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Abstract— This paper is about camera-only localisation in
challenging outdoor environments, where changes in lighting,
weather and season cause traditional localisation systems to
fail. Conventional approaches to the localisation problem rely
on point-features such as SIFT, SURF or BRIEF to associate
landmark observations in the live image with landmarks stored
in the map; however, these features are brittle to the severe
appearance change routinely encountered in outdoor environ-
ments. In this paper, we propose an alternative to traditional
point-features: we train place-specific linear SVM classifiers
to recognise distinctive elements in the environment. The core
contribution of this paper is an unsupervised mining algorithm
which operates on a single mapping dataset to extract distinct
elements from the environment for localisation.

We evaluate our system on 205 km of data collected from
central Oxford over a period of six months in bright sun,
night, rain, snow and at all times of the day. Our experiment
consists of a comprehensive N-vs-N analysis on 22 laps of
the approximately 10 km route in central Oxford. With our
proposed system, the portion of the route where localisation
fails is reduced by a factor of 6, from 33.3% to 5.5%.

I. INTRODUCTION

This paper addresses the problem of camera-only, metric

localisation in difficult outdoor environments. In outdoor en-

vironments, the scene’s appearance changes frequently, and

often unpredictably, as a function of weather, lighting and

season. Traditional approaches rely on point-features (such

as SIFT, SURF and BRIEF) for metric localisation, however

these point-features are not robust to severe appearance

change. This paper presents an alternative to point-features.

We propose an unsupervised mechanism to extract mid-level

distinctive features from the environment, training place-

specific linear SVM classifiers to fire on these distinctive

features. These classifiers are used at run-time to associate

image patches in the live and map images to perform robust

localisation.

We emphasise that the problem of metric localisation is

different to that of place recognition. SeqSLAM [1] and

FAB-MAP [2] are examples of place recognition systems

– they output the image (or place) to which the robot’s live

image is most similar, however there is no information about

the robot’s 6-DOF pose in the map.

We approach the problem of camera-based localisation

from the context of our previous work in Experience-Based

Navigation [3][4]. In this previous work, the robot incre-

mentally built up a map of overlapping experiences, where

each experience could be thought of as a distinct visual

snapshot of the world under particular conditions (e.g. sunny,
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Fig. 1: We present an alternative to traditional point-feature

localisation systems. Our system extracts distinctive ele-

ments from the environment using an unsupervised mining

technique. We present a comprehensive N-vs-N analysis

on 205 km of driving in central Oxford, showing that the

proposed system is significantly more robust to appearance

change than traditional approaches.

rainy, night, etc). At the core of this work was a localiser.

The localiser subsystem took two images as input, and if

possible, returned a 6-DOF transformation between the two

images. In this previous work, a traditional point-feature

localiser performed this function. However, because point-

features are brittle to appearance change, the robot could

only localise when the live image was visually similar to

one of the experiences contained in the map. For example, if

the map contained cloudy and rainy experiences, localisation

would fail on the first time the robot encountered a sunny day.

Therefore, the robot needed to survey the environment many

times, under many different states of appearance, before

achieving robust localisation. This presents a problem for

systems in which a high level of autonomy must be reached

with limited training data.

Our work is similar in spirit to McManus et al. [5], where

they trained SVM classifiers to identify distinctive landmarks

in a scene. However, our work differs in a number of key

areas:

1) Our method trains classifiers on a single dataset,

whereas [5] requires a high number of traverses

through the environment.

2) We propose a new training algorithm based on in-

expensive geometric tests, resulting in a significantly

faster training algorithm. As a result, we can train

much larger maps with fewer computational resources.

3) Our system does not require GPS to manually align

datasets before training.

For the purposes of clarity in this paper, we set aside our

previous work in experiences [4] and concentrate solely on

the localiser subsystem. We present a comprehensive N-vs-N
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Fig. 2: Sample images from 205 km of data from the Oxford 10 km dataset. Each image is taken from one of the 22 datasets

used in this paper, illustrating the challenging weather and lighting conditions present in the dataset.

comparison on 205 km of data from central Oxford, where

we compare the performance of a traditional point-feature

localiser to our proposed method. Sample images from

each log are shown in Figure 2 and classified by weather

conditions and time of day in Table I. Our experiments

show that during the day, the portion of the route where

localisation fails is reduced from 33.3% to 5.5%, a factor

of 6 improvement. This remaining 5.5% would be resolved

using an experience-based approach as in [4].

II. RELATED WORK

Outdoor localisation using vision has received significant

attention in recent years. We make the distinction here

between topological methods which produce localisations

with respect to a collection of images, or places, versus the

metric methods which report a numeric pose relative to the

map. While the focus of this paper is metric localisation, we

review recent works in both areas.

Many prior works in this area use local, low-level image

features such as corners [6][7], blobs [8], or lines [9] as

the underlying point of interest detector. These are then

described with a local feature descriptor such as SIFT [10],

SURF [11] or one of the binary descriptors [12][13][14][15].

Numerous SLAM approaches using combinations of these

feature detectors and descriptors have been demonstrated

[16][17][18]. Furgale and Barfoot used SIFT features in

their visual Teach and Repeat system and noted their lack

of robustness to changes in the time of day [19]. Valgren

examined the effect of seasonal change on SIFT and SURF

features for topological localisation, but did not examine

metric localisation [20].

With these limitations of point-based methods for robust

long-term localisation, recent approaches use mid-level or

whole-image descriptors. SeqSLAM [1] and BRIEF-GIST

[21] are two examples of topological localisers that use

whole-image descriptors. SeqSLAM, by exploiting the se-

quence information, demonstrated day-to-night localisation,

and noted that FAB-MAP [2] (a point-based feature system)

performed poorly in such conditions. More recently Sunder-

hauf et al. used Edge Boxes to generate landmarks from each

image [22][23]. Edge Boxes produce candidate edge-based

bounding boxes for objects in the scene, which can be ranked

with an “objectness” score. Combined with features from

ConvNet [24], Sunderhauf et al. demonstrated a topological

localiser robust to viewpoint and appearance change.

The SLAM++ approach developed by Salas-Moreno et

al. used full objects in their framework rather than typical

low-level features [25]. Objects such as chairs and tables

were detected and tracked, however they required detailed

3D models of the objects used for localisation.

Our work is similar to that of McManus et al. who

proposed Scene Signatures [5]. Rather than use corners

or line-primitives for features, they used mid-level patches

that were distinctive in their local setting. The localisation

performance was metric and more robust than point-feature

methods, but the metric accuracy was reduced, leading to

the term “weak localiser”. This was inspired by the work of

Doersch et al. whose method distinguished between images

of Paris and London by learning distinctive mid-level patches

of each city [26]. A similar approach is also used by Li et

al. who also use higher-level visual features for underwater

place recognition [27].



Log Weather Time of day Log Weather Time of day

1 Cloud Mid-day 12 Cloud Morning
2 Sun Mid-day 13 Sun Morning
3 Rain Dusk 14 Cloud Morning
4 Clear Night 15 Sun Afternoon
5 Snow Morning 16 Sun Afternoon
6 Sun Morning 17 Sun Afternoon
7 Sun Afternoon 18 Sun Morning
8 Partly cloudy Afternoon 19 Cloud Morning
9 Partly cloudy Afternoon 20 Sun Morning

10 Cloudy Morning 21 Cloud Morning
11 Clear Dusk 22 Night Night

TABLE I: Table categorising the 22 datasets used for eval-

uation by the weather conditions and time of day. Sample

images are shown in Figure 2.

Our work differs from [5] in a number of ways. Most no-

tably, we use only a single dataset to create our map, whereas

McManus et al. require a number of training datasets. Addi-

tionally, our training procedure discovers distinctive elements

through inexpensive geometric tests, which is significantly

faster than the method in [26]. Lastly, we do not require

GPS to manually align the datasets before training.

III. TRADITIONAL APPROACHES

Before discussing our method in more detail, we provide

a brief overview of the core components of a traditional

localisation system.

A. Visual odometry

Visual odometry is used to provide an estimate of the

robot’s motion through the environment [28][29][30]. In

our implementation, visual odometry consumes a stream of

image pairs from a stereo camera. For each stereo frame,

a set of 3D landmarks is extracted. The robot’s trajectory is

estimated by associating observations in the live stereo frame

with landmarks stored in the previous frame and minimising

the reprojection error of the observed landmarks.

B. Localisation and mapping

The map is stored as a graph, where nodes in the graph

contain images and extracted 3D landmarks, and edges

contain the 6-DOF transformations obtained from visual

odometry [4]. At run-time, localisation is performed between

the live image and landmarks stored on a node in the graph.

Landmarks are described by a feature descriptor (e.g. SIFT,

SURF, BRIEF). These feature descriptors are used to perform

data associations between observations in the live image

and landmarks stored on a node. The pose optimisation is

performed in a similar manner to [28][29][30].

We find that appearance change makes localisation fail in

two ways. Firstly, the feature extractor breaks down – i.e.

the extracted features in the live image are not the same as

those in the map image. This often happens when shadows

create strong gradients and corners in the image. Secondly,

the feature descriptors are not invariant to the level of ap-

pearance change encountered in outdoor environments. This

makes the data-association step fail. Our method addresses

both of these failure modes.

Fig. 3: Our unsupervised mining algorithm iteratively prunes

and retrains a bank of robust detectors. The first phase trains

a set of seed detectors (green, red and orange). By trian-

gulating the landmark observations across a set of nearby

images, we can reject landmarks which do not optimise to

a consistent position (shown in red). A test for aliasing over

a larger radius from the origin removes detectors which are

not unique within the environment (shown in orange). The

remaining detectors (shown in green) are saved.

IV. TRAINING METHOD

The training method is an offline mining procedure which

extracts distinctive elements from the environment and de-

scribes them so that they can be detected at run-time for

localisation.

A distinctive element in the environment might be a post-

box alongside the road, or the particular shape of a building’s

roof on the horizon. However, while it is helpful to think

of these distinctive elements as belonging to semantically

meaningful objects, we are not limited to them. Figure 1

illustrates a subset of the distinctive elements present in the

scene.

We train a linear SVM classifier to detect each distinctive

element. SVMs provide a powerful way to describe the

appearance of landmarks since they can be trained using

multiple observations of the landmark from different images.

In this paper, we discover and train robust detectors using a

single training dataset, with sufficient generality to localise

across the extreme changes in appearance shown in Figure 2.

While this paper focuses on how to train classifiers using

a single training dataset, the method naturally extends to

learning from multiple passes through the environment –

provided that the relative poses between images in datasets

can be obtained. This would improve the robustness of the

landmark detectors, however we only consider the case that

a single mapping run is available, as in the Teach and Repeat

systems used by Furgale and Barfoot [19].

A. Banks of place-specific detectors

Landmarks in traditional point-feature localisation systems

usually correspond to precise 3D points in the world – for

example, the corner of a windowsill or signpost. However,

the features we are interested in are more complex. For

example, they may contain multiple overlapping objects with

planes at varying depths in the image. In spite of this,



we still require our landmarks to “behave” in the way a

conventional 3D point-feature landmark would: as the robot

moves through the world, the appearance of the landmark

should project into the camera frame consistently.

The ith distinct landmark is referred to as:

Li = {di, pi}

where di is the linear SVM detector trained to detect the

landmark, and pi is the homogeneous coordinates of the

landmark relative to a chosen coordinate frame.

For a particular place k in the map, a bank of place-specific

landmarks Bk are trained, where:

Bk = {L0,L1,L2....}

The bank of landmarks is stored on the node corresponding

to place k.

B. Mining distinctive landmarks

This paper presents a new technique for mining distinctive

landmarks from the environment. The technique curates a

bank of robust detectors by iteratively applying geometric

consistency tests on the detectors. It is an unsupervised,

camera-only technique that does not rely on GPS or manual

alignment of training images.

The method below is for a single place k and window size

s. It is run in parallel for multiple places and window sizes.

The training method is as follows:

1) Train seed detectors. Select a single image I0 from

place k. Slide a window of size s over image I0. As the

window moves, train detector di for each new position

of the window as in Section IV-D. We refer to these

detectors as seed detectors and store them in Bk. Many

of these seed detectors will not represent distinctive

elements – the following steps iteratively prune Bk

until only the set of distinctive landmarks remain.

2) Test detectors in nearby images. Query the graph

structure for images close to image I0 and store them

in set I1. In our implementation, stereo images within

a 1 m radius of image I0 are included. Each detector

in Bk is tested on the training images in I1, as in

Section IV-E. We require a landmark to be visible in

all images in I1, so we do not threshold the detection

scores. This forces the detector to give us its “best

estimate”, yielding the vector of observations z. The

following step detects false positives.

3) Perform geometric tests for consistency. Optimise for

the 3D position of each detector using the observations

z and the relative transformations T from visual odom-

etry as in Section IV-F. If the detector has fired incor-

rectly, this will either prevent the optimisation from

converging, or will result in outliers. False detections

imply the underlying element in the environment is not

unique, and so the landmark is rejected from Bk. The

red patches in Figure 3 illustrate the kinds of patches

that typically fail this test – usually they correspond

to featureless patches of road or sky. Only landmarks

with good position estimates now remain in Bk.

4) Retrain detectors from multiple images. Since the

observation of each landmark in each image in I1
is now known from the previous step, retrain the

linear SVM classifiers in Bk. In other words, we use

the successful detections from the previous two steps

to make the data associations between landmarks in

different images. This makes the linear SVM detectors

more robust. Every time the linear SVM classifiers

are updated, the corresponding landmark positions are

recalculated to ensure the detector still behaves as a

consistent landmark.

5) Test for aliasing. Consider a detector trained to fire

on a lamp post. It may initially appear unique because

training images have only been sampled from a small

region in the map – however, as the robot moves

outside of this radius, it may detect other lamp posts.

This is a problem for localisation, as we want to avoid

the data association problem of knowing which lamp

post we have detected. The orange patches shown in

Figure 3 are other examples of elements prone to

aliasing.

To this end, retrieve a set of test images I2 nearby

the origin image I0. In our implementation, images

within a 5 m radius are used. Run the detectors in Bk

on the images in I2 and note the detection locations.

If the landmark is not visible in an image, the detector

should return a low detection score. For this reason,

we threshold on the maximum detection scores to

allow for the event that the landmark is not visible.

Since the relative transformations between images are

available from visual odometry, and the 3D positions of

landmarks are known, project each landmark in Bk into

each image in I2. If a detector has fired incorrectly,

remove it from Bk.

The output of the training method is a bank of robust

detectors for each place in the map which can be used for

online localisation.

We include some additional implementation details below.

C. ACF features

ACF features [31] are used as the underlying feature

representation for input images. HOG features were used

by McManus et al. [5], however we find that ACF features

provide better performance.

D. Training a detector

This section describes our procedure for training linear

SVM classifiers. We define a function which accepts a vector

of training images I and corresponding vector of landmark

locations in the image u. The function extracts image patches

corresponding to the landmark locations in u. These patches

are labelled as members of the positive class. The function

randomly samples the remainder of the image to populate the

negative class. Liblinear [32] is used to train a linear SVM

using the positive and negative classes.

To avoid overfitting, we artificially augment the training

data [24]. In our implementation, the images in I are dark-

ened, lightened and blurred.



E. Using detectors to look for landmarks

Detections are performed using a sliding window ap-

proach. Since the training method requires landmarks to be

unique in the scene, the detector returns only the maximum

detection score and corresponding image coordinates – i.e.

we do not allow multiple detections of a single landmark in

the scene. If detection scores are unanimously low across the

image (governed by threshold t), the landmark is declared

not visible and no data association is made.

F. Estimating landmark positions

An accurate localisation system relies on good estimates

of landmark position. The position pi of a landmark Li is

modelled as a homogeneous coordinate vector:

pi = (x, y, z, q)

where q = 1 if the landmark was close enough to the camera

to observe its 3D position accurately, and q = 0 if the

landmark was modelled at infinity. The robot’s ability to

estimate the depth of landmarks far away is a function of the

baseline of the stereo camera. Observations of landmarks at

infinity constrain the robot’s orientation, but do not constrain

its position.

We optimise for the homogeneous coordinate vector pi
by triangulating observations of the landmark from multiple

camera frames. Multiple observations of the same landmark

may come from a stereo image pair and / or from multi-

ple frames of a camera as the robot moves through the

environment. The position of the landmark is solved for

using Ceres [33], a non-linear least squares solver. If the

optimisation converges successfully with no observations

marked as outliers, and a low RMS reprojection error, we

return the position of the homogeneous coordinate to pi.

The current CPU implementation takes approximately 15

seconds to extract a bank of landmarks Bk on a 16-core

2.6GHz Intel Xeon machine. A GPU implementation would

be significantly faster, since a significant portion of the

processing work is in performing image convolutions. In our

testing, we extract landmarks of size 64 x 64 and 32 x 128

using images of size 480 x 680. The training method typically

extracts between 100 and 300 robust detectors per place.

V. LOCALISATION

The landmarks extracted in Section IV-B are used at run-

time for localisation instead of traditional point-features such

as SIFT, SURF and BRIEF. The localisation process is as

follows:

1) Find the nearest bank of landmarks. Query the graph

structure to find the nearest bank of landmarks Bk.

Recall that the robot’s pose in the graph is given by an

external place recognition system such as FAB-MAP,

SeqSLAM or GPS, or by using visual odometry to

update the robot’s previous pose estimate.

2) Run detectors on the live image. Test each detector

in Bk on the live image as described in Section IV-

E. Since landmarks may genuinely not be visible in

the image, we threshold detections by their detection

score. This outputs a vector of observations z – the
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Fig. 4: The output from a single localisation run, where

a sunny dataset was used to create a map and a cloudy

dataset was used to localise in the map. The trajectory is

plotted on an overhead map, and the success or failure

of the localisation attempts are plotted in green and red,

respectively.

Datasets Baseline Proposed Improvement

All datasets 0.509 0.208 2.45
Daytime datasets 0.379 0.085 4.46

Night datasets 0.468 0.212 2.21
Cloudy datasets 0.297 0.018 16.6
Sunny datasets 0.469 0.148 3.17

Map cloudy, localise at day 0.333 0.055 6.05

TABLE II: Table with the average localisation performance

from the N-vs-N experiment. This can be thought of as an

average over the values in Figure 5, except that we exclude

the diagonal x = y where the same dataset is used for

mapping and localisation.

observations of the landmarks in the live image. This

implicitly associates observations in the live image

with landmarks in the map.

3) Do pose optimisation. Optimise for pose in a similar

manner to traditional point-feature localisers. We solve

for pose with a 3D-2D pose optimisation [29][30]

using Ceres [33].

4) Verify the pose estimate. Verify that the pose estimate

is reasonable by comparing successive localisation

estimates with the ego-motion estimate from visual

odometry, similar to [3][34][4][35]. This prevents poor

localisation estimates propagating through the system.

VI. EVALUATION

We evaluate our system using the Oxford 10 km dataset.

The dataset consists of 22 laps of an approximately 10 km

route in central Oxford. Data is collected in bright sun, cloud,

rain, snow and night, and at all times of the day. Figure 2

shows the extreme appearance change being considered and

Table I categorises the datasets by weather and time of day.

A. N-vs-N comparison

The primary experiment presented in this paper is a

rigorous N-vs-N comparison which tests our system’s ability



(a) Traditional point-feature localiser

(b) Proposed system

Fig. 5: Using 22 traverses of the Oxford 10 km route, we

build 22 independent maps (listed along the x-axis). For

each map, we attempt to localise all 22 traverses in that map

(shown on the y-axis). The value in each cell is the portion

of the localisation run in which localisation failed for longer

than 20 m. We aim to minimise this distance travelled in

open-loop, where the robot must estimate its pose in open

loop using visual odometry. The figure shows our method

consistently outperforming the baseline approach.

to localise across severe appearance change. We build 22

independent maps using each of the 22 traverses of the

Oxford 10 km dataset using the training method in Section

IV. For each map, we attempt to localise all of the 22

traverses against that map. This N-vs-N comparison presents

a significant computational effort. To generate the results, we

process the full 205 km of data in 22 different combinations,

totalling 4510 km of processed data. Figure 4 shows the route

on a map.

We measure localisation success by comparing the se-

quential localisation estimates with the estimates from visual

odometry, in a similar manner to [3][34][35][4]. Our metric

for success is the portion of the localisation run in which

localisation fails for more than 20 m. This is an important

Live Memory
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Fig. 6: Figures showing successful localisation in spite of

severe appearance change. Only a subset of feature matches

are plotted.

metric, since during periods of localisation failure the robot

must estimate its pose in open-loop using visual odometry

which is prone to drift over large distances. Ground truth for

the localisation runs is difficult to obtain since both localisers

are more accurate than high-end INS systems.

Figure 5 presents the full results of this experiment.

Figure 5a presents the performance of the baseline system,

a traditional point-feature localiser, and Figure 5b shows the

results of our proposed system. Each cell in the table corre-

sponds to the portion of the route where localisation failed

for more than 20 m, for a single mapping and localisation

combination. For example, cell [x, y] = [1, 8] corresponds

to the localisation performance when Dataset 1 was used to

create a map, and Dataset 8 was used to localise against that

map. The diagonal x = y corresponds to the event where

the same dataset is used for mapping and localisation. The

figure shows that localisation performance is consistently

more robust using our proposed method.

Table II presents the mean performance of the two lo-

calisers. The mean is calculated by averaging the respective

matrices from the N-vs-N experiment in Figure 5. Note that

we exclude the diagonal elements from the calculation since

these represent the case where the same dataset is used for

mapping and localisation.

In Figure 5, it is clear that there is structure in the matrices.

This implies that certain datasets performed consistently bet-

ter (or worse) than others during localisation and mapping.

We group the datasets in various combinations according to

Table I and record the corresponding mean performance in

Table II. We discuss these results in more detail below.



B. Localisation during the day

This section analyses localisation performance during the

day. Table II shows that when we exclude night datasets

from the experiment, the portion of the route where local-

isation failure occurs is reduced from 37.9% to 8.5%, an

improvement by a factor of 4.46. Figure 6b shows successful

localisation under harsh lighting conditions.

However, our system does not only show improvement

when severe appearance change is present. Table II shows

the average localisation performance over a set of datasets

captured in cloudy conditions. Cloudy datasets provide the

most favourable conditions for the traditional point-feature

localiser since they are the most visually similar (no shadows

or direct sun). Despite this, the average portion of the

route where localisation failed remains high at 29.7%. This

is likely due to poor translation invariance, where lateral

movement of the vehicle across the road causes localisation

to fail, rather than appearance change. Here, our system

outperforms the baseline system by a factor of 16.6, with

only an average 1.8% of the route suffering localisation

failure. As can be seen in 5b, a number of the localisation

runs completed with zero localisation failures.

C. Localisation between night and day

Consider the matrices in Figure 5. The matrix of the

traditional localiser is roughly symmetric: mapping with

Dataset A and localising with Dataset B results in similar

performance to the converse of mapping with Dataset B and

localising with Dataset A. In the case of localising between

night and day, we see that localisation fails for a significant

portion of the route regardless of whether the map is created

during the day or night. Night datasets are Datasets 3, 4, and

22.

However, the matrix corresponding to the proposed lo-

caliser is not symmetric. When the map is created during

the day, and localisation is performed at night, we see that

localisation performs poorly in the same way as the baseline

system. Interestingly however, mapping during the night

and localising during the day results in a reduction in the

percentage of localisation failure from approximately 90% to

40%. Figure 6a shows successful localisation between day

and night. While localisation still fails for a large portion of

the route, it is comparable with the best performance offered

by the baseline system during the day. This means that to

localise between night and day, the map should be created

during the night. This may be because during the day there

is more clutter in the scene, whereas at night only the most

distinct landmarks are visible – nevertheless, it is certainly

an interesting result.

D. Which datasets are best for mapping?

Figure 7 plots the distribution of the localisation results on

a per-map basis for datasets during the day. We assert that

the average localisation performance on a given map is an

indicator of underlying map quality. From Figure 7, cloudy

datasets (Datasets 1, 9, 10, 19, and 21 in particular) appear to

provide slightly better map quality than those created when

sun or snow is present. This may be due to sun blinding
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(a) Traditional point-feature localiser
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(b) Proposed system

Fig. 7: Boxplot showing the distribution of the localisation

results on a per-map basis for daytime datasets. The median

result is marked with a horizontal red line. Better localisation

performance is observed when the map is created under

cloudy conditions (Datasets 1, 9, 10, 19, and 21).

the camera, or creating scenes with a high dynamic range

which the sensor cannot capture. Table II shows the mean

performance of creating a map with a cloudy dataset, and

localising in that map using all of the daytime datasets

(including the datasets with sun and snow). Under these

conditions, the average localisation failure of our proposed

system is reduced from 8.5% (when any daytime dataset is

used for mapping) to 5.5% (when only cloudy datasets are

used for mapping).

E. Experience-Based Navigation

In previous work [4], we leveraged the notion of “ex-

periences” to perform robust localisation across appearance

change. We used a traditional point-feature localiser which

was brittle to appearance change, meaning that the system

required a high number of experiences to map the environ-

ment. Additionally, the system could not generalise to unseen

experiences – for example, if the map only contained sunny

experiences, localisation would fail on the first encounter

with snow.

We maintain that the framework of experiences is ben-

eficial even with a more robust localiser. Figure 4 shows

an overhead plot of the 10 km route, marking points along

the trajectory where localisation failed and succeeded, in red

and green respectively. A point of concern with the proposed

system may be that there are certain parts of the world where

it is simply not possible to extract distinctive landmarks,

leaving “dead zones” in the map. Rather, we observe that

given multiple maps and a single dataset for localisation,

that localisation failures occur in different areas of the map.



This means that an approach using multiple experiences [4]

would likely result in improved localisation performance.

VII. CONCLUSION

This work has demonstrated an unsupervised mechanism

for extracting distinctive mid-level features from the envi-

ronment. We show that by applying inexpensive geometric

checks for consistency in landmark position, we are able

to extract the most distinctive elements from a scene. We

describe these elements using linear SVM detectors, trained

using a single mapping dataset. We leverage these distinctive

landmarks at run-time to perform robust, metric localisation

across extreme appearance change. The system is evaluated

in an exhaustive N-vs-N comparison across 22 traverses of

an approximately 10 km route, totalling 205 km of driving in

central Oxford. We show that localisation failures during the

day are reduced by a factor of 6, from 33.3% to 5.5%, when

compared with a traditional point-feature localiser.
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