesO(N log N), where N is the number of grid cells,
which is proportional to the workspace surface area - not the
number of data points).

Original Uniform Normals Color Color and Class
Entire Point Cloud 380389 55000 55000 55000 55000

Red Volume (A) (Floor) 29055 1174 2958 1329 562
Green Volume (B) (Foliage) 6918 5289 1851 4524 2534
Blue Volume (C) (Bicycle) 3130 771 290 453 555

Cyan Volume (D) (Building Wall) 2513 315 667 851 1006
Magenta Volume (E) (Building Window) 6278 884 1109 600 1790

TABLE I

EACH ENTRY IN THIS TABLE CORRESPONDS TO THE NUMBER OF POINTS IN AN ENTIRE POINT CLOUD, OR ONE OF THE CONTROL VOLUMES. THE

COLUMN HEADINGS SIGNIFY WHICH EXPERIMENT PRODUCED EACH SET OF RESULTS. THE RED AND BLUE NUMBERS INDICATE WHETHER THE NUMBER

OF POINTS INCREASED OR DECREASED RESPECTIVELY, COMPARED TO THE EQUIVALENT UNIFORMLY RE-SAMPLED POINT CLOUD.

Fig. 8. Sub-figure (a) shows two point clouds (belonging to separate vehicle poses), each containing approximately 190,000 points. Sub-figure (b) shows the
same point clouds uniformly re-sampled, each reduced to 50,000 points. Sub-figure (c) finishes with a pair of graphs that compare registration performance -
first using the original pair of point clouds, and then using the re-sampled pair. The top plot shows the normalized residual error at registration termination
versus independent x, y and theta perturbations around the initial transformation estimate, whilst the bottom one shows corresponding processing times.

V. CONCLUSIONS

In this paper we have described how one may use large 3D
point clouds to generate samples from the underlying work-
space surfaces. We have adopted the technique of solving a
discretized P.D.E. to find a Voronoi diagram over a surface
approximated by a thin crust of cells. An iterative scheme
uses the Voronoi-vertices to generate new samples and update
the Voronoi diagram. We have suggested in this paper that this
approach has substantial value to the robotics community in
terms of using 3D laser range data. By using the qualities of
the original data and prior information regarding the type of
surfaces being sampled to bias the solution of the governing
P.D.E. we can mitigate sensor aliasing issues, select regions
of interest and apply feature extraction algorithms all within a
single framework. We have not yet fully explored the spectrum
of uses for this technique in outdoor navigation (which is
the domain which motivates this work) especially when using
both laser and camera images. Nevertheless we feel it is a
promising and elegant approach which comfortably occupies
the middle ground between the feature-based (prescriptive) and
view-based (indifferent) approaches to interpreting and using
point clouds for navigation.

ACKNOWLEDGMENT

This work was supported by the Engineering and Physical
Sciences Research Council Grant #GR/S62215/01.

REFERENCES

[1] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Zeevi. The farthest
point strategy for progressive image sampling.IEEE Trans. on Image
Processing, 6(9):1305 – 1315, 1997.

[2] D. Hähnel, W. Burgard, and S. Thrun. Learning compact 3D models
of indoor and outdoor environments with a mobile robot.Robotics and
Autonomous Systems, 44(1):15–27, 2003.

[3] Y. Liu, R. Emery, D. Chakrabarti, W. Burgard, and S. Thrun. Using
EM to learn 3D models of indoor environments with mobile robots. In
ICML ’01: Proceedings of the Eighteenth International Conference on
Machine Learning, pages 329–336, San Francisco, CA, USA, 2001.

[4] F. Memoli and G. Sapiro. Fast computation of weighted distance
functions and geodesics on implicit hyper-surfaces: 730.J. Comput.
Phys., 173(2):764, 2001.

[5] C. Moenning and N. Dodgson. A new point cloud simplification
algorithm. The 3rd IASTED International Conference on Visualization,
Imaging and Image Processing (VIIP), 2003.

[6] A. Nuchter, H. Surmann, and J. Hertzberg. Automatic model refinement
for 3D reconstruction with mobile robots.3DIM, 00:394, 2003.

[7] M. Pauly, M. Gross, and L. P. Kobbelt. Efficient simplification of point-
sampled surfaces. InIEEE Visualization (VIS), Washington, DC, USA,
2002.

[8] J. Sethian. A fast marching level set method for monotonically advancing
fronts. Proc. Nat. Acad. Sci., 93(4):1591–1595, 1996.

[9] J. Weingarten, G. Gruener, and R. Siegwart. Probabilistic plane fitting
in 3D and an application to robotic mapping. InIEEE International
Conference on Robotics and Automation (ICRA), volume 1, pages 927–
932, New Orleans, USA, 2004.

[10] D. F. Wolf, A. Howard, and G. S. Sukhatme. Towards geometric 3D
mapping of outdoor environments using mobile robots. InIEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 1258–1263, Edmonton Canada, 2005.

