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Abstract— This paper addresses a difficulty in large-scale
long term laser localisation - how to deal with scene change. We
pose this as a distraction suppression problem. Urban driving
environments are frequently subject to large dynamic outliers,
such as buses, trucks etc. These objects can mask the static
elements of the prior map that we rely on for localisation.
At the same time some objects change shape in a way that
is less dramatic but equally pernicious during localisation -
for example trees over seasons and in wind, shop fronts and
doorways. In this paper, we show how we can learn in high
resolution, the areas of our map that are subject to such
distractions (low value data) in a place-dependent approach.
We demonstrate how to utilise this model to select individual
laser measurements for localisation. Specifically, by leveraging
repeated operation over weeks and months, for each point
in our map pointcloud we build distributions of the errors
associated with that point for multiple localisation passes. These
distributions are then used to determine the legitimacy of laser
measurements prior to their use in localisation. We demonstrate
distraction suppression as a front-end process to large scale
localiser by incrementally adding 50km of error data to our
base map and show that robustness is improved over the base
system with a further 10km of urban driving.

I. INTRODUCTION

This paper addresses the problem of laser based lo-
calisation for an autonomous vehicle operating in typical
outdoor environments where things change. It is not about
a localisation technique per se, that is well understood, but
about how to build an objective function within the localiser
which is sympathetic to the time varying nature of the scene.
Ours like the majority of laser based localisation approaches
require a prior pointcloud map. These maps are often built by
fusing the measurements of one or more laser scanners with
estimates of the vehicle’s ego-motion [1] [2]. The resulting
pointcloud is a snapshot of the environment at the time of
survey. The instantaneous nature of these maps invariably
results in dynamic objects being captured: cars, buses, people
etc as in Figure 1. Equally, the map is also likely to contain
elements of foliage whose shape is seasonal. More radical
change is seen when buildings are demolished, extended or
shrouded and this happens surprisingly often in a city.

Metric localisation involves finding a pose that aligns a
description of the local environment with a prior map. In
our case, the local description is generated from the range
measurements of a LIDAR. The vehicle used in this paper is
equipped with a 2D LIDAR in a pushbroom configuration.
Aligning a single scan from one of these 2D sensors to a 3D
map is often an under constrained problem. For this reason,
we project a cache of scans with the motion estimates from
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Fig. 1: In urban environments large dynamic obstacles fre-
quently occlude the static environment from an autonomous
vehicle’s sensors. Here a bus casts a shadow more than
10m wide onto the corner of a building (hole highlighted in
pink). What will we do when the bus isn’t there any more?
Measurements of the wall used at subsequent localisation
will be poorly explained by the map and distort localisation
as in Figure 2. A drastic enough scene change can result in
catastrophic localisation failure.

odometry into a single coordinate frame. Thereby producing
a less ambiguous 3D “swathe” of laser measurements and
replicating the pointclouds produced by 3D sensors.

In Section III the method of alignment used for the local
description of the environment (herein denoted swathe) with
the map pointcloud is a vanilla derivative Iterative Closest
Point (ICP) algorithm [3]. This algorithm finds the transform
that minimises the sum of squared errors between corre-
sponding points of two pointclouds. The correspondences
for each swathe point are chosen by finding the nearest
neighbour in the map pointcloud. Our implementation of
the algorithm allows the error (or cost) and corresponding
map point of each swathe point to be queried and logged for
offline processing.

In Section IV we show how post-processing localisation
data can help to augment the map with distraction sup-
pression data - a simple (therefore fast to use) point by
point model which captures the expected value of that point
in subsequent localisation operations. Having successfully
localised against a map we can aggregate all the error-



Fig. 2: Subsequent localisation with the map shown in Figure
1 results in measurements of the building landing in the
bus’s shadow (highlighted in pink). These measurements
have high error as shown by the red colour, in contrast to
low error yellow measurements of the road. Post-processing
of localisation data can identify areas susceptible to these
outliers. Allowing the rejection of these measurements in
subsequent localisation in order to improve accuracy and
speed.

correspondence pairs that occurred per map point. For each
map point, a distribution of the errors is built. More error
samples are added after each localisation run.

In Section V explains that by inspecting the distribution
of errors we are able to label map points which have been
subject to high cost swathe points as being of low value
to localisation. By further aggregating these point-specific
distributions over all the points in a section of the map
we are able to infer the likely errors in a place dependent
manner and tailor the distraction suppression. In subsequent
localisation, swathe points that associate with map points
labelled as untrustworthy can be discarded on the assumption
that they are outliers.

Finally, in Section VI we show that increasing the number
of datasets used to estimate the error distributions improves
localisation robustness with only a minor increase in the time
taken for localisation.

II. RELATED WORK

The use of spinning 3D LIDAR sensors is common in the
autonomous driving field. These sensors are often expensive
but offer a 360◦ view around the robot and a rich local
description. Levinson and Thrun [4] and Levinson et al. [5]
use a Velodyne sensor mounted on the roof of a car and
localise by aligning reflectance information in the local scan
with a map. Whereas, Baldwin and Newman [6] [7] use a
pushbroom LIDAR to build a 3D swathe description of the
local environment. The points in this pointcloud are binned
into a histogram on the ground plane. The variable density

of the histogram corresponds to multiple measurements of
a wall falling in to the same bin. The swathe and map
histograms are considered to be probability density functions
and are aligned by minimising the KL divergence between
the two. Maddern et al. [2] also build a swathe from a
pushbroom LIDAR. They discretise the points and match
the swathe and map by aligning histograms of the point
heights. Wolcott and Eustice [8] also use the distribution of
measurement heights. They build a Gaussian mixture map of
height distributions which are used for scan matching with
the measurements from a 3D spinning LIDAR.

Rusinkiewicz and Levoy [9] evaluate the convergence
properties for the ICP algorithm with various point se-
lection techniques. They show that using points uniformly
distributed according to their estimated normal is superior to
other selection techniques in most scenarios: using all points
as in the original formulation [3], using a uniformly sampled
subset of the points [10], randomly sampling points at each
iteration of the algorithm [11] and sampling points based on
intensity gradient where available [12].

Rather than rely on precise data association, Sunderhauf
and Protzel [13] use switchable constraints in their SLAM
formualtion to turn possible outliers off from within the opti-
misation. Biber and Duckett [14] present dynamic maps that
handle temporal change by storing multiple maps at different
timescales. At localisation the map that best explains the
sensor data is used for scan matching. After each localisation
iteration local short term maps are updated online, whilst
long term maps are updated offline. McManus et al. [15] use
distraction suppression, to ignore dynamic objects in stereo
images, to improve visual odometry. They do this by masking
parts of the image deemed to be from dynamic objects. First
a 3D pointcloud map is produced. The map is presumed
to be static. At a known camera pose, the pointcloud can
be projected into the image to produce a depth image. This
depth image is compared with a depth image calculated from
images from a stereo camera. Disagreement between the two
depth maps is considered to be result of non-static objects
in the live images. Pixels in disagreement are subsequently
marked as distractions and not used in the visual odometry
pipeline.

III. LOCALISATION

A. Aligning the swathe and map pointclouds

We frame localisation as a geometric alignment problem,
where the pose of the robot minimises the sum of the squared
alignment errors between the swathe pointcloud S and the
map pointcloud M as in Equation 1. The function g(x, si)
transforms the swathe point si with the SE(3) transform
characterised by x and produces the point qi which is
referenced to the map co-ordinate frame. f(qi,M) finds
the distance from the transformed swathe point qi to the
nearest point in the map pointcloud M , which is treated as
the alignment error for the swathe point. Minimising the sum
of the square of these errors is the typical formulation of ICP



and can be solved using gradient based optimisation.1 A well
aligned swathe and map can be seen in Figure 3.

x∗ = argmin
x

si∈S∑
i

f(g(x, si),M)2 (1)

B. Problem robustness

As we expect our swathe pointcloud to include mea-
surements from outliers that do not feature in our map
pointcloud and that are subject to measurement noise, we
add a Huber kernel loss function ρ(x) to each point for
increased robustness [17]. Note that the objective function
is robustified by the Huber kernel ρ(x) and this is able to
defend against some outliers in the solve. However, it is
not sufficient for the drastic spatial change seen in examples
such as Figure 4. The objective function contains a weight
wi that corresponds to the probability that si is an outlier.
The selection of this weight is the purpose of our distraction
suppression system and is detailed in Section V. Our new
robust objective function is given in Equation 2.

x∗ = argmin
x

si∈S∑
i

wiρ(f(g(x, si),M)2) (2)

C. Nearest neighbour search

To find the distance between each swathe point and the
map, a k-d tree of the map pointcloud is built. At each
iteration of the minimisation problem, the nearest neighbour
of each swathe point is found. A k-d tree search is on average
an O(log n) operation. Searching for nearest neighbours is
the most time-consuming element of the problem minimisa-
tion. For this reason, the fewer swathe points added to the
problem and the fewer iterations that have to occur before
convergence the quicker localisation can occur.

IV. ESTIMATING ERROR DISTRIBUTIONS ON A POINT BY
POINT BASIS

A. Aggregating swathe errors

Logged data contains the correspondences and distances
between each swathe point and the map pointcloud in the
termination state of the optimisation. First, we filter the
logged data to extract non-overlapping swathes, this ensures
that each swathe measurement is used just once. The errors
of each swathe-map correspondence are then aggregated in a
histogram for each map point. The histogram bins correspond
to errors for point-to-point separation of 0-10cm, 10-20cm,
20cm-30cm, 30-40cm, 40-50cm, 50cm+. Further localisation
runs update the bin counts of these histograms. This allows
us to add many localisation runs without increasing the
memory footprint of the error distribution.

1To solve this non-linear least squares problem we use the Ceres-Solver
C++ library [16]

Fig. 3: A localisation event from an urban scene. The map
pointcloud can be seen in grey and the swathe pointcloud in
colours yellow-orange-red to show increasing cost as dictated
by its error according to the map. In this scene we can see
good alignment between the static elements of the swathe
and map but pedestrians of the scene have high cost. The
red, green and blue lines trailing into the distance are co-
ordinate frame axes indicating the robot’s previous poses.

B. Bayesian smoothing of error distributions

Each map point now has a histogram of errors attached
to it. Some map points will have had no correspondences
because they are from dynamic elements that have since
left the environment. This is an example of the zero count
problem or sparse data problem[18]. A Bayesian approach
says that these map points have some non-zero probability
of being used in the future. We apply Bayesian smoothing
to the histograms to produce predictive distributions using
a Dirichlet-multinomial model. This ensures that every error
for a map point has non-zero probability.

The Dirichlet distribution is the multivariate generalisation
of the Beta distribution [18]. In our case the dimensionality
corresponds to the number of error bins, so is 6. For a map
point i we observe Ni errors, each of which corresponds
to a bin in the error histogram. The bin counts Di =
{x1, ..., xNi

}, where xi ∈ {1, ..., 6}. As the errors are from
different swathe measurements we can assume they are iid,
so the likelihood is given by the multinomial distribution
given in Equation 3, where Nk is the number of times error
k occurred.

p(Di|θ) ∝
K∏
k=1

θNk

k (3)

The Dirichlet distribution is conjugate to the multinomial
distribution and has support over K-dimension probability
simplex. The form of our prior with K = 6 is



Dir(θ|α) =
1

B(α)

K∏
k=1

θαk−1
k I(x ∈ SK) (4)

Due to the Dirichlet distribution being the conjugate prior
of the multinomial distribution our prior is also a Dirichlet
distribution

p(θ|Di) ∝ p(Di|θ)p(θ) (5)

∝
K∏
k=1

θαk+Nk−1
k (6)

= Dir(θ|α1 +N1, ..., αK +NK) (7)

For a Dirichlet distribution Dir(x|α1, ..., αK) the expected
value of a value xk is given by Equation 8.

E(xk) =
αk
α0

where α0 =
∑
k

αk (8)

Considering Equations 7 and 8 the posterior predictive is
given by Equation 9.

p(X = i|D) = E(θj |D) =
αi +Ni∑
j αj +Nj

(9)

Initially we assume each map point has errors of equal
probability and set the concentration parameters αj = 1 ∀j
the posterior predictive becomes Equation 10, where K = 6.

p(X = i|D) = E(θj |D) =
1 +Ni

K +
∑
j Nj

(10)

Equation 10 gives a probabilistically rigorous method of
generating likelihood distributions for the errors of map
points in a simple manner. The low complexity of this
technique is attractive when a map pointcloud can contain
hundreds of thousands of points. These distributions provide
a basis for labelling map points as inliers or outliers.

As well as calculating these likelihood distributions on a
per point basis we also calculate a distribution for all points
in a local region of the map. In this way, we have a place
dependent expectation of point errors.

V. SUPPRESSING DISTRACTIONS

The motivation for supressing distractions can be seen in
Figure 2, which shows outlier measurements from a hole in
the map caused by a bus. These high cost outliers not only
distort the minimisation problem, sometimes disastrously, but
they also slow the solve down by increasing the total number
of k-d tree searches. We should remember that each point
search in a k-d tree is on average an O(log n) operation.
Ideally we would not add these outliers to the objective
function at all.

In Equation 2 we introduced a weight wi that allows us
to model the probability of a swathe point being an outlier.
This weight is calculated by finding the map point closest to
the swathe point and examining its error distribution. Strictly,

Fig. 4: A section of our map pointcloud that has been
localised against with 5 datasets collected over the course
of a month. The localisation error data has been aggregated
across the datasets and the error distributions have been
calculated. The colour of each point indicates the skew of
the point’s error distribution. Blue colour indicates a posterior
skewed towards low error correspondences and is typical for
static elements like the walls. Lime green indicates a uniform
posterior and is typical for dynamic elements that have not
been seen since the map survey e.g. the van and refuse
lorry. Gold indicates a posterior skewed towards high error
correspondences and can be seen surrounding the shadows
cast by the refuse lorry and the van.

this correspondence between map and swathe points varies as
the swathe is transformed via the estimated pose. However,
we have found that calculating the weight for each swathe
point once per minimisation is preferential, as it drastically
reduces the number of required nearest neighbour look-ups
and the increased speed counteracts the reduced modelling.
As a result, the likelihood of each swathe point being an
outlier is calculated prior to optimisation. The swathe is
first transformed by the predicted pose. Each point’s nearest
neighbour in the map is found using a k-d tree (this adds
some computational cost over the baseline system but we
will see later that it is an acceptable overhead). We now use
the error distributions (estimated in Section IV) to decide the
likelihood of a map point’s trustworthiness and, in turn, infer
the credibility of the swathe point.

First, for each map point, we calculate the median error
µp = med(p(X|D)) of the posterior predictive in Equation
10. Then we calculate the population median µs of the error
of all points that could be associated to the swathe in a local
region. Note therefore that µs varies as the vehicle moves. A
simple and fast method of calculating the weight wi for the
swathe point si and thereby partitioning it (inlier / outlier)
is reached via



wi = p(si = outlier|pj) =

{
0.0 if µp > µs

1.0 otherwise
(11)

Equation 11 shows how map points are labelled as outliers.
Any swathe point si that corresponds to an outlier map point
pj) is rejected from the optimisation by being given weight
zero (Equation 2). Figure 4 illustrates the error distributions
for a map pointcloud, swathe points corresponding to gold
points will be rejected, while swathe points corresponding to
blue points will be kept.

VI. EVALUATION

Evaluating the performance of state-of-the-art localisa-
tion is non-trivial as ground truth does not exist. Often
measurements from GPS/INS systems are used to assess
the performance of localisation. However, the reason that
local sensing is required for autonomous vehicles is because
GPS/INS systems are unreliable and suffer gross error in
urban environments. Whilst we believe that the improved ro-
bustness that modelling map outliers improves performance
everywhere it is easiest to quantify the performance in the
areas which were subject to catastrophic error with a baseline
system.

A. Characterising localisation error

We characterise localisation failure by large discrepancies
between the input and output pose from localisation. This
captures the localisation noise that is being passed to an
autonomous vehicle’s control system. We are specifically
interested in errors that correspond to lateral translation (in
our co-ordinate frame this corresponds to y) and errors in
yaw angle. These two elements have been chosen as they
dominate the ability of the vehicle to follow a path.

In the results presented, we arbitrarily characterise local-
isation failure as translation jumps of magnitude 10cm or
more and rotational jumps corresponding to 1◦ or more.
The following results show that the addition of distraction
suppression to our baseline system allows us to localise with
much greater robustness for a minor increase in computa-
tional overhead.

B. Robotcar 10km datasets

The seven datasets used in this work were collected
using the Mobile Robotics Group’s Robotcar platform in
Oxford city centre [19]. The data used in these experi-
ments is available for preview (and are now available to
download) at http://robotcar-dataset.robots.
ox.ac.uk/. The particular datasets used are listed in Table
I. The data was collected over the course of a month at
different times of day in varying weather. One dataset was
used to produce the map. Five were then localised against
the map to produce error data. This error data was then
attached to the map in six layers such that we could test
the effect of adding more error data over time. In effect, we
end up with six maps that each share a base pointcloud but
with increasing amounts of error data appended to it. Map

0 has no error data attached to it so reverts to the baseline
system. The map is made up of multiple files, each of which
contributes to a total map of 3.9GB for 10km of driving.
The remaining dataset was used for localisation with the
augmented map error distributions and is used to evaluate
the proposed system.

0 2015-06-23-13-06-07 Map
1 2015-06-26-08-09-43 Error data
2 2015-06-30-13-31-45 Error data
3 2015-07-03-15-23-28 Error data
4 2015-07-10-10-01-59 Error data
5 2015-07-14-16-17-39 Error data
6 2015-07-29-13-09-26 Localisation analysis

TABLE I: Datasets used for mapping, error data aggregation
and localisation experiments.

C. Results

Table II shows the number of localisation failures for each
of the six levels of map augmentation. As the amount of
error data attached to the map is increased the number of
localisation failures decreases. The map with the most error
data attached to it (Map 5) exhibited no localisation failures.
As a result the following analysis will use the poses estimated
by the localiser with Map 5 as the baseline poses that the
other systems will be considered against.

Map Number Datasets appended Number of localisation failures
0 - 14
1 1 8
2 1,2 6
3 1,2,3 2
4 1,2,3,4 1
5 1,2,3,4,5 0

TABLE II: Summary of localisation failures for varying
levels of error augmentation.

Using the poses estimated by the localiser using distraction
suppression with Map 5, we can quantify the effect of adding
more error data to the base map. Figure 5 shows the error
histograms for the five levels of map augmentation. We
can see from the figure that errors are small generally but
also that as the amount of error data used is increased that
errors condense around zero for translational and rotational
components. This is confirmed by Figure 6 which shows
the errors are consolidating around zero as the number of
localisation runs (datasets) used in the error distribution
increases.

Table III shows that the time taken for optimisation
increases with swathe length. This is due to the increased
number of points being solved for. We can also see that
adding distraction suppression system increases the time
required for localisation. This is due to the overhead of
more nearest neighbour searches in determining outliers. In
our domain this overhead is acceptable given the increased
localisation robustness afforded by distraction suppression.
Adding more error data to the distributions does not increase
the memory footprint nor the time taken to label an outlier

http://robotcar-dataset.robots.ox.ac.uk/
http://robotcar-dataset.robots.ox.ac.uk/
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(a) Map 0 translation error
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(b) Map 0 rotation error
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(c) Map 1 translation error
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(d) Map 1 rotation error
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(e) Map 2 translation error
Rotation (deg.)
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(f) Map 2 rotation error
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(g) Map 3 translation error
Rotation (deg.)
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(h) Map 3 rotation error
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(i) Map 4 translation error
Rotation (deg.)
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(j) Map 4 rotation error

Fig. 5: Histograms of translational and rotational errors for
the five maps used. Errors are calculated using the Map
5 poses. We can see that each system has relatively small
error but a more-peaked distribution for Map 4 shows the
superior agreement. Note we are considering small errors
here. Translational errors smaller than 5cm and rotational
errors smaller than 0.5 degrees.

Number of runs included in prior data
0 1 2 3 4

E
n
tr

o
p
y
 o

f 
e
rr

o
r 

d
is

tr
ib

u
ti
o
n

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x
y
z
roll
pitch
yaw

Fig. 6: Entropy of the error histograms shown in Figure 5.
The decreasing entropy shows that the errors are becoming
more ordered. In this case, it shows that very small errors
are more likely as the number of localisation runs used in
error aggregation increases.

due to us storing the errors with a histogram. All mapping
and experiments were carried out on a 2012 Macbook 2.6
GHz Intel Core i7 laptop.

Mean localisation time (ms)
Swathe length (m) Baseline system +Distraction Suppression

2 33 50.5
3 36.4 59.6
4 73.8 84.5
5 107.5 116.0

TABLE III: Timing statistics for the baseline system and
baseline with distraction suppression enabled. The swathe
length is the distance over which laser measurements are
cached in the swathe. Simply, the longer the swathe length
the more points that a swathe will contain and the greater
the computational burden.

Figure 7 provides a descriptive analysis of a catastrophic
failure of the base system while the system with distraction
suppression is unaffected. The left column corresponds to
the baseline system and the right column to distraction
suppression enabled system for a swathe of length 3m. Rows
correspond to a moment in time. Row 0 (top) shows the
vehicle approaching the hole cast by a refuse truck as detailed
in Figure 4. Both systems approach well localised. Row
1 shows the vehicle level with the hole. With distraction
suppression the measurements of the un-mapped wall cor-
respond to map points identified as outliers and have been
rejected (blue colour). The vehicle remains well localised by
features on the opposite wall. In the baseline system (left)
the measurements of the un-mapped wall are of high cost
(see red colour) and have distorted the localisation. Row 2
shows the same instant as Row 1 but from above. In this
view we can see that the baseline system has been “twisted”
by the red wall points resulting in a lateral and yaw error.
Row 3 (bottom) shows the baseline system lost and unable
to recover whereas the distraction suppression continues to
localise and reject outliers.



Fig. 7: Matrix of stills from localisation. Grey points show
the map pointcloud. Swathe points are yellow-orange-red
ranging from low to high cost as calculated in the objective
function. Blue points (right column only) are swathe points
that were rejected prior to the optimisation due to their
correspondence to high error map points but are shown for
illustrative purposes.

VII. CONCLUSION

Laser based localisation with a single 2D laser is a well
mined area of research. But when one tries to apply it to large
(km) scale and long duration deployments new problems
arise. Largest amongst these is dealing with local yet drastic
spatial change. Gross changes (e.g occlusions from trucks)
are typically handled by solving an objective function with
robust statistics to implicitly model outliers. We have shown
that this is not always sufficient for robust localisation and
have proposed a spatially varying model which captures the
value/trustworthiness of any point when involved in pose
optimisation. We have shown the proposed system exhibits
superior performance to a baseline localiser as we leverage
more and more error data from our experiences.
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