
 http://ijr.sagepub.com/
Robotics Research

The International Journal of

 http://ijr.sagepub.com/content/29/8/958
The online version of this article can be found at:

 
DOI: 10.1177/0278364910369268

 2010 29: 958 originally published online 4 May 2010The International Journal of Robotics Research
Gabe Sibley, Christopher Mei, Ian Reid and Paul Newman

Vast-scale Outdoor Navigation Using Adaptive Relative Bundle Adjustment
 
 

Published by:

 http://www.sagepublications.com

On behalf of:
 

 
 Multimedia Archives

 can be found at:The International Journal of Robotics ResearchAdditional services and information for 
 
 
 
 

 
 http://ijr.sagepub.com/cgi/alertsEmail Alerts: 

 

 http://ijr.sagepub.com/subscriptionsSubscriptions:  

 http://www.sagepub.com/journalsReprints.navReprints: 
 

 http://www.sagepub.com/journalsPermissions.navPermissions: 
 

 http://ijr.sagepub.com/content/29/8/958.refs.htmlCitations: 
 

 at Oxford University Libraries on July 25, 2011ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/
http://ijr.sagepub.com/content/29/8/958
http://www.sagepublications.com
http://www.ijrr.org/
http://ijr.sagepub.com/cgi/alerts
http://ijr.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://ijr.sagepub.com/content/29/8/958.refs.html
http://ijr.sagepub.com/


Gabe Sibley
Christopher Mei
Ian Reid
Paul Newman
Department of Engineering Science,
University of Oxford, Oxford OX1 3PJ, UK
{gsibley, cmei, ian, pnewman}@robots.ox.ac.uk

Vast-scale Outdoor
Navigation Using
Adaptive Relative
Bundle Adjustment

Abstract

In this paper we describe a relative approach to simultaneous local-
ization and mapping, based on the insight that a continuous relative
representation can make the problem tractable at large scales. First, it
is well known that bundle adjustment is the optimal non-linear least-
squares formulation for this problem, in that its maximum-likelihood
form matches the definition of the Cramer–Rao lower bound. Unfor-
tunately, computing the maximum-likelihood solution is often pro-
hibitively expensive: this is especially true during loop closures,
which often necessitate adjusting all parameters in a loop. In this
paper we note that it is precisely the choice of a single privileged
coordinate frame that makes bundle adjustment costly, and that this
expense can be avoided by adopting a completely relative approach.
We derive a new relative bundle adjustment which, instead of optimiz-
ing in a single Euclidean space, works in a metric space defined by
a manifold. Using an adaptive optimization strategy, we show exper-
imentally that it is possible to solve for the full maximum-likelihood
solution incrementally in constant time, even at loop closure. Our ap-
proach is, by definition, everywhere locally Euclidean, and we show
that the local Euclidean estimate matches that of traditional bundle
adjustment. Our system operates online in realtime using stereo data,
with fast appearance-based loop closure detection. We show results
on over 850,000 images that indicate the accuracy and scalability
of the approach, and process over 330 GB of image data into a rel-
ative map covering 142 km of Southern England. To demonstrate a
baseline sufficiency for navigation, we show that it is possible to find
shortest paths in the relative maps we build, in terms of both time and
distance. Query images from the web of popular landmarks around
London, such as the London Eye or Trafalgar Square, are matched to
the relative map to provide route planning goals.
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1. Introduction

Bundle adjustment is the optimal non-linear least-squares so-
lution to the “full” simultaneous localization and mapping
problem (SLAM), in that it solves for the maximum-likelihood
solution given all measurements over all time (Triggs et al.
2000). The goal in bundle adjustment is to minimize error be-
tween observed and predicted image-measurements of n three-
dimensional (3D) landmarks sensed from m sensor poses (or
frames). Measurements and parameter estimates are usually
considered to be normally distributed, and the problem is typ-
ically tackled with non-linear least-squares optimization rou-
tines that make use of the normal equations (Sorenson 1980).
The linearized system matrix that appears in this process is
recognized as the Fisher information matrix, which in turn
defines the Cramer–Rao lower bound that is used to assess es-
timator consistency and optimality. A consequence is that bun-
dle adjustment is the optimal non-linear least-squares SLAM
algorithm.

The cost of optimizing the bundle adjustment objective
function is cubic in complexity (in either m, the number of
frames, or n, the number of landmarks). Even if sparsity in
the problem-structure can be exploited (Krauthausen et al.
2006! Agarwal et al. 2009), for large and growing problems,
the cost can quickly prohibit realtime solutions. This is espe-
cially true during loop closure, when all parameters in the loop
must be adjusted. In a single coordinate frame, the farther the
robot travels from the origin, the larger position uncertainty
becomes. Errors at loop closure can therefore be arbitrarily
large, which in turn make it impossible to compute the full
maximum-likelihood solution in constant time (here the “full”
solution is the one that finds the optimal estimates for all para-
meters).

There is no imperative to estimate everything in a single
coordinate frame! for instance, most problems of autonomous
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Fig. 1. The London dataset. This shows the 121-km path taken between Oxford in the upper left and London in the bottom right.
We compute visual estimates for 89.4% of this trajectory and fall back on inertial sensing for the remainder. Loops are closed
using appearance-based place recognition (Cummins and Newman 2008). The graph begins in an office in Oxford, and proceeds
with various forms of transport including: foot, bicycle, train, subway, lift, escalator, rickshaw, punt and ferris wheel. Note that,
in the presence of sensor drift and noise, we cannot accurately estimate true position in the global frame. Such situations are
common in practice, for instance, when traveling on a train or subway.

navigation, such as path planning, obstacle avoidance or object
manipulation, can be addressed within the confines of a man-
ifold. Taking this route, we structure the problem as a graph
of relative poses with landmarks specified in relation to these
poses. In three dimensions this graph defines a connected Rie-
mannian manifold with a distance metric based on shortest
paths. Note that this is not a sub-mapping approach (Bosse et
al. 2004! Eade and Drummond 2008), as there are no distinct
overlapping estimates, and there is only one objective func-
tion with a minimal parameter vector! similarly, this is not a
pose-graph relaxation approach (Olson et al. 2006! Grisetti et
al. 2007), as it solves for landmark structure as well.

Together with an adaptive optimization scheme that only
ever solves for a small sub-portion of the parameter vector,
we show the relative maximum-likelihood estimate (MLE) so-
lution in the manifold can be closely approximated using a
constant-time incremental algorithm. Crucially, this appears
true even at loop closure. We stress at the outset that the rel-
ative solution is not equivalent to the normal Euclidean-space
solution as it does not produce an estimate that can be easily
embedded in a single Euclidean frame. Converting from the
relative manifold into a single Euclidean space is a difficult
problem that we argue is best handled by external resources
that do not have constant run-time requirements.

We have applied the relative approach to "850!000 frames
of stereovision data gathered in and around Oxford and Lon-
don, England (see Figures 1, 2 and 3). The data begin in an

office in Oxford, and proceed with various forms of trans-
port including: foot, bicycle, train, subway, lift, escalator, rick-
shaw, punt and ferris wheel. Note that many of these trans-
port modes constitute unobservable moving reference frames
that simply cannot be handled in a conventional monolithic
single-Euclidean-frame approach, a point to which we will re-
turn later.

In the presence of sensor noise and drift, moving reference
frames make it impossible to accurately estimate global posi-
tion. For instance, when traveling on a train or subway, motion
with respect to the global frame is effectively unobservable. In
contrast, we show that the relative approach can handle such
difficulties, and produces topometric maps that are still useful
for navigation. To highlight this, we show sequences in which
current state-of-the art global SLAM solutions fail due to un-
sensed ego-motion, yet optimization in the relative representa-
tion proceeds without hindrance.

To demonstrate that the continuous relative representation
is sufficient for navigation, we show that it is possible to find
shortest paths in the relative maps we build – both in terms of
time and distance. Query images from Google image-search of
popular landmarks around London, such as the London Eye or
Trafalgar Square, are matched to the relative map to provide
route planning goals.

In the next section we describe the related literature. In Sec-
tion 3 we derive the new relative objective function. Results
from simulation and results on real sequences are presented in
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Fig. 2. The route taken around London with topologically interesting places for navigation. Between Paddington and Piccadilly
the user is underground in the subway. From Piccadilly to Trafalgar Square and the London Eye the user is on foot. One loop was
closed around the Eye. From the London Eye the user took the southern route West across the Thames, at which point he took
a rickshaw to Trafalgar Square and Piccadilly Circus. From Piccadilly Circus the user walked across Hyde Park to the Natural
History Museum, at which point the batteries died, approximately 7 hours into the experiment.

Fig. 3. The “Garden” sequence: 13-km path taken around Oxford with inset showing New College portion (a separate 2.2-km
trajectory around New College is also shown in Figure 4). Scenes from the Natural History Museum, Oxford-London train, and
punting on the Cherwell are shown later in Figures 10 and 11.
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Section 4. We conclude with a discussion of the pros and cons
of the relative approach.

2. Related Work

Topological navigation is a well-studied problem that was
first addressed in robotics by Kuipers and Byun (1988). Both
Kuipers and Byun (1988) and the later work by Choset and
Nagatani (2001) seek to describe places of interest as nodes
in a graph of relative representations that encode metric in-
formation. In this context path planning is a matter of graph
search combined with local obstacle avoidance! based on this,
topological representations have been used extensively for
path planning. Recently, numerous authors have recognized
the benefits of vision for topological navigation and mapping
(Nister et al. 2004! Fraundorfer et al. 2007! Goedem’e et al.
2007! Steder et al. 2007), although often with the explicit
goal of producing a globally embedded solution. The topolog-
ical relationship between places often use appearance-based
recognition based on bag-of-words image matching (Cummins
and Newman 2008). Topological mapping, in conjunction with
bag-of-words place recognition, has also recently been placed
on firm probabilistic ground (Ranganathan et al. 2006! Ran-
ganathan 2008).

From the metric estimation perspective, there has been
much interest in Gaussian non-linear least-squares solutions
based on “full-SLAM” or bundle adjustment (Triggs et al.
2000! Fitzgibbon and Zisserman 2004! Dellaert 2005! Thrun
et al. 2005! Konolige and Agrawal 2008), although the prob-
lem is an old one (Brown 1958! Mikhail 1983). The full-
SLAM problem tries to optimize the joint vehicle trajectory
and map structure simultaneously given all measurements ever
made. There are approximate incremental solutions that only
optimize a small local subset of the map (Deans 2005), and
there are methods that approximate the full solution with vari-
ous forms of marginalization (Sibley et al. 2007! Sibley 2007!
Konolige and Agrawal 2008), or by ignoring small dependency
information (McLauchlan 1999! Thrun et al. 2002b). Recently
some researchers have successfully employed techniques from
the linear algebra and numerical optimization communities to
greatly reduce the cost of finding the full solution (Kaess et al.
2008). Many successful techniques use key frames to reduce
complexity, although at the expense of accuracy (Engels et al.
2006!Mouragnon et al. 2006! Klein and Murray 2008). All of
these techniques suffer from computational complexity issues
during loop closure.

In the context of long-term autonomy, roboticists recog-
nize the need for online, realtime, navigation and mapping
algorithms. This means that localization and mapping algo-
rithms must operate within a constant-time budget at each step.
Driven by this need, many authors have recognized the benefit
of relative representations and manifolds (Guivant and Nebot
2001! Bosse et al. 2004! Howard et al. 2006! Martinelli et

al. 2007! Eade and Drummond 2008! Howard 2008). On the
other hand, the drawbacks of single-frame solutions have been
recognized for some time (Brooks 1985). The most common
solution is probably sub-mapping (Bosse et al. 2004! Davi-
son et al. 2007! Pinies and Tardos 2007! Eade and Drum-
mond 2008), which breaks the estimation into many smaller
mapping regions, computes individual solutions for each re-
gion, and then estimates the relationships between these sub-
maps. Many difficult issues arise in sub-mapping, including
map overlap, data duplication, map fusion and breaking, map
alignment, optimal sub-map size, and consistent global esti-
mation in a single Euclidean frame. The relative bundle ad-
justment (RBA) we propose can be seen as a continuous sub-
mapping approach that avoids these complications.

To solve large Euclidean SLAM problems with many loops,
the most successful methods currently are the pose-graph op-
timization algorithms. Instead of solving the full-SLAM prob-
lem, these methods optimize a set of relative pose constraints
(Olson et al. 2006! Grisetti et al. 2007). Starting with the lin-
earized full-SLAM “Ax # b” normal equations, a generally
sparse set of pose constraints can be constructed by forward
substituting all landmark parameters onto the remaining pose
parameters (Eustice et al. 2005! Thrun et al. 2005). Note that,
given the assumed Gaussian problem structure, this kind of
forward substitution to a pose graph is algebraically equiv-
alent to marginalization! methods that marginalize landmark
parameters onto pose parameters so as to define a pose graph
are simply executing the forward-substitution phase of sparse
bundle adjustment. In this light, pose-graph relaxation, which
solves for the optimal path estimate, can be seen as one half
of one iteration of full-SLAM, because full-SLAM also back
substitutes for the landmark parameters, and iterates the proce-
dure to convergence. This fact highlights a substantial differ-
ence between pose graphs and full-SLAM. Like other meth-
ods, Euclidean pose-graph solvers have worst-case complexity
at loop closure that is dependent on the length of the loop.

While the worst-case complexity for full-SLAM is O"m3#,
in practice there is often substantial sparsity in the problem,
and this structure can be exploited to great effect (Triggs et al.
2000! Steedly et al. 2003! Krauthausen et al. 2006! Agarwal et
al. 2009). Regardless, in the face of an ever-expanding set of
nested observations, the cost of solving the full Euclidean solu-
tion continues to grow. As an alternative, the relative approach
presented in this paper is designed to avoid this complexity
entirely.

The work most similar to RBA is the relative formula-
tion given by Eade and Drummond (2008) and Konolige and
Agrawal (2008). The former is akin to sub-mapping methods
with constraints to enforce global Euclidean consistency at
loop closure! the latter formulates the cost function relative to a
single Euclidean frame and then makes a series of approxima-
tions to produce a sparse relative pose graph. Neither method
derives the purely relative objective function (incrementally,
both rely on some form of single-reference frame), neither for-
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mulates the objective function completely without privileged
frames, and both methods carry the burden of finding a glob-
ally consistent estimate in a single Euclidean frame. Our ap-
proach is substantially different because of the completely rel-
ative underlying objective function that we derive.

Finally, a number of adaptive optimization approaches have
been explored within the privileged Euclidean frame paradigm
(Steedly and Essa 2001! Ranganathan et al. 2007). These tech-
niques, together with all of the methods presented in this sec-
tion, are not constant time at loop closure, and all but one
(Bosse et al. 2004) solve for a solution in a single Euclidean
space. We find that using adaptive region estimation in con-
junction with the relative formulation is the key that enables
constant-time operation.

3. Methods

In this section we first describe the continuous relative repre-
sentation and how to optimize within this framework. Second
we describe our robust stereo front-end processing pipeline.
With this system we are able to achieve the kinds of metric ac-
curacy shown in Figure 4(a) and (b) and produce reconstruc-
tions such as that shown in Figure 4(c). Finally, we describe a
graph search strategy that serves to demonstrate path-planning
sufficiency.

3.1. Problem Formulation

Instead of optimizing an objective function parameterized in
a single privileged coordinate frame, we now derive a com-
pletely relative formulation. Recall that bundle adjustment
seeks to minimize error between the observed and predicted
measurements of n landmarks sensed from m sensor poses (or
frames). Likewise we minimize the difference between pre-
dicted and measured values.

Let l j!k! k $ 1! $ $ $ ! n! j $ 1! $ $ $ !m be a set of n 3D land-
marks each parameterized relative to some base frame j . Let
t j ! j $ 1! $ $ $ !m be a set of m 6D relative pose relationships
associated with edges in an undirected graph of frames. The
graph is built incrementally as the vehicle moves through the
environment, and extra edges are added during loop closure.
The graph defines a connected Riemannian manifold that is,
by definition, everywhere locally Euclidean, although globally
it is not embedded in a single Euclidean space. The relation-
ship between frame % and frame j is defined by a 4 % 4 ho-
mogeneous transform matrix, T%! j # &T%! j T"t j #, where &T%! j is
the current estimate and T"t j # is the 4 % 4 homogeneous ma-
trix defined by t j . An example trajectory and graph with this
notation is shown in Figure 5(b).

Each t j parameterizes an infinitesimal transform applied to
the relationship from its parent frame in the graph (i.e. an error-
state formulation). The kinematic chain from frame j to frame
i is defined by a sequence of 4% 4 homogeneous transforms

Tji # &Tj! j'1T"t j'1#
&Tj'1! j'2T"t j'2#! $ $ $ !

&Ti(1!i T"ti #)

the sensor model for a single measurement is

hi!k"l j!k! ti ! $ $ $ ! t j # # !
!
T(1

j!i l j!k
"

# !
!
gi!k"l j!k! t j'1! $ $ $ ! ti #

"
!

where gi!k : !dim"x# * !4, x +* T(1
j!i l j!k transforms the homo-

geneous point l j!k from base frame j to the observation frame
i , and ! : !4 * !2, is the standard perspective projection
function (Hartley and Zisserman 2000).

This describes how landmark k, stored relative to base-
frame j , is transformed into sensor frame i and then pro-
jected into the sensor. We make the assumption that measure-
ments zi!k are independent and normally distributed: zi!k "
N "hi!k! Ri!k#. The cost function we associate with this formu-
lation is

J #
n#

k#1

#

i$mk

!
zi!k ( hi!k"x#

"T R(1
i!k

!
zi!k ( hi!k"x#

"
!

(mk : set of frames that see landmark k#

# ,z ( h"x#,R(1 ! (1)

which depends on the landmark estimate, l j!k and all of the
transform estimates t j'1! $ $ $ ! ti on the kinematic chain from
the base frame j to the measurement frame i . This problem is
solved using iterative non-linear least-squares Gauss–Newton
minimization for the values of x that minimize re-projection
error: this yields the MLE (subject to local minima). Project-
ing via kinematic chains in this manner is novel, but it changes
the sparsity patterns in the system Jacobian. Compared with
normal bundle adjustment, this new pattern increases the cost
of solving the sparse normal equations for updates &x to the
parameter vector x , although, as we show, the ultimate com-
putational complexity is the same if we use key frames.

Note that any edge in the underlying co-observability graph
can be used for optimization. Empirically we have found it
sufficient to optimize edges along the robot trajectory, together
with loop-closure edges selected by the breadth-first-search
mechanism described in Section 3.5. Selecting which edges
are the best to optimize is an open issue.

3.2. Sparse Solution

The normal equations associated with the iterative non-linear
least-squares Gauss–Newton solution to Equation (1) are

HT R(1 H&x # HT R(1"z ( h"x##! (2)

where &x is the parameter update we are solving for, H #
'h('x is the Jacobian of the sensor model, and R is the
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Fig. 4. Example of the metric pose estimate output by our system from the 2.26 km November 3, 2008 New College dataset
(Smith et al. 2009). (a) The estimate before, and (b) after, taking loop closure into account. In this case trajectory error before
loop closure is 15–25 m in the (xy)-plane and "15 m in z! after loop closure the error is "10 cm in the (xy-plane, "10 cm in z.
The laser data rendered from the relative trajectory in (c) indicates the local accuracy. Clearly, metric structure is available in the
relative approach. In our experience this is sufficient for path planning, obstacle avoidance and local scene analysis (Newman et
al. 2009).

block-diagonal covariance matrix describing the uncertainty
of the collective observation vector z (the stacked vector of
all measurements). Referring to the example in Figure 6 and
Figure 7 we see that HT #

$
HT

l HT
t

%
and &x # [&l) &t],

which exposes a well-known 2 % 2 block structure for Equa-
tion (2),

&

'
V W

W T U

(

)

&

'
&l

&t

(

) #
&

'
rl

rt

(

) !

where &l and &t are parameter updates for the map and edge
transforms that we are solving for!

rl # HT
l R(1"z ( h"x##!

rt # HT
t R(1"z ( h"x##!

V # HT
l R(1 Hl!

W # HT
l R(1 Ht !
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Fig. 5. (a) Notation: poses are indicated with triangles, land-
marks with red circles. Landmark base frames are indicated
with solid lines, e.g. here landmark k is stored relative to frame
j . Each inter-pose edge in the graph includes an error-state
transform defined about t j # 0, that is, T%! j # &T%! j T"t j #, where
&T%! j is the current estimate of the relative transform between
frame % and frame j . Note that predicting the measurement
zi!k of landmark k in frame i will rely on all parameters in the
kinematic chain from p j to pi . (b) How landmarks are stored
relative to the poses! clearly there is no reference to a privi-
leged global coordinate frame.

and
U # HT

t R(1 Ht $

This sparse system is solved by forward substitution using
the Schur compliment (Sibley 2006),

&

'
V W

0 U (W TV(1W

(

)

&

'
&l

&t

(

) #

&

'
rl

rt (W TV(1rl

(

) !

solving for &t ,

&t #
$
U (W TV(1W

%(1
rt (W TV(1rl!

and then back substitution to solve for &l,

&l # V(1"rl (W&t#$

After each iteration, &t is used to update the relative edge
transform between poses, e.g. &T%! j # &T%! j T"&t j #. We store
edge-transforms as 4% 4 matrices, which is a convenient non-

Fig. 6. Example relative bundle adjustment Jacobian structure
for the sequence of 12 observations in Figure 7. Gray indicates
non-zero entries. The horizontal stripes in the right-hand Ht

term above correspond to projections that rely on transform-
ing parameter estimates along kinematic chains from frame j
to frame i . These stripes are the only difference in sparsity
pattern between the relative formulation and traditional bundle
adjustment.

Fig. 7. Graphical model for the sequence of 12 observa-
tions, -z0!1! z1!1! z4!1., -z0!2! z1!2! z2!2., -z1!3! z2!3., -z2!4., and
-z1!5! z3!5! z4!5.. There are five poses, p0!$$$!4, four edge esti-
mates t1!$$$!4, and five landmarks l0!1, l1!2, l1!3, l2!4 and l1!5. This
example has the Jacobian H # 'h('x that is depicted in Fig-
ure 6. Bold lines from poses indicate which frames are base
frames.

singular representation, and care is taken to keep the rotation
matrix orthonormal in the face of rounding errors. Building
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Fig. 8. The sensor following a path through p j and pi while
making measurements of landmark l j!k (indicated with dashed
lines). Landmark k is stored relative to frame j (indicated by a
solid line). To compute the projection of landmark k in frame
i , we evaluate hi!k # !"gi!k"x##, where gi!k"x# # T(1

j!i l j!k #!
Tj!cT"c#Tc!i

"(1 l j!k , which encapsulates projection along the
kinematic chain between frame j and frame i . To help under-
stand how the relative formulation Jacobian is computed, this
diagram focuses on the error-state transform T"tc# indicated in
red. The terms of interest when computing derivatives are (1)
the transform parameters tc and (2) the landmark parameters
l j!k .

this linear system is the dominant cost in solving each itera-
tion, which makes it important to compute the sparse Jacobian
of h efficiently.

3.3. Relative Jacobians

Owing to the functional dependence of the projection model
on the kinematic chain of relative poses, the Jacobian in the
relative formulation is very different from its Euclidean coun-
terpart. With reference to Figure 8, focus for a moment on a
single infinitesimal transform T"tc# that is somewhere along the
kinematic chain from frame i to j . The individual derivatives
shown in Figure 6 are

'hi!k

'l j!k
# '!
'gi!k

'gi!k

' /l j!k

and
'hi!k

' tc
# '!
'gi!k

'gi!k

'tc
!

where '!('gi!k is the 2 % 3 Jacobian of the perspective pro-
jection function (Hartley and Zisserman 2000).

The 4 % 3 Jacobian of gi!k with respect to the non-
homogeneous 3D point /l j!k is

'gi!k

' /l j!k
# T(1

i! j [1! 1! 1! 0]T

#
&

'
Ri! j

0

(

) $

The Jacobian of gi!k with respect to tc has three cases that
depend on the direction of the transform T"tc# on the path from
frame i to j

'gi!k

' tc
#

*
+++++,

+++++-

Ti!c
'T"tc#
'tc

Tc! j l j!k if T"tc# points towards j

Ti!c
'T"(tc#

'tc
Tc! j l j!k if T"tc# points towards i

0 if i # j

where 'T"tc#('tc are the canonical generators of SE(3) (these
simplify computing the Jacobians! see the Appendix). We now
address the cost of solving each update.

3.4. Complexity of Computing the Relative Sparse Solution

Similar to sparse bundle adjustment, the following steps are
used to exploit the structure of H to compute the normal equa-
tions and parameter updates efficiently:

1. Build linear system, computing the terms U , V , W , rt

and rl . Complexity is O"m2n# using key frames.

2. Forward substitute, computing A # U(W TV(1W , and
b # rt (W TV(1rl . Complexity is O"m2n#.

3. Solve reduced system of equations, A&t # b for the up-
date &t . Complexity is O"m3#.

4. Back substitute to solve for the map update, &l #
V(1"rl (W&t#. Complexity is O"mn#.

The first step is substantially different in the relative frame-
work so we describe it in more detail in Algorithm 1. The
overall complexity for all steps is O"m3#, which matches tra-
ditional sparse bundle adjustment. Note that it is easy to con-
vert Algorithm 1 into a robust m-estimator by replacing the
weights, ) i!k , with robust weight kernels, ) i!k # R(1

i!k""ei!k#!
for example, we use the Huber kernel (Huber 1964). Section 4
gives results of applying this sparse optimization routine to
large real and simulated sequences.

Finally, note that if feature tracks are contiguous over nu-
merous frames (which they typically are), then the sparsity
pattern in W will be the same in the relative formulation
as it is in the traditional one! hence, the relative-formulation
cost of forward substitution, solving the reduced system, and
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Algorithm 1 Build linear system. Computes U , V , W , rt , and
rl in O"m2n#.

Clear U , V , W , rt , and rl

for all landmarks k do
for all key-frames i with a measurement of landmark k
do

Compute 'hi!k
'l j!k

ei!k # zi!k ( hi!k"x#
) i!k # R(1

i!k

Vk # Vk ' 'hi!k
'l j!k

T
)(1

i!k
'hi!k
'l j!k

rlk # rlk '
'hi!k
'l j!k

T
)(1

i!k ei!k

for all p $ Path"i! j# do
Compute 'hi!k

' tp

rtP # rtP '
'hi!k
'tp

T
) i!kei!k

Wk!p # Wk!p ' 'hi!k
'l j!k

T
) i!k

'hi!k
'tp

for all q $ Path"p! j# do
Compute 'hi!k

' tq

Up!q # Up!q ' 'hi!k
' tp

T
) i!k

'hi!k
'tq

Uq!p # Uq!p ' 'hi!k
'tq

T
) i!k

'hi!k
' tp

end for
end for

end for
end for

back substitution (steps 2–4) should be approximately equiva-
lent.

3.5. Adaptive Updates

To reduce computation, it is important to optimize only those
parameters that might change in light of new information
(Steedly and Essa 2001! Ranganathan et al. 2007). In the fol-
lowing we outline one approach to limit the parameters that
are actively optimized.

A breadth-first search from the most recent frame is used to
discover local parameters that might require adjustment. Dur-
ing the search, all frames in which the average re-projection
error changes by more than a threshold, *+, are added to an
active region that will be optimized. The search stops when
no frame being explored has a change in re-projection error
greater than *+. This search is ultimately limited by machine
precision! in practice, values for *+ of the order of 1 % 10(2

track the MLE solution closely. Landmarks visible from ac-
tive frames are activated, and all non-active frames that have
measurements of these landmarks are added to a list of static
frames, which form a slightly larger set that we call the static
region. Measurements made from static frames are included in

Fig. 9. Discovery of local active region: (a) pre-loop closure!
(b) post-loop closure. In (a), re-projection errors have changed
by more than *+ in the local frames p5, p6 and p7. In (b)
a new edge T7!0 is added during loop closure, and the graph
search leads to a larger active region with frames p0, p1, p5,
p6 and p7.

the optimization, but the associated relative pose-error para-
meters are not solved for. Example active regions are shown in
Figure 9.
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3.6. Processing Pipeline

In this section we describe the engineering effort required to
achieve precision, robustness and speed in the visual process-
ing pipeline. Our approach is key-frame based and, similar
to parallel tracking and mapping (PTAM) (Klein and Murray
2008), the bundle adjuster runs in a separate thread. The image
processing pipeline includes the following steps:

1. Pre-processing: includes rectification to allow scanline
searching for left–right correspondences. Images are
shifted to obtain the same mean and variance. We use
FAST features (Rosten and Drummond 2006) extracted
at different levels of a scale-space pyramid for robust-
ness to image blur. Detection thresholds are modified at
each timestep to keep the number of detected features at
a desired level independent of the scene.

2. Dense alignment: an estimate of the 3D rotation is ob-
tained using the sum-of-squared-distance of image in-
tensity using an efficient second-order gradient descent
minimization (ESM) as described by Mei et al. (2008).
This greatly helps in cases with perceptual aliasing, such
as bricks, tiles and picket fences! it also reduces the
search range for establishing feature correspondence.

3. Matching in time: the 3D coordinates of the land-
marks are projected into the left and right images and
9 % 9 patches are matched using a mean shifted sum-
absolute-difference error metric. Finally, ESM sub-pixel
refinement is performed. Once matched, the current
motion is estimated with a standard combination of
RANSAC and a final robust m-estimation step (Fischler
and Bolles 1981! Hartley and Zisserman 2000).

4. Starting new landmarks: we typically track 100–150 fea-
tures and use a multi-level quad-tree to distribute fea-
tures evenly. At each pyramid level, a quad-tree captures
how many features project into each cell. From these
counts we can ensure an even spatial distribution across
the image. Finally, upon initialization a SIFT (Lowe
2004) descriptor is computed which can be used dur-
ing re-localization and loop closure. Features are sorted
by their Harris corner score (Harris and Stephens 1988),
and those with higher scores are instantiated first.

These steps help ensure robustness to the types of challeng-
ing operating conditions illustrated in Figures 10 and 11. Fur-
ther details can be found in Mei et al. (2009). Another imple-
mentation detail to note is that, for scalability while maintain-
ing frame-rate performance, we have had to implement an out-
of-core graph class which transparently saves and loads the
map from disk. This out-of-core data structure enables maps
that are only limited by secondary storage capacity.

3.7. Loop Closure and Place Recognition

For loop closure and place recognition we rely on FAB-MAP,
which represents each place using the bag-of-words model de-
veloped for image retrieval systems by the computer vision
community Sivic and Zisserman (2006)! Cummins and New-
man (2008). At time k the appearance map consists of a set
of nk discrete locations. Each location is described by a dis-
tribution over the existence of artifacts that could generate a
visual word in an image. Incoming sensory data is converted
into a bag-of-words representation! for each location, a query
is made that returns how likely it is that the observation came
from that location or from a new place. This allows us to deter-
mine whether we are revisiting previously visited locations. In
a filtering framework, incorrect loop closures are catastrophic
as the statistical estimates are corrupted. The continuous rela-
tive representation enables recovery from erroneous loop clo-
sures as removing the incorrect graph link and bad measure-
ments returns the system to its previous state.

3.8. Path Planning

Path planning consists of finding shortest paths in the relative
map with edges weighted either by distance or time. We use
the magnitude of inter-frame motion (excluding orientation)
to compute edge weights for distance-based searches. Time-
based searches use an edge weight that is simply the time be-
tween key frames, with an average value used for loop-closure
edges.

4. Results

In this section we provide details of the simulation and real-
world experimental results that show the scalability and accu-
racy of the relative SLAM solution.

4.1. Relative Bundle Adjustment Timing

The iterative non-linear least-squares solution that exploits the
sparse relative structure and the four steps in Section 3.4 re-
sults in the run-time breakdown shown in Figure 12. This illus-
trates that building the sparse system of equations is the domi-
nant cost.

4.2. Simulation Results

To determine the performance of the relative framework, a
batch of simulations was run. The sequence contains a real-
istic trajectory, landmark distribution, and a 1-pixel standard
deviation Gaussian measurement noise (see Figure 13).
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Fig. 10. Excerpts from the London dataset showing typical trajectory estimates for various modes of transport. (a) A smooth
constant velocity trajectory from a bicycle. (b) Track estimated from the rickshaw showing user head swivel. Not as fast as the
bicycle. (c) Walking in the Oxford Natural History Museum. Note the clearly visible gait. (d) Walking into a subway car. Note
that at some point in this trajectory, the car begins to move, a fact not visually discernible here. Detecting linear acceleration
with off-the-shelf inertial sensors is difficult in this situation. (e) Walking on a train looks like walking anywhere else. Note the
extreme motion blur in the windows from the quickly passing external terrain.
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Fig. 11. More trajectories for various modes of transport. (a) Walking on the London Eye. It is difficult to detect loop closure
metrically in the trip around the wheel. (b) Challenging conditions on an escalator. This is a failure case in which tracked motion
oscillates between moving and stationary (note the bunched axes where it is stationary). Detecting linear acceleration with off-
the-shelf inertial sensors is difficult in this situation. (c) Visual motion estimation while punting is challenging due to reflections
which appear to cause a slight instability. (d) Successful motion estimation in challenging lighting conditions (tracked FAST
corners are indicated). Parts (a) and (b) are again from the London dataset, (c) is from the Punting dataset, and (d) is an example
from the 1,000 km dataset reported by Cummins (2009).

We need to be careful when measuring performance in the
relative representation. It is important to base our error metric
on geometric invariants that are coordinate frame independent,
such as relative distance or angles. The breadth-first-search er-
ror reported here is one way to do this.

We compute errors in the following way: for each pose in
the trajectory, we register that pose to its ground truth coun-
terpart, and then localize the rest of the relative trajectory in

that frame. Note that “localizing” the relative trajectory is done
with a breadth-first search that computes each frame’s pose in
the coordinate system of the root frame. This process projects
from the relative manifold into a single Euclidean frame, and
may cause “rips” to appear at distant loop closures! note that
these rips do not exist in the manifold and are simply an arti-
fact of projection to a single Euclidean frame. Finally, the total
trajectory registration error is computed as the average Euclid-
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Fig. 12. Average run times for the main steps of relative bun-
dle adjustment on an Intel Core 2 Duo 2.8 GHz processor. The
average adaptive region from the simulation was 4.6 frames.
Note that it is the cost of building the linear system of equa-
tions that dominates the cubic complexity of solving for the
adaptive region of poses.

Fig. 13. Figure-of-eight sequence used in Monte Carlo sim-
ulations. This sequence has 288 frames, 3,215 landmarks
and 12,591 measurements with 1-pixel standard deviation
Gaussian measurement noise added.

ean distance between ground truth and the localized frames.
The average of all frames and all registrations is the error plot-
ted. Not surprisingly, results in Figure 14 indicate that error
reduces towards the full solution (in the relative space) as the
local region increases in size.

The results here use an adaptive region threshold of *+ #
0$05 pixels. With this threshold we find that the discovery of
new frames to include in the active region quickly drops to
between four and five poses, except at loop closure where it
jumps to accommodate the larger region of poses found by the
breadth-first search. Figure 15 shows the adaptive region size
discovered for two different loop closures, one 50 m long and
another 100 m long. The point to note is that the discovered
adaptive region is independent of loop size, and that errors do

Fig. 14. Average registration error versus number of frames
being updated. In the relative formulation, as the local region
grows, the average root mean square error drops quickly to-
ward the same as when computed with all frames active. This
motivates the use of an adaptive region that allows parameters
to vary only if it has an effect on the cost function.

not propagate around the loop even though loop closure er-
ror is "75 cm on average for the 500 frame sequence. Using
the same adaptive region criteria, Euclidean bundle adjustment
would require adjusting all parameters in the loop, whereas the
adaptive relative approach adjusts just 20 poses.

Our adaptive strategy for discovering the active region is
designed to have a rippling effect: when parameter estimates
change, it effects the re-projection error in nearby frames,
which, if greater than *+, will add those parameters to the
active region, potentially causing them to change, etc. A key
result of the relative formulation is that these errors stop prop-
agating and balance out with distance from the new informa-
tion, that is, the network of parameters is critically damped.

Numerous authors have shown that SLAM can be constant
time in practice during the exploration phase (Thrun et al.
2002a! Ranganathan et al. 2007! Kaess 2008). The relative ap-
proach presented here is explicitly designed to take advantage
of this phenomenon at loop closure, as well as during explo-
ration. The adaptive optimization is only successful in con-
junction with the relative formulation, otherwise we would see
computation spike at loop closure, as reported by Ranganathan
et al. (2007).

4.3. Real Data

The system operates online at 20–40 Hz, this includes all im-
age processing, feature tracking, robust initialization routines,
and calls to FABMAP (Cummins and Newman 2007) to de-
tect loop closures. We have run it successfully on numerous
sequences including those listed in Table 1. Table 2 gives an
indication of typical system performance.
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Fig. 15. How the number of frames in the adaptive region fluctuates over time and during loop closure: (a) 50 m loop with
closure at frame 250! (b) 100 m loop with closure at frame 500. During loop closure the size of the adaptive region jumps to
accommodate all of the local frames that have been added to the active region, as well as any neighboring frames that will be
affected. Note that errors do not propagate all the way around the loop, and only a fraction of the parameter vector needs to be
updated. Loop closure at 250 and 500 frames induces updates in approximately the same number of parameters, which strongly
indicates that optimization at loop closure will remain constant time, independent of loop size. Before loop closure, the average
metric position error is over 75 cm for the 500 frame loop. Using the same adaptive region criteria, Euclidean bundle adjustment
would require adjusting all parameters in the loop, whereas the adaptive relative approach only adjusts 20 poses.

Table 1. List of Datasets. All Images are 512 % 384
grayscale, captured at 20 Hz with a PointGrey BumbleBee2
Camera. The London, Garden, New College and Punting
Datasets Overlap, which Allows Multi-session Mapping as
we have Shown in Shown in Newman et al. (2009).

Name Frames Space Date Distance
(GB) (km)

London 479,729 188.6 10/9/09 121

Garden 185,797 73.1 8/10/ 09 13.1

Punting 114,736 45.1 17/9/09 5.1

New College 52,510 20.6 3/11/ 08 2.3

Science Park 23,467 9.2 17/9/08 1.1

TOTAL 856,239 333.6 — 142

4.4. Comparison with Bundle Adjustment

Both RBA and traditional bundle adjustment seek to minimize
re-projection error, given a parametric model of the world. Fig-
ure 16 shows that the local Euclidean re-projection error for
RBA matches that of traditional bundle adjustment. This im-
plies that the metric world structure is similar and we have
shown in Holmes et al. (2009) that the normalized L2 differ-

Table 2. Typical Performance of the Online System for the
Begbroke Science Park Dataset Processed on an Intel Core
2 Duo 2.8 GHz.

Average Minimum Maximum

Distance traveled
(km) — — 1.08

Frames processed — — 23,268

Velocity (m s(1) 0.93 0.0 1.47

Angular velocity

(0 s(1) 9.49 0.0 75.22

Frames per second 22.2 10.6 31.4

Features per frame 93 44 143

Feature track length 13.42 2 701

Re-projection error 0.17 0 0.55

ence between RBA and traditional bundle adjustment pose es-
timates remains constant and less than 1$4% 10(4.

4.5. The Importance of Loop Closure

In addition to storage requirements (which are handled with
out-of-core data structures to ensure a constant size memory
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Fig. 16. Comparison between RBA and Euclidean BA. This
graph shows the expected linear increase in re-projection error
using both the relative and global bundle adjustment as more
key-frames are added in a sequence. Like traditional bundle
adjustment, the relative objective function is defined in terms
of re-projection error – it is evident that both representations
converge to approximately the same re-projection error.

footprint) loop-closure detection is the only non-constant time
aspect of our SLAM system. It is therefore important that loop
closure be fast and scale well. Figure 17 indicates the scala-
bility of FAB-MAP, and shows the potential to query millions
of locations per second: a scale we have yet to reach. Clearly,
realtime loop-closure detection is not a bottleneck.

Identifying loop closures in the relative framework and
then projecting to a single Euclidean frame with a breadth-
first search leads to significant improvement in map error in a
single global frame. For instance, Figure 18 shows that loop-
closure drastically improves mapping error, even without ap-
plying an expensive global optimization.

4.6. Path Planning

To plan a route in the graph we begin with a web image from
Trafalgar Square matched to an image from the graph with
FAB-MAP (for example see Figure 19). Given this query, we
can find a path from Oxford to London based on either metric
or temporal distance. Note however that information can also
go in the other direction – that is, given such appearance-based
matches from the Internet, it is possible to label relative map
locations with search words describing places.

Fig. 17. Loop-closure detection times from a 1,000 km dataset
with 103,256 places in the map at the end of the run (Cummins
2009). The best fit is 1.04 ms baseline + 207 ns per place.
Maximum processing time for any observation is 31.3 ms.

Two paths from the Natural History Museum in Oxford
to the London Eye are computed. The first path, based on a
desired shortest travel, takes the southern bridge from West
to East (see Figure 2). This route is shorter due to the rick-
shaw that the user rode on during exploration. The second
path, which gives shortest distance, traverses the loop closure
at Trafalgar Square, and then takes the northern bridge to the
London Eye, which was traversed on foot and is indeed the
more direct route (see Figure 20 for representative loop closure
hypothesis from FAB-MAP). Clearly, paths planned in the rel-
ative representation can take advantage of metric and temporal
information.

Autonomous traversal of these paths will clearly require ob-
stacle avoidance and knowledge of the various forms of trans-
port used: these problems are not addressed in this paper! we
simply wish to point out that it is possible to find paths in the
graph and that these paths can be informed by the underlying
topological and metric map structure.

4.7. Unsensed Ego Motion in the Real World

Autonomous navigation in human working environments is an
important problem and, in the process, unsensed ego motion
is a common phenomenon. Navigation in the real world fre-
quently requires travel on and inside various forms of moving
reference frames, where it is impossible to sense the global
frame in a drift-free fashion. Using current state-of-the-art
SLAM estimation techniques, it is not possible to compute
a consistent global representation while undergoing unsensed
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Fig. 18. Side view of New College data set (a) before and (c) after loop closure and top view of New College data set (b) before
and (d) after loop closure. These figures illustrate that loop closure substantially reduces overall mapping error, even before we
apply global relaxation. In this case trajectory error before loop closure is 15–25 m in the "xy#-plane and "15 m in z! after loop
closure the error is "10 cm in the "xy#-plane, "10 cm in z.

Fig. 19. Image from the web of Trafalgar Square. FAB-MAP hypothesis match from the graph before any geometric checks have
been applied. Given this query, we find a path from Oxford to London based on either metric or temporal distance. Note, however,
that information may also go in the other direction! that is, for highly distinctive places such as the London Eye, Piccadilly Circus,
Trafalgar Square or the Natural History Museum, it is possible to label relative map locations with relevant information from the
Internet (Sivic and Zisserman 2006).
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Fig. 20. Loop closure candidates at Trafalgar Square and Piccadilly Circus. Loop closure allows shorter paths to be found in the
map.

Fig. 21. Lift sequence demonstrating the complexity of unobservable ego motion with respect to a global inertial frame. Even
with inertial sensing, transportation portals such as subways, lifts, trains, etc., frustrate efforts to estimate position with respect to
the global inertial frame. In (a), after first exploring a floor, then taking a flight of stairs followed by a lift, the robot returns to the
same floor. No loop closure has currently been detected. In (b) a loop closure has been triggered, and now the trajectory cannot be
represented in Cartesian space, which causes global SLAM optimization routines to fail! a “tear” appears (in this example in the
staircase). The size of the tear is related to the distance traveled in the lift. Note well that this tear does not exist in the underlying
manifold, which is still useful for navigation because of its relative nature. This is a key advantage of the relative approach.

ego-motion, such as the lift example in Figure 21 or the nu-
merous cases shown in Figures 10 and 11.

The lift example in Figure 21 also highlights that one can-
not simply apply a sliding window local Euclidean bundle ad-
justment, because to do so one would first have to identify the
transition on and off the lift and prevent optimization across
these boundaries. Without finding these transitions first, and

under noisy or biased sensing, any attempt to compute a global
solution will face difficulty, as the visual measurements are
inconsistent with a single Euclidean embedding. The relative
approach avoids this problem.

Many challenging motion sequences from the 121-km Lon-
don dataset are shown in Figures 10 and 11. In contrast to
the data in Figures 4 and 23 this data was collected with a
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Fig. 22. Processing data collected from human-like autonomous navigation in urban spaces (right) is very different, and sub-
stantially more challenging than processing stable robot data (left). In both settings we capture 512 % 384 grayscale images at
20 Hz. The robot camera has 650 field of view (FOV) lenses and the wearable rig has 1000 FOV lenses. Both rigs are PointGrey
BumbleBee2 cameras (inset-left).

Table 3. Results for London Human-collected Data. Note
the Difference in Linear and Angular Velocity: this
Reflects the Fact that Head Swivels Result in Very Fast Vi-
sual Motion Estimates. This Type of Motion is Exactly the
Kind of Challenge Not Faced in Typical Robot Data.

Average Minimum Maximum

Distance traveled
(km) — — 125

Frames processed — — 479,726

Velocity (m s(1) 1.3 0 8.2

Angular velocity

(0 s(1) 8.6 0 191.5

Frames per second 33.7 21.3 46.4

head-mounted stereo system, shown in Figure 22. No special
care was taken to collect “clean” data that would lend itself to
easy processing! the data reflects a typical human experience
of the world. To highlight this, Tables 3 and 4 compare robot-
collected with human-collected data. Processing such data is
challenging, and there are numerous difficulties encountered,
which include but are not limited to: unsensed ego motion,
motion blur, dynamic lighting changes, dropped frames, lens
flare, dynamic obstacles, obstructed views, non-overlapping
frames and power failures.

During the experiment from London to Oxford we are able
to compute relative metric motion estimates 89.4% of the time,
falling back on a constant velocity model and inertial orien-
tation sensing for the remainder. Thus, 100% of the path is

Table 4. Robot Data Collected on a Segway RMP (see Fig-
ure 22). Note the Difference in Linear and Especially An-
gular Velocity in Table 3.

Average Minimum Maximum

Distance Traveled
(km) — — 0.8

Frames Processed — — 29,489

Velocity (m/s) 0.6 0 1.3

Angular Velocity

(deg/s) 4.8 0 59.8

Frames Per Second 20.3 7.4 28.6

covered topologically, which makes it possible to plan paths
through the map.

5. Discussion

We posit that the topometric relative formulation is sufficient
for many mobile robot navigation tasks, and that a single
global Euclidean representation is rarely necessary online over
vast scales. Certainly the benefits afforded by incremental
constant-time performance are tremendous, and in light of that,
some inconvenience may be acceptable. If a unified global
Euclidean picture is deemed essential by a particular external
application or technique, our choice would be to push respon-
sibility for generating the single Euclidean embedding into
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Fig. 23. A 1.08-km path over 23,000 frames estimated for the
Begbroke Science Park sequence. Table 2 shows typical per-
formance results.

that process, for example, undertaking fast approximate pose-
graph relaxation in order to render consistent results in a user
interface (Olson et al. 2006! Grisetti et al. 2007).

For instance, Figures 23 and 24 show the result of trans-
forming a large relative state estimate into a single Euclidean
frame using pose-graph relaxation (Newman et al. 2009). Note
that even this state-of-the art global Euclidean estimate fails to
discover the true rectilinear structure. Arguably the best way
to improve the map would be to schedule new measurements
across the diagonal of the map, thereby considerably constrain-
ing the solution. While this interventionist approach is used
extensively in surveying, we are not comfortable with placing
such a requirement on a mobile platform: ideally navigation
and mapping should be a quiet background task producing es-
timates for consumption by any interested client process. With
this example in mind, perhaps accurate global Euclidean state
estimation is an inappropriate goal! what matters is relative
metric accuracy and topological consistency, all of which can
be attained with a relative manifold approach.

To be concrete: if the task is surveying, then it makes sense
to estimate everything in a single coordinate frame. We are
interested in autonomous navigation, so for us, and we suspect
many roboticists, surveying is the not goal of SLAM. In this
light, it is useful to distinguish between SLAM-for-survey and
SLAM-for-autonomy: both use similar estimation machinery,
but they have different goals.

Ultimately, algorithms that solve for robot position in the
privileged inertial coordinate frame are very different from rel-
ative approaches: they have different objective functions and
they solve for different quantities. Privileged-frame solutions

Fig. 24. A globally consistent relaxed view of the Begbroke
Science Park sequence (using the pose-graph relaxation tech-
nique described in Newman et al. (2009)). To view relative es-
timates in a consistent fashion (single global frame) we have to
transform from the relative representation to a single Euclidean
coordinate system. The sequence here has 23,000 poses over
1.08 km which makes the conversion computationally expen-
sive. This relative-to-global transformation process is designed
to run on the user interface, not on the robot.

seek to embed the entire robot trajectory in a single Euclidean
space! relative solutions solve in a manifold. The relative man-
ifold is a metric space, and distance between two points can be
computed from shortest paths in the graph. We have shown that
the relative representation is amenable to planning (because
path-planning algorithms are commonly defined over graphs).
Further, because the manifold is (by definition) locally Euclid-
ean, we have access to highly accurate local metric structure
at any time (see, for instance, Figure 4). Topometric solutions
are sufficient for real-world navigation, and in our experience
they are increasingly necessary as well. For instance, given un-
sensed ego motion, it is not possible to build consistent map
structures in a privileged frame on which to navigate. We have
shown that it is possible within a purely relative approach.

Note that claims of navigational path-planning sufficiency
are based on the assumption that co-observability implies tra-
versability. We also rely on the assumption that we know how
to handle the transitions between transportation modes en-
countered during the traversal of paths from point a to point b.
So, while it may be sufficient from the pure graph-search point
of view, it is clearly limited because of the lack of higher-level
knowledge about transportation modes! that is, path planning
along routes that include trains, lifts, etc., must be informed
about the temporal schedule of these transportation modes: it
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needs to know how to board a train or a lift. This is a substan-
tially harder problem, and one that we argue is necessary to
solve if we are going to effectively use transportation modes
for autonomous navigation. Presently, we side step this prob-
lem by simply defining sufficiency in terms of the ability to
find shortest paths in a graph, that is, we use the traditional
definition, even though it is no longer appropriate once we
have unsensed ego motion in the form of moving reference
frames. This is exciting ground for future work.

While it is certainly possible to build large-scale, consistent
global world models (especially with the use of GPS), we find
that there are numerous real-world situations where it is effec-
tively impossible to do so! that is, even GPS is not sufficient.
There are many examples in which position in the global iner-
tial frame is extremely difficult to estimate accurately, places
such as lifts, subways, trains, and these are places we want to
navigate autonomously. This fact bears scrutiny, and helps us
focus on much harder problems that we will have to solve in
order to move forward. These are problems such as learning
when and where unsensed ego motion becomes probable! that
is, automatically discovering the location of changing trans-
portation modes. It is interesting that one solution appears to
be learning to recognize high-level semantic objects, such as
lifts, escalators, planes, trains and automobiles. Given such la-
bels then perhaps we can relate the topometric world to the
global inertial frame.

6. Conclusion

The fact that the variables in bundle adjustment are defined
relative to a single coordinate frame has a large impact on
the algorithm’s iterative convergence rate. This is especially
true at loop closure, when large errors must propagate around
the entire loop to correct for global errors that have accumu-
lated along the path. As an alternative, we have presented an
adaptive relative formulation that can be viewed as a continu-
ous sub-mapping approach! in many ways our relative treat-
ment is an intuitive simplification of previous sub-mapping
methods. By solving all parameters within an adaptive region,
the proposed method attempts to match the full maximum-
likelihood solution within the metric space defined by the man-
ifold. In contrast to traditional bundle adjustment, our evalua-
tions and results indicate that state updates in the relative ap-
proach are constant time, and crucially, remain so even dur-
ing loop-closure events. To explore the feasibility and scala-
bility of our approach, over 850,000 images and inertial data
are processed to produce relative estimates covering more than
142 km of Southern England. We point out the numerous chal-
lenges we encounter, and highlight in particular the problem
of unsensed ego motion, which occurs when the robot finds
itself on or within a moving frame of reference. In contrast
to global representations, we find that the continuous relative
representation can naturally accommodate moving reference

frames, without having to identify them first, and without in-
consistency. We also show that a relative, topological approach
to autonomous navigation is sufficient, in the sense that one
can find shortest paths in a map. We conclude that the relative
approach is a route towards autonomous navigation in environ-
ments with moving reference frames.
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Appendix: Rotation Derivatives

Let , # [r! p! q] represent roll, pitch and yaw. The associ-
ated rotation matrix using the roll–pitch–yaw angle convention
(Sciavicco and Siciliano 1996) is
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where s"1# and c"1# are short for sin"1# and cos"1#, respectively.
The derivatives of R with respect to infinitesimal rotations
(, # 0) are
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The six individual terms for the derivative of a transforma-
tion matrix T"t# with respect to t # [x! y! z! r! p! q] evaluated
at , # 0 are
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These are the canonical generators of SE(3). Together they
give the full Jacobian, which is a 4% 4% 6 tensor,
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This tensor simplifies when right multiplied by a 4% 1 ho-
mogeneous vector - # [x! y! z! 1]T
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where [ /-]% is the 3%3 skew-symmetric matrix built from /- #
[-1! -2-3]T. Note that this form greatly simplifies computing
the Jacobians, 'gi!k('tc! in Section 3.3.

The inverse of a homogeneous transformation matrix is
2
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The derivative of an inverse transform is thus
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because R # I when we take the Jacobian with respect to
[x! y! z] and [x! y! z] # 0 when we take the Jacobian with
respect to R.

References

Agarwal, S., Snavely, N., Simon, I., Seitz, S. M. and Szeliski,
R. (2009). Building Rome in a day. IEEE International
Conference on Computer Vision.

Bosse, M. C., Newman, P. M., Leonard, J. J. and Teller., S.
(2004). SLAM in large-scale cyclic environments using the
Atlas framework. The International Journal of Robotics Re-
search, 23(12): 1113–1139.

Brooks, R. (1985). Visual map making for a mobile robot.
IEEE International Conference on Robotics and Automa-
tion.

Brown, D. (1958). A Solution to the General Problem of Mul-
tiple Station Analytical Stereotriangulation. Technical Re-
port, RCP-MTP Data Reduction Technical Report No. 43,
Patrick Air Force Base, Florida (also designated as AFMTC
58-8).

Choset, H. and Nagatani, K. (2001). Topological simultane-
ous localization and mapping (SLAM): toward exact local-
ization without explicit localization. IEEE Transactions on
Robotics and Automation, 17: 125–137.

Cummins, M. (2009). Probabilistic Localization and Mapping
in Appearance Space. PhD thesis, University of Oxford.

Cummins, M. and Newman, P. (2007). Probabilistic appear-
ance based navigation and loop closing. IEEE Conference
on Robotics and Automation.

Cummins, M. and Newman, P. (2008). FAB-MAP: probabilis-
tic localization and mapping in the space of appearance.
The International Journal of Robotics Research, 27(6):
647–665.

Davison, A., Reid, I., Molton, N. and Stasse, O. (2007).
MonoSLAM: Realtime single camera SLAM. IEEE Trans-
actions Pattern Analysis and Machine Intelligence, 29(6):
1113–1139.

Deans, M. C. (2005). Bearings-Only Localization and Map-
ping. PhD thesis, School of Computer Science, Carnegie
Mellon University.

Dellaert, F. (2005). Square root SAM. Proceedings of Robot-
ics: Science and Systems, pp. 1181–1203.

Eade, E. and Drummond, T. (2008). Unified loop closing and
recovery for real time monocular SLAM. Proceedings of
the British Machine Vision Conference.

Engels, C., Stewenius, H. and Nister, D. (2006). Bundle ad-
justment rules. Photogrammetric Computer Vision.

Eustice, R., Singh, H., Leonard, J., Walter, M., and Ballard, R.
(2005). Visually navigating the RMS Titanic with SLAM
information filters. Proceedings of Robotics: Science and
Systems, pp. 57–64.

Fischler, M. A. and Bolles, R. C. (1981). Random sample con-
sensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communica-
tions of the ACM, 24: 381–395.

Fitzgibbon, A. W. and Zisserman, A. (2004). Automatic Cam-
era Recovery for Closed or Open Image Sequences. Berlin,
Springer.

Fraundorfer, F., Engels, C. and Nister, D. (2007). Topologi-
cal mapping, localization and navigation using image col-
lections. IEEE/RSJ International Conference on Intelligent
Robots and Systems.

Goedem’e, T., Nuttin, M., Tuytelaars, T. and Gool, L. V.
(2007). Omnidirectional vision based topological naviga-
tion. International Journal of Computer Vision, 74(3): 219–
236.

Grisetti, G., Stachniss, C., Grzonka, S. and Burgard, W.
(2007). A tree parameterization for efficiently computing
maximum likelihood maps using gradient descent. Pro-
ceedings of Robotics: Science and Systems.

Guivant, J. and Nebot, E. (2001). Optimization of the simul-
taneous localization and map-building algorithm for real-
time implementation. IEEE Transactions on Robotics and
Automation, 17(3): 242–257.

Harris, C. and Stephens, M. (1988). A combined corner and
edge detector. Proceedings of The Fourth Alvey Vision Con-
ference, Manchester, pp. 147–151.

Hartley, R. and Zisserman, A. (2000). Multiple View Geome-
try in Computer Vision. Cambridge, Cambridge University
Press.

Holmes, S. A., Sibley, G., Klein, G., and Murray, D. W. (2009).
A relative frame representation for fixed-time bundle ad-
justment in monocular SFM. Proceedings IEEE Interna-
tional Conference on Robotics and Automation.

Howard, A. (2008). Real-time stereo visual odometry for au-
tonomous ground vehicles. IEEE Conference on Robots
and Systems (IROS).

Howard, A., Sukhatme, G. S. and Mataric, M. J. (2006). Mul-
tirobot simultaneous localization and mapping using mani-
fold representations. Proceedings of the IEEE, 94(7): 1360–
1369.

Huber, P. J. (1964). Robust estimation of a location para-
meter. The Annals of Mathematical Statistics, 35(2): 73–
101.

Kaess, M. (2008). Incremental Smoothing and Mapping. PhD
Thesis, Georgia Institute of Technology.

Kaess, M., Ranganathan, A. and Dellaert, F. (2008). iSAM: In-
cremental smoothing and mapping. IEEE Transactions on
Robotics and Automation, 244(6): 1365–1378.

Klein, G. and Murray, D. (2008). Improving the agility of
keyframe-based SLAM. European Conference on Com-
puter Vision.

Konolige, K. and Agrawal, M. (2008). FrameSLAM: From
Bundle Adjustment to Real-Time Visual Mapping. IEEE
Transactions on Robotics and Automation, IEEE Journal

 at Oxford University Libraries on July 25, 2011ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


980 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2010

of Robotics and Automation, International Journal of Ro-
botics Research, 24(5): 1066–1077.

Krauthausen, P., Dellaert, F. and Kipp, A. (2006). Exploiting
locality by nested dissection for square root smoothing and
mapping. Proceedings of Robotics: Science and Systems.

Kuipers, B. and Byun, Y. (1988). A robust qualitative method
for spatial learning in unknown environments. Proceedings
of the National Conference on Artificial Intelligence.

Lowe, D. (2004). Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vi-
sion, 60(2): 91–110.

Martinelli, A., Nguyen, V., Tomatis, N. and Siegwart, R.
(2007). A relative map approach to SLAM based on shift
and rotation invariants. Robotics and Autonomous Systems,
55(1): 50–61.

McLauchlan, P. F. (1999). The Variable State Dimension Filter
Applied to Surface-based Structure from Motion. Technical
Report, University of Surrey.

Mei, C., Benhimane, S., Malis, E. and Rives, P. (2008).
Efficient homography-based tracking and 3-d reconstruc-
tion for single-viewpoint sensors. IEEE Transactions on
Robotics and Automation, 24(6): 1352–1364.

Mei, C., Sibley, G., Cummins, M., Reid, I. and Newman,
P. (2009). A constant-time efficient stereo SLAM system.
Proceedings of the British Machine Vision Conference.

Mikhail, E. M. (1983). Observations and Least Squares. Row-
man & Littlefield.

Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyse, F. and
Sayd, P. (2006). Real time localization and 3d reconstruc-
tion. Proceedings of Computer Vision and Pattern Recogni-
tion.

Newman, P., Sibley, G., Smith, M., Cummins, M., Harrison,
A., Mei, C., Posner, I., Shade, R., Schroeter, D., Murphy,
L., Churchill, W., Cole, D. and Reid, I. (2009). Navigating,
recognizing and describing urban spaces with vision and
lasers. The International Journal of Robotics Research, 1:
1–28.

Nister, D., Naroditsky, O. and Bergen, J. (2004). Visual odom-
etry. Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, Washington, DC, pp. 652–
659.

Olson, E., Leonard, J. and Teller, S. (2006). Fast iterative align-
ment of pose graphs with poor initial estimates. Proceed-
ings of the IEEE International Conference on Robotics and
Automation, pp. 2262–2269.

Pinies, P. and Tardos, J. D. (2007). Scalable SLAM building
conditionally independent local maps. IEEE Conference on
Intelligent Robots and Systems.

Ranganathan, A. (2008). Probabilistic Topological Maps. PhD
Thesis, Georgia Institute of Technology.

Ranganathan, A., Kaess, M. and Dellaert, F. (2007). Loopy
SAM. International Joint Conferences on Artificial Intel-
ligence, pp. 2191–2196.

Ranganathan, A., Menegatti, E., and Dellaert, F. (2006).
Bayesian inference in the space of topological maps. IEEE
Transactions on Robotics and Automation, 22(1): 92–
107.

Rosten, E. and Drummond, T. (2006). Machine learning
for high-speed corner detection. European Conference on
Computer Vision.

Sciavicco, L. and Siciliano, B. (1996). Modelling and Control
of Robot Manipulators. Berlin: Springer.

Sibley, G. (2006). Sliding Window Filters for SLAM. Techni-
cal report CRES-06-004, University of Southern California,
Center for Robotics and Embedded Systems.

Sibley, G. (2007). Long Range Stereo Data-fusion from Mov-
ing Platforms. PhD Thesis, University of Southern Califor-
nia.

Sibley, G., Matthies, L. and Sukhatme, G. (2007). A Slid-
ing Window Filter for Incremental SLAM, chapter 7, (Lec-
ture Notes in Electrical Engineering). Berlin, Springer, Vol-
ume 8. pp. 103–112.

Sivic, J. and Zisserman, A. (2006). Video Google: efficient
visual search of videos. Toward Category-Level Object
Recognition, Berlin, Springer: pp. 127–144.

Smith, M., Baldwin, I., Churchill, W., Paul, R. and Newman,
P. (2009). The New College vision and laser data set. The
International Journal of Robotics Research, 28(5): 595–
599.

Sorenson, H. W. (1980). Parameter Estimation: Principles and
Problems. New York, Marcel Dekker, Inc.

Steder, B., Grisetti, G., Grzonka, S., Stachniss, C., Rottmann,
A. and Burgard, W. (2007). Learning maps in 3D using atti-
tude and noisy vision sensors. IEEE/RSJ International Con-
ference on Intelligent Robots and Systems.

Steedly, D. and Essa, I. (2001). Propagation of innovative in-
formation in non-linear least-squares structure from mo-
tion. Proceedings of ICCV01, pp. 223–229.

Steedly, D., Essa, I. and Dellaert, F. (2003). Spectral partition-
ing for structure from motion. IEEE International Confer-
ence on Computer Vision.

Thrun, S., Burgard, W. and Fox, D. (2005). Probabilistic Ro-
botics. Cambridge, MA, MIT Press.

Thrun, S., Koller, D., Ghahmarani, Z. and Durrant-Whyte,
H. (2002a). Simultaneous mapping and localization with
sparse extended information filters: theory and initial re-
sults. Workshop on Algorithmic Foundations of Robotics.

Thrun, S., Koller, D., Ghahmarani, Z. and Durrant-Whyte., H.
(2002b). SLAM updates require constant time. Workshop
on the Algorithmic Foundations of Robotics.

Triggs, B., McLauchlan, P. F., Hartley, R. I. and Fitzgibbon,
A. W. (2000). Bundle Adjustment—A Modern Synthesis.
ICCV ’99: Proceedings of the International Workshop on
Vision Algorithms. Berlin, Springer, pp. 298–375.

 at Oxford University Libraries on July 25, 2011ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/

