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Abstract— We propose an efficient way to output better cali-
brated uncertainty scores from neural networks. The Distilled
Dropout Network (DDN) makes standard (non-Bayesian) neural
networks more introspective by adding a new training loss
which prevents them from being overconfident. Our method
is more efficient than Bayesian neural networks or model
ensembles which, despite providing more reliable uncertainty
scores, are more cumbersome to train and slower to test.
We evaluate DDN on the the task of image classification on
the CIFAR-10 dataset and show that our calibration results
are competitive even when compared to 100 Monte Carlo
samples from a dropout network while they also increase
the classification accuracy. We also propose better calibration
within the state of the art Faster R-CNN object detection
framework and show, using the COCO dataset, that DDN helps
train better calibrated object detectors.

I. INTRODUCTION

Deep neural networks are now the default model choice due
to their impressive performance on a wide range of tasks and
benchmarks. Predictive uncertainty estimates from standard
neural networks are typically overconfident, often making
them too unreliable to be deployed in real world applications.
Bayesian Deep Learning provides uncertainty estimates at
the cost of posing neural networks as approximate Bayesian
models and drawing multiple posterior samples at test time
The timing of this approach scales linearly with the number
of samples, making Bayesian neural networks often too slow
to use in practice. In this work we propose a method for
improving the uncertainty estimates from neural networks
that is simple to implement and more readily suitable to use
in real-time applications.

By treating the model parameters as a random variable,
Bayesian probability theory allows us to compute uncertainty
in model predictions. Given a dataset D = {X ,Y} with
output prediction y ∈ Y for a new input x ∈ X , we can
compute the posterior predictive distribution:

p(y|x,D) =
∫
p(y|x,w)p(w|D)dw, (1)

by using the likelihood p(y|x,w) and a posterior distribution
over model parameters p(w|D) which accounts for predictive
uncertainty. For a non-linear neural network however, the term
p(w|D) is analytically intractable. Various approximations
to it have been proposed, but Bayesian Neural Networks
are known to be cumbersome to train and computationally
expensive to use in practice ([1]).

Dropout, a technique introduced by [2] to improve model
generalisation), has been shown by [3] to produce a Monte
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Carlo approximation to Equation 1 and that by sampling this
approximation one can obtain samples from the posterior
predictive distribution. These samples, referred to as MC-
dropout samples, are often interpreted as an ensemble of
models. The downside of the approach proposed by [3] is
that Monte Carlo sampling causes a linear increase in either
time or resources, often making it difficult to use in real-time
operation. This issue is acknowledged in [4] as well as in [5].

We propose a practical alternative for producing reliable
uncertainty estimates at test time more efficiently, without
the cumbersome sampling procedure. We propose to learn, in
a student-teacher paradigm, to produce accurate uncertainty
values by observing the Monte Carlo dropout samples at
training time only. In essence, the framework we propose
amounts to training two models: one that is simply trained
to maximise task accuracy (the teacher), and one that is
specifically trained to output better uncertainties (the student).
We refer to the latter as the Distilled Dropout Network (DDN),
as it distills knowledge from multiple Monte Carlo samples
from the teacher in order to improve the reliability of its
uncertainty scores.

Our experiments empirically demonstrate that the uncer-
tainty scores produced by DDN are indeed comparable to
those provided by an ensemble of MC-dropout predictions.
The proposed model is also computationally efficient as it
only requires a single forward-pass and does not rely on
sampling at test time. Additionally, we show that DDN also
increases the task accuracy, although that is not our main
objective.

II. RELATED WORK

Model ensembles are known to significantly improve
predictive performance ([6]) as well as to provide a way
to measure uncertainty in the space of predictors. Methods
for producing ensembles such as boosting, bagging (bootstrap
aggregating) or stacking rely on fitting multiple models to
subsets of the training data and averaging their predictions
at test time. This process reduces the variance of a single
prediction and, according to [7], leads to an increased
introspective capacity. Introspection refers to the ability of a
model to associate an appropriate assessment of confidence
to its predictions.

In a similar manner to [8] and [9], we train a student
network to match the probabilities that a high capacity
(teacher) network assigns to all output classes, a process
referred to as distillation. Unlike [8] and [9], we do not seek
a more compact version of the teacher model, but rather
a better calibrated version of it. Rather than reducing the
capacity of the student, we keep its architecture identical to

ar
X

iv
:1

80
9.

10
56

2v
1 

 [
cs

.C
V

] 
 2

7 
Se

p 
20

18



the teacher’s in a similar way to [10], who call such models
Born Again Networks (BANs).

The name dropout distillation first appeared in [11] as
an attempt to train a model that minimises the divergence
between itself and an ideal predictor (obtained by averaging
over multiple Monte Carlo samples) at training time. Their
work is different from ours as they only seek to improve
accuracy and do not address model calibration.

Our work is also similar to [5] who seek better calibrated
models and propose the use of deep ensembles. They show
that a non-Bayesian solution (ensembles) can perform just as
well as Bayesian inference in producing predictive uncertainty.
Their research findings were encouraging in the direction of
this work. However, they do not address the memory or
computational increase introduced by model ensembles. Our
research shows that an approximation to an ensemble is still
effective at producing reliable uncertainty scores.

In [12] the authors propose to analyse some factors that
cause the poor calibration of deep networks and identify that
the loss choice, network architecture and weight decay all
have an influence in this phenomenon. Our work is similar
to theirs particularly in the evaluation procedure, as they
measure calibration, accuracy and risk of neural networks
used for image classification.

Penalising confident (low entropy) output distributions is
seen as a form of regularisation by [8]. They use an entropy-
based loss term in order to penalises peaked distributions
rather than using distillation or self-distillation in order to
improve class confidence. While we do not address model
regularisation, their loss function shares similarities with ours.

III. APPROACH

Our idea is inspired by [13], which transfers knowledge
from an ensemble of models to a single (smaller) model, a
process for which they coin the term distillation. Our goal
differs from that of [13] in the sense that we do not seek
a more compressed version of the ensemble (the teacher)
model but rather a better calibrated version of it. The teacher’s
prediction is the mean of the multiple dropout samples.

A. MC-Dropout

The idea of dropout was introduced by [2] as a way to
regularise a neural network by allowing the units to be masked
during training in order to prevent their co-adaptation and
therefore limit overfitting. The mask on each weight is drawn
from a Bernoulli distribution Ber(θ), where θ controls the
probability of not dropping that weight. [2] interpret dropout
as producing an ensemble of 2n models, where n is the
number of units in a single model. [3] as well as [14] have
shown that the stochasticity introduced by dropout allows the
network to sample the model space.

Assuming that fθw is a network parametrised by w with a
dropout mask generated by Ber(θ), sampling it:

ŷ ∼ fθw(x), (2)

allows us to obtain multiple output samples ŷi from stochastic
forward-passes through the network. The predictive mean of

the ensemble is the average of the M output samples,

Efθw(y) ≈
1

M

M∑
i=1

ŷi, (3)

and the predictive variance is:

Varfθw(y) ≈
1

M

M∑
i=1

ŷi
>ŷi − E(y)>E(y). (4)

With infinite, non-i.i.d. training data, this variance converges
to 0, but given the bias currently present in many computer
vision datasets, models learnt on such datasets are far from
having a low variance when tested in real-world robotics
applications.

B. Knowledge Distillation

One of the most commonly used losses for training neural
networks that output a categorical distribution is the cross
entropy loss:

L(w) = −
N∑
i=1

yTi log (σ(fw(xi))), (5)

where yi is a one-hot encoding of the ground truth labels (1
corresponding to the true class and 0 to all others) associated
to sample xi. The softmax function σ ensures a probabilistic
output of the vector z = fw(x) of predicted logits.

With cross entropy, even when all predictions fw(x) are
correct, the network can still decrease the training loss by
increasing the probability assigned to the true class and
decreasing the ones assigned to the rest of the classes. We hy-
pothesise that this is what usually leads to the overconfidence
of state of the art neural networks. Another problem with the
cross entropy loss is that it encourages the assignment of high
probability to a single class when in reality the model could
be moderately confident in two or more classes (for instance,
it is understandable to confuse cats and dogs, particularly
when they are partially occluded).

Knowledge distillation, while having a different goal to
ours, is also motivated by allowing networks to express this
kind of uncertainty at training time. In [13], the authors claim
that seeing the probabilities assigned to incorrect classes as
well as the correct class makes student models generalise
better. In order to obtain such targets (often called ‘soft
targets’), their approach is to increase a temperature parameter
in the teacher model’s softmax function until it produces a
softer distribution over the output classes. They propose to
use two losses: a ‘hard’ cross entropy loss with the ground
truth labels (Equation 5) as well as a ‘soft’ cross entropy loss
with a high temperature in the softmax function:

σi(z) =
ezi/T∑C
j=1 e

zj/T
, , (6)

where T a temperature parameter controlling how much to
affect the output distribution. In this work, we propose a
distillation process that uses a similar mechanism in order
to produce better calibrated uncertainty scores. Rather than



raising the temperature, we use the mean prediction of
multiple dropout samples.

C. The Distilled Dropout Network

The Distilled Dropout Network (DDN) is trained to mimic
the predictions of an ensemble, using distillation in such a
way that it trains a better calibrated model. Similar to [13]
we use both the one-hot ground truth labels and a proposed
soft target distribution obtained by averaging the Monte Carlo
samples. However, the way we transfer knowledge is more
similar to [15], as we use the logits z as soft targets rather
than the probabilities produced by the softmax.

Given training data D = {(xi,yi, zi)}Ni=1 containing a
set of input examples x, ground truth labels y and the
corresponding set of distilled labels z obtained using a teacher
model gθw∗ , we train the student model fw by minimising
the loss:

L(w) = LDD(w) + λLGT(w) + γLR(w). (7)

The distilled dropout loss LDD is defined as the L2 loss with
the teacher logits z:

LDD(w) =
1

N

N∑
i=1

‖fw(xi)− zi‖22 , (8)

LGT is the standard cross entropy loss with the ground truth
labels y:

LGT(w) = − 1

N

N∑
i=1

yi log(σ(fw(xi))), (9)

and LR is a regularisation loss. The hyperparameters λ and
γ control the importance of the additional losses.

To obtain the logit target labels z, we average M MC-
dropout predictions from the teacher model gθw∗ on exactly
the same input data x:

zi =
1

M

M∑
i=1

gθw∗(xi). (10)

Using additional data in order to generate more training
samples for the student should also be possible. This includes
even samples without ground truth annotations which could
be incorporated into the student training procedure without
computing LGT. This idea will be the subject of future
research.

D. Accuracy, Calibration and Risk

In this work, two (orthogonal) metrics are of interest:
accuracy and calibration. In a classification setting where
the output vector fw(x) is a categorical distribution over C
output classes (where f cw indicates the probability assigned
to class c), accuracy is concerned with the precision of the
model’s class predictions ŷ, where

ŷ = argmax
c

f cw(x) (11)

while calibration is concerned with the quality of the
probability value assigned to that prediction:

f ŷw(x) = max
c

(f cw(x)). (12)

For instance, an introspective classifier assigning a probability
value of 0.8 to its predictions is expected to be correct roughly
8 out of 10 times.

A frequentist approach to measuring calibration is by
computing the difference between the confidence predicted
by a model and the empirical frequencies of successful
classifications made by that model. This empirical calibration
metric has been introduced in [16] and is a common choice for
measuring the quality of predictive uncertainty used in works
such as [14], [12], [17] and [18]. We measure calibration in
a similar way to [12], by assigning all output probabilities
f ŷw(x) corresponding to the predicted classes ŷ to K equally
sized bins such that Dk is the set of predictions for which
f ŷw(x) ∈

(
k−1
K , kK

]
, and computing the success frequency of

the predictions in bin Dk:

freq(Dk) =
1

|Dk|
∑

xi∈Dk

1(ŷi = yi), (13)

as well as the confidence of the predictions in bin Dk:

conf(Dk) =
1

|Dk|
∑

xi∈Dk

f ŷw(x). (14)

Our calibration metric of interest is the Mean Squared
Calibration Error (MSCE) computed as:

MSCE =

K∑
i=1

|Di|
N
|freq(Di)− conf(Di)|2. (15)

Maximum Calibration Error (MCE) is similar to MSCE but
instead of the mean it computes the maximum error between
confidence and success frequency. In the experimental evalu-
ation we show these metrics using calibration plots, where a
perfect calibration corresponds to a straight line from (0, 0) to
(1, 1). Deviation from the diagonal towards the bottom right
of the plot indicates overconfidence while deviation towards
the top left indicates underconfidence in the predictions. The
lower the MSCE and MCE scores are, the better calibrated
the model is.

Two Bayesian measures of uncertainty are the normalised
negative log-likelihood (NLL):

NLL(w) = − 1

N

N∑
i=1

log f ŷw(xi), (16)

and the entropy H of the prediction:

H(w) = − 1

N

N∑
i=1

C∑
j=1

f jw(xi) log f
j
w(xi), (17)

where C is the number of classes and N is the number of
examples. We empirically show that these measures are not
indicative of how well calibrated a model is.



IV. CLASSIFICATION EXPERIMENTS

We first evaluate the outcome of our proposed training
procedure on the task of image classification, and then extend
its usage to the problem of object detection in Section V.

A. Dataset and Network Architecture

We use the CIFAR-10 dataset ([19]) for image classification.
The dataset consists of coloured natural images of size
32× 32 pixels drawn from 10 different classes. The training
and test sets contain 50k and 10k images respectively, with
an equal class balance.

As a baseline we train a Dense Convolutional Network
(DenseNet) model architecture introduced in [20]. We use
the 40-layer configuration with a growth rate of 12 described
in [20]. More precisely, we train the network using stochastic
gradient descent (SGD) using batches of size 64 for 300
epochs. The initial learning rate is set to 0.1, and is then
divided by 10 at 50% and 75% of the total number of training
epochs. We use a weight decay of 10−4 and a Nesterov
momentum of 0.9 ([21]). The dropout rate (i.e. the probability
of retaining a unit in the network) has been set to 0.8. All
hyperparameters mentioned have been chosen according to
the original DenseNet work ([20]).

We use this model as the teacher and generate 100 Monte
Carlo samples per input for the knowledge distillation process.
The dropout rate for generating these targets has also been set
to 0.8 (typically using a dropout rate different than the one
used in training causes less accurate predictions as shown
in [17]). DDN is trained from scratch using an identical
network architecture, training regime and hyperparameter
values, the only difference being the loss function described
in Equation 7.

At test time, both networks have a dropout rate set to 1. We
occasionally refer to the baseline model as ‘No Dropout’ to
indicate a standard single forward-pass through the network
with no dropout. Although they have the same weights, the
distinction between the baseline and the teacher is that the
latter is stochastic (dropout rate set to 0.8) in order to generate
multiple Monte Carlo samples.

B. Results

DDN achieves better training and testing accuracy than the
baseline model as shown in Figure 1. The final test accuracy
of the teacher is 87%, while the student model can reach
90% test accuracy. This is also confirmed by the works of [8]
and [13]. The former claims that encouraging low-entropy
predictions is a form of model regularisation which helps the
model’s generalisation capabilities. The latter attributes it to
the fact that the student model has knowledge of the ratios
between output class confidence scores, while the teacher
does not.

As expected, the student model produces higher entropy
output probabilities than the baseline model. Of the highest
scoring predictions from the DDN, only 38% have a confi-
dence score above 0.95 compared to 77% of the predictions
made using the baseline model with no dropout. This indicates

0 50 100 150 200 250 300

Epoch

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

Baseline Train

Baseline Test

DDN Train

DDN Test

Fig. 1: Figure showing the accuracy of the proposed student
model (DDN) as well as a baseline teacher model during
training and testing on the CIFAR-10 dataset. DDN achieves
better test accuracy than the teacher model, despite being
trained on the same data with an identical training regime.

Fig. 2: Calibration plot showing the correlation between
class uncertainty and (empirical) success frequency. DDN is
our proposed student model that can produce high quality
uncertainty scores in a single forward-pass through the
network. The baseline model corresponds to using all the
units in the teacher model and MC-100 is the outcome of
sampling the model 100 times and averaging the predictions.

that the baseline is not only less accurate in its predictions,
but also more confident. DDN does not explicitly penalise
low-entropy (overconfident) distributions in training but rather
encourages predictions to also assign some probability mass
to classes which it is less sure about.

Figure 2 shows that the probability scores assigned to the
test samples by DDN are better calibrated (closer to the ideal
calibration) than those assigned by the baseline model. The
training uses as targets 100 MC-dropout samples from the
teacher model. Throughout this work the teacher has the same
model weights as the baseline, the only difference being that
its dropout rate has been set to 0.8 instead of 1 in order to
produce stochastic samples. This figure also confirms that
the DDN predictions are slightly under-confident, while the
baseline model predictions are overconfident, a bias that tends
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Fig. 3: Risk-Coverage plot showing the percentage of mistakes
(risk) for a given coverage of the test data. The predictions
are ordered by confidence such that in the low coverage areas
of the graph only the most confident predictions are used. A
coverage value of 1 corresponds to using all the samples in
the test set.

to be preferred in high-risk applications. We also compare
the baseline and DDN models to a very well calibrated
model given by 100 Monte Carlo samples (MC-100). The
variance in the distilled models as well as MC-100 is a
result of the stochasticity in the training procedure (dropout,
random shuffling of training samples) observed in retraining
the models. The plot shows the mean and variance of three
distilled models and three MC-100 models.

The model’s risk, shown in Figure 3, is defined as as the
percentage of mistakes made for a particular coverage of
the dataset (i.e. the proportion of test samples used). The
coverage is computed as the percentage of test samples where
the model’s confidence is above a threshold which we vary
from 0 to 1 in Figure 3. The figure shows that at a low
coverage of the dataset, a low risk is expected since only the
most confident predictions are used. However, for a higher
coverage, DDN has the lowest risk, followed by MC-100.
The risk values in Table I correspond to a full coverage of
the test set.

Table I shows the calibration scores for the four models
with DDN being a competitive alternative to MC-100. Besides
the quality of the calibration, an important distinction between
the models is the time it takes to produce a prediction. As
this metric depends on the model architecture, we measure it
in the number of forward-passes through the network. The
ensemble models require, 10 resp. 100 forward-passes, while
our baseline and DDN models make a single prediction.

Table I also shows that the baseline model has the best
NLL score, while the other calibration metrics indicate that
it has the worst calibration. Lower NLL and entropy values
indicate increased confidence in the prediction but do not
necessarily correlate well with the accuracy of the model.

V. OBJECT DETECTION EXPERIMENTS

Our proposed dropout distillation method can also produce
better calibrated object detector models. We show this by

Metric Baseline MC-10 MC-100 DDN
MSCE 0.9676 0.0334 0.0330 0.0927
MCE 5.0694 0.8898 0.5250 1.0790
Risk 0.1331 0.1209 0.1169 0.1002
NLL 0.0634 0.1293 0.1318 0.1267

Entropy 0.1331 0.2661 0.2790 0.4445
Time 1 10 100 1

TABLE I: Calibration results on CIFAR-10 test set using
various metrics. Best outcome is displayed in bold and second
best is underlined. The baseline model is a teacher model
used with no dropout and a single forward-pass through the
network. MC-10 and MC-100 are ensemble models given
by 10 and 100 stochastic samples from the baseline model.
DDN is our proposed student model learnt from scratch via
(dropout) knowledge distillation from the baseline.

using the Faster R-CNN framework acknowledged for its
state of the art performance ([22]). While making minimal
modifications to the original framework, we fine-tune the
original models with a distillation loss until calibration is
improved.

A. Dataset and System Architecture

All experiments are performed on the COCO dataset
([23]). The COCO dataset consists of roughly 80k training,
35k validation and 5k test images. The dataset covers
81 class categories which includes the ‘background’ class
usually interpreted as no detection of interest. The network
architecture considered is ResNet ([24]). Because a Faster
R-CNN detection model requires significantly more time
and computation to train from scratch, the student model is
only fine-tuned using the distillation loss. As teacher models
(baselines) we use the original Faster R-CNN models trained
on COCO: ResNet-50 and ResNet-101 trained with the open-
source implementation of [25].

Faster R-CNN is a two-stage detection framework, where
the first stage consists of a region proposal network (RPN)
that produces class-agnostic object proposals called Regions
of Interest (RoIs). The RPN is a fully convolutional network
that simultaneously predicts object bounds and ‘objectness’
scores at each position. The second stage of the Faster R-
CNN framework consists of a bounding box classifier as well
as a bounding box regressor which take as input the RoIs
and outputs the final bounding box scores and locations. The
two stages are trained jointly.

For our purpose, once a baseline model has been trained,
we freeze the RPN model weights. The distilled dropout
loss will only improve the object classifier, while the RPN
will produce the same set of proposal boxes as the original
models. We keep all classes and all image data exactly as
in the original training procedure. As is common practice,
the models are pre-trained on the ImageNet dataset ([26])
and fine-tuned on the COCO training and validation data for
490k epochs.

For each of these baseline models, we generate the DDN
target logits from multiple MC samples. Due to computation
constraints, we limit ourselves to 10 samples. We test different



mAP[.5,.95] mAR[.5,.95] MSCE MCE NLL

RES50 Baseline 0.292 0.413 1.638 2.064 1.109
DDN 0.292 0.408 0.757 1.299 1.488

RES101 Baseline 0.320 0.442 1.816 2.285 1.109
DDN 0.318 0.433 0.706 1.347 1.525

TABLE II: Faster R-CNN test results for baseline models
(ResNet50 and Resnet101) with no dropout and DDN models.
Best outcome is shown in bold. In terms of calibration
(MSCE, MCE), DDN shows a significant improvement over
the baseline at a very small cost in terms of model accuracy.

overlap threshold scores in order to generate the logit targets
data (0.3, 0.5 and 0.7). For the ground truth bounding boxes
that do not have any detections associated to them from the
sampling procedure, we set as target for the distillation loss a
uniform distribution over the output classes to encourage the
student model to be very uncertain. This is motivated by the
fact that since no detections were associated to it, the ground
truth bounding box must be a difficult sample. Incorporating
this type of information in the training procedure helps prevent
DDN from making mistakes with high confidence.

All hyperparameters are set to values recommended by
[25]. In training both the baseline models and the DDNs, we
compute losses only on predictions that score higher than
0.05, with a minibatch of 128 examples per image and a
single image per batch. We use an initial learning rate of
0.001 with a reduction factor of 0.1 after 30000 epochs, a
weight decay of 0.0005, a momentum of 0.9 and an IoU
overlap between a RoI and a ground-truth bounding box of
0.5 used to compute LGT. The number of training iterations
to produce the baseline models is 490k.

B. Results

Figure 5 shows the MSCE and MCE results for different
values of the weight parameter λ on the distilled dropout
loss. We also show the baseline models which do not use a
distillation loss for comparison. The results in Table II are
reported for λ = 0.5.

Table II shows that at a very small decrease in mean
average precision (mAP) and the mean average recall (mAR),
for both ResNet50 and ResNet101, DDN shows a significant
improvement in MSCE and MCE scores. Both mAP and
mAR are reported for all IoU overlap thresholds between
50% and 95%. The fine-tuning has been performed for an
additional 1000 epochs (more fine-tuning was found to have
diminishing returns) on the training and validation dataset.
The evaluation results have been computed on the test dataset
consisting of 5000 images. While for the classification task
DDN shows an improvement in classification accuracy as
well as calibration, for object detection it does not appear to
make a significant difference. We believe this is due to the
fact that the student model is not trained from scratch and
that the training procedure requires additional losses (such
as the bounding box regression loss) which also have an
influence on the detection accuracy.

Figure 4 shows the calibration improvement of DDN

models over the baseline Faster R-CNN models for both
ResNet50 and Resnet101. Subfigures 4a, 4b and 4c correspond
to different IoU overlap thresholds of 0.3, 0.5 resp. 0.7 used
to distinguish between true and false positive detections,
while the IoU threshold for obtaining the target scores for
distillation which has been set to 0.5. The outcome of using
the average of 10 Monte Carlo samples (MC-10) is also shown
for comparison. On the object detection task, the calibration
outcome (measured by MSCE) of our proposed model is
less close to that of the ensemble when compared to the
calibration results on the classification task. This could be
due to the fact that only 10 MC-dropout samples have been
used to generate the distillation training targets, while for
classification the targets were generated from 100 samples.

VI. DISCUSSION

A prediction made by sampling the model space or by
performing full Bayesian inference takes into account the
uncertainty in model parameters w. The advantage that
Bayesian models have over point-estimates of the posterior
predictive distribution is that they incorporate this uncertainty
into the prediction. The model that we propose is still a point
estimate that only offers an approximation to multiple dropout
samples from the model space and it might not be able to
capture as well as a Bayesian model when a test sample
should have high uncertainty. It remains to be investigated
how the two types of inference compare when the test data is
very different from the training data. Future work consists of
investigating the performance of DDN on out-of-distribution
and adversatial input samples.

VII. CONCLUSION

In this work we introduce an efficient way to output better
calibrated uncertainty scores from neural networks used for
classification and detection. The Distilled Dropout Network
(DDN) makes standard neural networks more introspective
and more readily suitable to be deployed in real world
applications, where multiple Monte Carlo samples can incur
a significant slowdown depending on the number of samples
required. DDN is trained with knowledge distilled from a
teacher model using an additional loss which prevents it from
being overconfident. We demonstrate on the tasks of image
classification and image detection that our proposed method
improves model calibration and confirm the hypothesis that
student models increase task accuracy over their teachers.

APPENDIX

Figure 6 shows some examples of confidence scores
assigned by DDN as well as the baseline on the CIFAR-10
test set. Figure 6a shows examples in which both models score
the true class highest but DDN also assigns some probability
to similar output classes. Such examples are most prevalent
and demonstrate DDN’s capacity to be more uncertain in its
predictions. Figures 6b and 6c show some of the samples for
which the baseline model assigns the highest probability to
an incorrect class while DDN classified the sample correctly.
Such examples make up for 6.75% of the test dataset. They
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Fig. 4: Calibration plot showing the correlation between class uncertainty and (empirical) success frequency of the baseline
ResNet50 and ResNet101 models as well as DDN. The three subfigures correspond to different IoU overlap thresholds used
to distinguish between true and false positive detections. Note that this IoU threshold is different than the one used for
obtaining the target scores for distillation which has been set to 0.5.
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Fig. 5: Calibration scores for various metrics for different weight values λ on the distillation loss. IoU threshold for generating
this plot has been set to 0.5.

are the success cases of DDN as the student network is able to
change the prediction outcome and increase the task accuracy
in addition to improving the model calibration. We note that
the opposite, i.e. the percentage of samples classified correctly
by the baseline but not by DNN, only makes up for 3.45% of
the test dataset. In the majority of the success case examples
the increase in probability assigned to the true class between
the baseline and DDN is substantial (the mean is 0.64 and
the variance is 0.04). Figure 6b shows examples to which the
baseline model assigns a confidence score higher than 0.99
to an incorrect class (overconfident and wrong). Figure 6c
shows some examples for which the baseline model was close
to correctly classifying the sample and its mistakes are more
understandable (i.e. the bird image gets classified as a plane,
the dog as a cat or the car as a truck). A percentage of 6.56%
of test samples are classified incorrectly by both models. On
70% of these examples, DDN assigns a higher probability to
the true class. Figure 6d shows some of these examples. In
fact, 83.23% of all test samples are in this category.

Figure 7 shows some example of Faster R-CNN bounding
box predictions using the baseline and proposed models as
well as their associated ground truth bounding boxes. Despite
the region proposals being fixed, the predicted bounding
boxes are not identical due to the bounding box regression

procedure and non-maximum suppression. We show success
examples where DDN lowers the confidences of false positive
detections when compared with the baseline model as well
as failure cases where this score is increased.
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0.65/0.96 0.54/1.00 0.69/0.94 0.55/0.88 0.57/1.00 0.52/0.80 0.45/0.86

(a) Test samples whose classification outcome is correct for both the baseline model and for DDN. The samples chosen illustrate the most
prevalent outcome scenario in which the output distribution predicted by DDN has higher entropy than the one predicted by the baseline.
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 1.00 -> 0.56  
in 8743 class 0  1.00 -> 0.60  
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 0.99 -> 0.42  
in 6994 class 3

 1.00 -> 0.88  
in 1942 class 2

 0.99 -> 0.69  
in 3995 class 7  1.00 -> 0.98  

in 5649 class 0

 1.00 -> 0.75 
 in 7571 class 4

0.90/0.00 0.56/0.00 0.75/0.00 0.88/0.00 0.60/0.00 0.98/0.00 0.64/0.00

(b) Test samples whose classification outcome is incorrect for the baseline model but correct for DDN. Moreover, the baseline model
makes its predictions with extremely high confidence such that the true class gets assigned almost 0 probability.
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1353 class 3
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in 101 class 5

0.97/0.42 0.68/0.43 0.82/0.46 0.97/0.30 0.97/0.49 0.98/0.40 0.96/0.44

(c) Test samples whose classification outcome is incorrect for the baseline model but correct for DDN. Similar to the previous examples,
they illustrate the success cases of our proposed method, in which it doesn’t only improve calibration, but it also increases the accuracy of
the model.

 0.29 -> 0.21 
 in 9764 class 2 0.03 -> 0.35  

in 9336 class 3

0.06 -> 0.32  
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0.00 -> 0.19  
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(d) Test samples incorrectly classified by both models to which DDN assigns a lower probability to the top scoring (wrong) class. In
almost all cases, DDN assigns some probability to the true class as well, often assigning to it its second highest probability score. Making
mistakes with lower confidence is one of the essential characteristics of an introspective classifier.

Fig. 6: Qualitative examples of CIFAR-10 classification. The probability assigned to the true class is shown on top of each
image sample, with the score assigned by DDN on the left and the score assigned by the baseline model on the right. Below
the test sample, we show the probability scores assigned to all 10 output classes by DDN (in red) and by the baseline (in
blue, as an inverted histogram).
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(a) Example detections to which DDN (right) assigns a probability of 1.0, same as the baseline (left) to
the larger, centred object, while decreasing the confidence assigned to the smaller detection box which
seems visually more difficult to classify correctly. In this case, the box whose confidence is decreased is
a true positive detection.
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(b) Example detections to which both DDN and the baseline assign a high confidence to the large,
centered object. DDN assigns a lower confidence to the false positive detection, which is the expected
behaviour for the proposed model.
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(c) Example image in which both models assign a high probability to the true positive detections.
Furthermore DDN reduces the confidence assigned to the false positive prediction such that it corrects a
detector operating with a threshold of 0.5 on the detection scores.

Fig. 7: Faster R-CNN detection examples shown for a baseline model (on the left) and DNN (on the right). The magenta
bounding boxes are the ground truth annotations and the blue bounding boxes are the predicted detections shown together
with the class confidence score. The detection model used is ResNet50 operating with a detection threshold of 0.5.
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(a) Example image where DDN assigns a lower confidence score to a false positive detection (the bird
feathers) but increases the confidence of another one (the curtain). The latter shows a failure case of our
proposed model.
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(b) Example image of DDN decreasing its confidence on a false positive detection (the no smoking sign)
while maintaining maximum probability to the true positive detections (child and skateboard).
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(c) Example image where DDN increases its confidence on a false positive detection (failure case). This
example shows an interesting classification case where the object is visually very similar to the true
classification class.

Fig. 8: Faster R-CNN detection examples shown for a baseline model (on the left) and DNN (on the right). The magenta
bounding boxes are the ground truth annotations and the blue bounding boxes are the predicted detections shown together
with the class confidence score. The detection model used is ResNet50 operating with a detection threshold of 0.5.
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