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Reading the Road: Road Marking Classification
and Interpretation

Bonolo Mathibela, Paul Newman, and Ingmar Posner

Abstract—Road markings embody the rules of the road whilst
capturing the upcoming road layout. These rules are diligently
studied and applied to driving situations by human drivers who
have read Highway Traffic driving manuals (road marking inter-
pretation). An autonomous vehicle must however be taught to read
the road, as a human might. This paper addresses the problem
of automatically reading the rules encoded in road markings,
by classifying them into seven distinct classes: single boundary,
double boundary, separator, zig-zag, intersection, boxed junction
and special lane. Our method employs a unique set of geometric
feature functions within a probabilistic RUSBoost and Conditional
Random Field (CRF) classification framework. This allows us to
jointly classify extracted road markings. Furthermore, we infer
the semantics of road scenes (pedestrian approaches and no drive
regions) based on marking classification results. Finally, our algo-
rithms are evaluated on a large real-life ground truth annotated
dataset from our vehicle.

Index Terms—Road marking classification, scene interpreta-
tion, scene understanding, situational awareness.

I. INTRODUCTION

OR autonomous driving to occur, there needs to be some

degree of situational awareness on the part of the robotic
car, allowing it to safely navigate its environment. Formally, sit-
uational awareness is defined as a three level process involving
“the perception of elements in the environment within a volume
of time and space, and the comprehension of their meaning,
and the projection of their status in the near future” [1]. In
the context of autonomous driving, the ultimate goal of situ-
ational awareness is to assist in informative decision making.
We approach situational awareness in terms of interpreting the
underlying meaning of road markings, thus allowing a vehicle
to read the road ahead, as shown in Fig. 1. Here, reading the
road is an online process of classifying and interpreting road
markings along unknown roadways.

This greatly contrasts offline approaches (such as [2] and [3])
where a semantic prior map (of road markings for example)
is first created by surveying known roadways and a vehicle
localises against this map when traversing the same known
roadway. The two main disadvantages of the offline approach
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Fig. 1. Reading the road requires classifying and interpreting the meaning of
road markings in the road scene. Here, each colour represents a unique road
marking class.

is that the vehicle cannot interpret a new area without first
creating an offline semantic map of that area; and roads are
changing due to maintenance, construction and roadworks [4],
[5]. Although roadworks are temporary, their frequency of
occurrence is surprisingly high. In 2009/2010 alone, Transport
for London reported an estimated 370000 roadworks [6], a
figure that is typical for most major cities.

Highway authorities worldwide publish technical reports
detailing meanings and placements of road markings to aid
human drivers in reading the road scene ahead. A driver can
predict upcoming road topology, know the set of permissible
manoeuvres, and keep to the correct lane, based on interpreting
road markings. An autonomous vehicle must however be taught
to automatically read and interpret road semantics as a human
might—this motivates our work.

This paper extends our previous work [7] and makes three
contributions. Firstly, we propose a new probabilistic frame-
work for classifying and interpreting road markings in images.
Our framework accommodates a varying graphical model struc-
ture (each road scene gives rise to a unique structure). Secondly,
we create a benchmarking ground truth class annotated dataset
containing 2068 images and over 13099 unique annotations,
the largest of its kind to date, to the best of our knowledge.
Large road marking datasets are hard to come by, apart from [8]
which does not contain class labels (and has just 116 images)
and [9] which has bounding box ground truth labels of painted
road signs in 1208 images. Thirdly, we show how traffic-light
controlled pedestrian crossings and no-drive regions can be
automatically detected from classified road markings.

Following a review of related works in the next section,
we discuss our representation in Section III, our road marking
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classification framework in Section IV, evaluations in

Section V, and finally conclude in Section VI.

II. RELATED WORKS

Road marking classification and interpretation is a problem
that is of great interest to the intelligent transportation commu-
nity. In earlier work, Charbonnier et al. extracted parameters
such as dash modulation and line width by representing lane
markings as polygons of grouped detections; and could also
detect arrow type road markings [10].

The simplest approaches to road marking classification use
template matching, such as [11] for the recognition of cross-
walks and arrows using single or repetitive rectangular pattern
templates, and [12] for detecting arrow markings. Template
matching approaches generally perform poorly when the road
markings are partially observed or occluded.

Descriptor and Fourier-analysis based approaches have also
been proposed before. Wu and Ranganathan’s HOG-based
(Histograms of Oriented Gradients) [13] road marking speed
sign, arrow and word detection [9] algorithm uses Feature
matching, followed by structural matching to capture the 2D
geometry of FAST interest points. Collado et al.’s lane inter-
pretation system for classifying continuous, discontinuous and
merge type lanes [14] uses Fourier analysis on the intensity
line profile of thresholded images for classification. Thresholds
are applied to the resulting Fourier power spectrums within
heuristically determined frequency bands. In later work [15]
identify one-way, two-way or freeway roads based on Fourier
analysis of road markings to classify them as continuous,
broken or merge lines.

Prior geometric information has also been exploited before:
zebra crossings and dashed lines were reconstructed in [16],
where known 3D size and shape information of dashed lines
and zebra crossing road markings was exploited. A signature-
based recognition approach exploiting the alignment of edges
with the road axis was used: projections of the edges along
horizontal and longitudinal axes provided accumulation sig-
nature features [16] (e.g., repetitive peaks for zebra crossings
versus a pair of peaks for dashed lines in the transverse axis),
where the road axis is taken to be the most frequently occurring
orientation of 2D line edges. The system was tested on just 1km
of data (150 stereo pair images).

In recent years, classifier based approaches have become
popular, and examples include a decision tree classifier for
intersection road markings trained on six numerical features
based on relationships between the road marking border points
and an extracted RANSAC line fit [17], moments to capture
shapes of arrows and straight lines [18], and an Artificial
Neural Network (ANN) classifier with invariant spatial mo-
ments, histogram projections and normalised angular measure-
ment features for recognising six road marking arrow types and
17 alpha numeric characters [19]. Finally, a generative learning
method based on eigenvectors was used by [20] to recognise
arrow and numbered markings.

In the most related work, Duchow and Kortner detect indi-
vidual lane segments and aggregate these into intersection lanes
[21]. A machine learning approach is proposed where a set of
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Fig. 2. Zig-zag approach road markings lead up to a traffic light controlled
pedestrian crossing.

features (width, length, orientation, position, intensity differ-
ences and deviations) is extracted from single, pair and triplet
groups of lane marking segments and a Support Vector Machine
(SVM) is trained to classify lane segments as belonging to
the same lane or not [21]. Triplets are then combined to form
lane boundaries. Importantly, this approach requires no use
of prior information (digital maps or geometric road models)
and neighbourhood information is captured by considering
triplets of road markings at a time. Although [21] considers
only intersection classes, their work is the most related to ours
as relationships between neighbouring road marking segments
are exploited by the classification framework and no explicit
geometric priors are used, similar to our approach.

Unlike previous work which focuses on finding arrows and
painted traffic signs on roads [9], [12], [17]-[20], classify-
ing solid and dashed lines [14], intersections [21] and zebra
crossings [11], [16], to the best of our knowledge, we are the
first to address the problem of road marking joint classification
(where markings are classified together, relative to each other)
and interpretation (deriving the semantics of road scenes from
road markings) for situational awareness. Furthermore, with
available data, additional classes can readily be incorporated
into our classification framework.

III. REPRESENTATION

Our goal is for a vehicle to read and interpret the rules of
the road encoded in road markings in order to gain a sense
of situational awareness of the current and upcoming road
topology [7]. For example, observing zig-zag approach road
markings informs a vehicle that there is an upcoming traffic
light controlled pedestrian crossing (see Fig. 2). Successful
recognition of zig-zag approaches therefore provides strong
priors for the location of traffic lights and pedestrians, which
is useful also for cuing the appropriate detector modules.

A. Seven Road Marking Classes

We classify the seven types of road markings shown in
Table I and the accompanying figure. Here, we observe that:

e The number of lanes influences the type of road markings
present. We presently do not rely on having prior knowl-
edge of the number of lanes present; but in future work
this is a parameter we will learn from combining local
vehicle observations with web-based sources.

e The class of a specific road marking is strongly in-
fluenced by that of its neighbours (notice how similar
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TABLE 1
‘WE CLASSIFY SEVEN DISTINCT ROAD MARKING TYPES (CLASSES)
MoST COMMONLY FOUND ON BRITISH ROADS. ROAD MARKING
SEMANTIC CATEGORIES VARY BETWEEN COUNTRIES: THE USA, U.K.
AND SOUTH AFRICA HAVE OVER 24, 29, AND 22 TYPES RESPECTIVELY

[ Class ]| Description [ Abbreviation [ Colour |

1 Single boundary SGL Red

2 Double Boundary DBL Green

3 Separator DIV Magenta
4 Z1g-zag Z1G Cyan

5 Intersection INT Yellow
6 Boxed Junction BJ Blue

7 Special Lane SPL Orange

colours/classes are clustered). Thus we model the rela-
tionships between road markings based on proximity.

* The perspective effect in the images distorts the true
lengths, orientations and positions of road markings. To
attempt to recover the true geometric properties of road
markings, we make a “flat-earth” assumption and assume
a fixed known height for the camera relative to the ground
plane. Although the assumption of a locally planar road
performs satisfactorily, it does not strictly hold when
changes in elevation and turning occur. Algorithms such
as Fast Inverse Perspective Mapping Algorithm (FIPMA)
adaptively update the camera parameters [22] to account
for these subtle changes.

B. Inverse Perspective Mapping (IPM)

As a pre-processing step, we begin by removing the perspec-
tive effect from images using Inverse Perspective Mapping [23].
Perspective in road images distorts true lengths, positions and
orientations of road markings as shown in Fig. 3. This effect is
especially pronounced in zig-zag type markings (cyan colour)
where the lengths of each road marking segment appear to be
different when, in reality, they are the same length and one
of two opposing orientations. To address this, the linear per-
spective can either be implicitly modeled [10], [17] or Inverse
Perspective Mapping (IPM) can be performed [9], [18]-[21],
[24] to create a perspective free bird’s-eye-view image. We
adopt the latter approach and compute a homography matrix
H = KRK !, which defines the one-to-one relations between
the camera image pixels and synthesised bird’s-eye-view pixels.
Here, R is the virtual rotation matrix and K is the camera’s
intrinsic parameters.
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Original Images

Inverse Perspective Transformed Images
Fig. 3. Inverse Perspective Mapping (IPM) to remove the perspective effect in

images. Notice how, in the IPM images, parallel lines no longer intersect at the
vanishing point. Thus true lengths, orientations and positions can be recovered.

Fig. 4. Our CRF model for road marking classification superimposed on the
road image. The hidden states x; are the unknown road marking classes and the
observations z; (orange) correspond to line segment endpoints extracted from
each road marking. This graph is a probability distribution p(x|z) and each
road image example has a unique graph.

C. Line Segment Representation

Assuming road markings have already been detected, a
geometric model is assigned to each marking based on the
system application. For lane detection and tracking applica-
tions, smoothness and continuity is an important considera-
tion, thus spline [25] based geometric models are often used.
We choose a line segment geometric model similar to [14],
[21]. A painted road marking segment is therefore represented
by a line segment (or series of line segments) parameterised
by two endpoints p4 and pp, where the midpoint locations,

jZe] = (pa +pB)/2, represent node locations for our road
marking connectivity graphical structure. For solid continuous
road markings extending beyond the image capture area, we
assume that the marking endpoints coincide with the image
edge. Curved road markings are represented using a series of
line segments thus creating a piece-wise approximation (see
Fig. 1). We therefore frame road marking classification in terms
of assigning the most likely road marking class to each node.

IV. ROAD MARKING CLASSIFICATION

A natural way to represent road markings is to use a graph,
where the nodes represent observations (line segments) and
hidden states (unknown road marking class assignment), and
the edges represent the relational connectivity (see Fig. 4).
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Fig. 5. Road marking graph structures created using Delaunay Triangulation.
Notice how each example is unique.

A. Graphical Structure

The graph structure (connectivity) captures relationships be-
tween road marking segments. In the Figure of Table I, we
observe that road markings belonging to the same class tend to
be spatially clustered into groups (notice how the same colours
in the image appear clustered). This implies that adjacent road
markings are likely to belong to the same class, thus nodes
should be connected to their closest neighbours. We therefore
use Delaunay triangulation (the nearest neighbour graph is a
subgraph of Delaunay Triangulation [26]) to create a graph
structure of road markings, assuming a locally planar road sur-
face. Here, a unique graph structure exists per training example
as illustrated by Fig. 5. Given the graphical structure we can
now model the road using a Conditional Random Field.

B. Conditional Random Fields

Conditional Random Fields (CRFs) are undirected prob-
abilistic graphical models for relational learning, initially
proposed by Lafferty et al. [27]. CRFs directly model the
conditional distribution over hidden variables x, given obser-
vations z as p(x|z). In the graphical model, each node repre-
sents the hidden states and observations. Thus, given a set of
n hidden states x = {X1,Xz2,...,Xn} and data z, the nodes
x; and their associated graph structure define the conditional
distribution p(x|z) over the hidden states (see Fig. 4). Each
fully connected subgraph of this graph structure represents a
clique in the graph. Let C' be the set of cliques in the graph,
then a CRF factorizes the conditional distribution p(x|z) into a
product of clique potentials ¢.(z, X.) where ¢ € C, and x. and
z are the hidden nodes and data of clique c, respectively. Each
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clique potential ¢.(z,xc) is a strictly positive function of the
variable configuration and captures the compatibility amongst
variables in the clique (thus large values imply a more likely
configuration) [28]. The Conditional Random Field model can
therefore be written as:

plxlz) = 5 T oclaxe) M)
ceC

where the normalisation factor (partition function) is Z(z) =
> o e @c(z, %c), which sums over all possible label assign-
ments. In the log-linear parameterisation of CRFs, the poten-
tials are described using a log linear combination of feature
functions:

Dc(Z,Xc) = exp (W? -t (z, xc)) (2)

where w is the weight vector we need to learn and f.(z, x.)
is a feature function extracting a vector of features in a clique.
Here, large weights imply high compatibility and low weights a
less likely configuration. Thus, the log-linear parameterisation
of a CRF can be written as:

p(x|z) = Zgz) exp {Z wz . fc(z,xc)} 3)

ceC

where Z(z) =Y, exp {>_ . Wl - fo(z,xc) } is the new par-
tition function.

CRFs avoid encoding distributions over just the variable z
which allows great flexibility in choosing a rich set of continu-
ous observed variables (feature functions) whose dependencies
may be difficult to model (no simple parametric form) or
understand. We can therefore exploit domain knowledge to
define a set of discriminative features without needing to model
their joint distribution [29].

C. Conditional Log Likelihood Training and Inference

In parameter estimation, we are given the training dataset of
M examples and associated graphical structures. Our aim is to
estimate the parameters w_ in Equation (3) that best model the
data. Let 6 = [v, w] represent the combined parameters of the
unary and binary features and F'(z, x) represent all the features.
The CRF learns the weights discriminatively by maximising the
conditional log likelihood of the training data. Specifically, the
log likelihood for M training examples is given by:

M M
log (p(x|z)) = Z QTF(zm,Xm) — Z logZ(0,2,,) (4)

m=1

This log likelihood function can be shown to be concave
because log Z(0,z) is concave [29]. No analytical form for
this log likelihood maximum exists thus we perform parameter
estimation using an L2-regularised log-likelihood and estimate
the maximum using an iterative line search method (quasi-
Newton approach) which takes steps in parameter space to
improve the objective. L2-regularisation is necessary because
as more features are added to the CRF model, the negative log-
likelihood function decreases which could lead to over-fitting.
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The regularisation essentially adds a penalty for large parameter
values [29].

Inference refers to estimating the marginal distribution of
each hidden variable x; or the most likely configuration of
all hidden variables x. These tasks rely on using belief prop-
agation, a message passing algorithm for estimating marginal
distributions over a graph [30]. In belief propagation, messages
are passed through the graph structure of the model and each
node passes on received messages to its neighbours. Although
this method is exact for trees, forests and other graphs not
containing loops, our Delaunay triangulation connectivity cre-
ates loopy graphs, therefore we apply loopy belief propagation
(LBP) [31], an approximate inference algorithm not guaranteed
to necessarily converge to the true probability distribution
(inference is intractable). We however found the performance
of the LBP algorithm for inference in our CRF model to pro-
duce good results, even though convergence is not necessarily
guaranteed.

D. Feature Functions

Feature functions for road marking classification describe
geometric and spatial properties of line segments and their end-
points. The CRF learning algorithm associates an appropriate
weight with each feature function given the training data. In
CRFs, local (unary) features depend only on a single hidden
state 7. Global (binary) features depend on two hidden states ¢
and j. In this section we discuss the visual feature functions,
unary score features, and binary features used.

1) Visual Feature Functions: We formulate eleven geomet-
ric and spatial features capturing the properties of a single
node. Let us denote the line segment endpoints for node 7 as
pa; and pp;, the midpoint as pc;, and the x and y segment
endpoints for node ¢ as (pa;, and pp; ;) and (pa; , and pp; ),
respectively. Let pcy, be the midpoint of the node closest to
node i. Let isintersect() be a function that returns 1 if there is
an intersection and O otherwise, and [; denote the line segment
formed by joining p4; and pp;. Then the visual feature func-
tions are:

Length: This feature measures the length of a line seg-
ment and is useful for separating typically long road markings
(boundary, separator), medium length (zig-zag, special lane)
and short markings (intersection and special lane).

flength(i7zi) :H PAi — PBi || (5)

X-midpoint location: This feature measures the spatial x
location of the road marking in the image. This captures the
fact that boundary or zig-zag type markings tend to be located
toward the edges of the image while boxed junctions tend to
take up the entire image. Similarly, special lanes and intersec-
tions are spatially located near the road boundaries.

Jmide(1,2i) = Dcix (6)

Y-midpoint location: For completion we also consider the
y-midpoint location of the road marking. Although we removed
the perspective distortion in the image, this feature is useful
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particularly at intersections and roundabouts where the overall
orientation of road markings appears rotated.

fmidy(ia zi) = PCiy (7

Delta-x: In addition to capturing the location and length of
a road marking line segment, it is also important to have fea-
tures that capture the regularities. The change in x coordinates
(delta x) feature captures the regular pattern of zig-zag ap-
proaches. We showed that markings of the same length and one
of two orientations denote zig-zags. The delta x (and delta y)
feature is constant for zig-zag type markings. For vertical type
markings (boundaries, special lanes etc.) this feature is close
to zero.

fdeltaz(ivzi) = HpAi,z - pBi,:r” (8)

Delta-y: This feature captures similar geometric properties
to Delta-x. Specifically, for zig-zag markings, this feature is
constant. For vertical markings it simply reduces to the approx-
imate length of the road marking and for boxed junctions this
feature varies depending on the type of boxed junction.

fdeltay(iv Zi) - ||pA1',,y - pBi,y” (9)

Orientation: The orientation of a line segment is measured
anticlockwise relative to the x-axis. This feature approximately
evaluates to one of two values for zig-zag type markings and,
with the exception of the boxed junction class, is approximately
constant for road markings belonging to the same class in an
image. It also roughly captures the vehicle orientation (which
influences the relative orientation of the road markings).

fangle(ia Zi) = 4(]7,41‘ — PBi, X — aXiS) (10)

Furthest vertical distance: This feature is simply a measure
of how far away from the top of the image a road marking
is. Although this is sensitive to the vehicle pitch, for a given
vehicle class, the relative vertical distances across all road
markings in the image is preserved.

Y

Proportion segments to the left: This feature measures
the percentage of road markings located to the left of the ith
node. This captures the overall distribution of road markings
in the image relative to the position of node ¢. Intuitively, we
expect this class distribution to be different across classes, with
boundary type markings having low or high proportions and
separator markings proportions close to 0.5. Let NV be the total
number of nodes in an image and K.y, be the number of nodes
to the left of node :.

fvert(iy Zi) = max(pAi,y7 pBi,y)

Kiept

fpropleft(iazi) = (N — 1) (12)

Proportion segments to the right: This feature measures
the percentage of road markings located to the right of the i*"
node. It captures the overall distribution of road markings in the
image relative to the position of node ¢ similar to the previous

feature. The symmetry of the road markings on the road is also
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TABLE 11
CLASS DISTRIBUTION OF OUR DATASET SHOWING THE NUMBER
AND PROPORTION OF TRAINING AND TEST EXAMPLES

[ Class [ Description [ Train [ Proportion [ Test [ Proportion |
1 Single Boundary 794 12.19% 778 11.81%
2 Double Boundary | 1012 15.54% 961 14.59%
3 Separator 1491 22.89% 1471 22.34%
! Zig-zag 523 8.03% 549 8.34%
5 Intersection 287 4.41% 395 6.00%
6 Boxed Junction 1566 24.04% 1573 23.89%
7 Special Lane 841 12.91% 858 13.03%

captured by this and the previous proportion feature. Let N be
the total number of nodes in an image and K45 be the number
of nodes to the right of node 7.

) Korignt
fpropright(z7zi) = ﬁ

(13)

Closest midpoint distance: This feature is especially impor-
tant for double boundary type road markings since they com-
prise of two road markings of similar length and orientation,
running parallel. Thus the midpoint distance between double
boundary road markings is small compared to the midpoint
distances between other marking types.

fnn’dist(ia kvzi) - HpC’L - ka” (14)

Number of intersecting line segments: This feature is
most important for boxed junction markings occurring at
intersections/junctions. This is because for other classes, mostly
no intersections occur. The feature function counts the number
of line segments k that intersect with the line segment associ-
ated with node 7.

N-1

Sfint(i, k,2;) = Z isintersect(l;, )
k=1

5)

Conditional Random Fields can incorporate continuous lo-
cal features like the ones described above. CRF potentials
are formed by exponentiating a linear function of the feature
functions. To model the more complex nonlinear relationships
between hidden states and feature values however, it is better to
discretise (or binarise) the features [32].

2) Unary Score Features: Instead of directly using the visual
features described in Section IV-D1 in our CRF model, we
first train a Random Under Sampling Boost (RUSBoost) [33]
classifier and use these scores as input to our CRF. This is a
design choice shown to be effective by Friedman et al. [34]
who proposed first learning AdaBoost classifiers from trained
labelled data. Other variants of this approach, include using
SVM scores and CRFs [32] to build a two stage classifier.
Specifically, we choose RUSBoost because it is robust to
skewed training data—the number of examples, per class, in our
datasets is not balanced. For example, separator markings occur
over five times more frequently than intersection type markings
(see Table II).

We train a RUSBoost classifier using the eleven features
described in Section IV-D1. The classification output for each
training example is a 7 x 1 vector assigning a score to each
class. The RUSBoost classifier learns an independent model
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which does not account for relationships between adjacent
nodes, thus we use this score vector as input features for our
CRF which learns statistical dependencies between adjacent
hidden states.

3) Binary Features: For consistency (relational) across the
graphical model, it is necessary to define features relating
hidden states in the CRF to each other. Such pairwise features
take into account the effect that the feature functions have on the
transitions from one state to another (for example a neighbour
node transitioning from a zig-zag to a boxed junction class).
We derive edge (binary) features from the RUSBoost scores
(new node features). The edge features are taken to be the node
features from both edge ends [35].

V. EXPERIMENTAL RESULTS

We created a benchmarking dataset containing 2068 hand
labelled images spanning city, residential and motorway roads
[7]. The road marking dataset class distribution is shown in
Table II where a skewed distribution is noted. Some classes,
such as intersections occur less frequently than others such as
separators.

We evaluate our system performance in three ways:

e Without relational learning (similar to Duchow and
Kortner [21])

e With relational learning (our new proposed method)

* Sensitivity to input errors

Our road marking classification framework was implemented
using the Undirected Graphical Models (UGM) Toolbox by
Mark Schmidt [35] for probabilistic graphical models.

A. Results

1) No Relational Learning: The performance of our road
marking classification framework without relational learning
(only RUSBoost classifier) was evaluated using the dataset de-
scribed above. Although the three feature functions, fpropiefts
Spropright> and friqis take other road markings into account,
the relationships between adjacent node labels (or cliques) is
not explicitly modeled. The resulting per class precision and
recall confusion matrices are shown in Table III. For a given
confusion matrix, the diagonal elements are large ratios (close
to 1) for good classification performance (i.e. the ground truth
and predicted classes correspond exactly). Thus, a strong bright
diagonal in a confusion matrix illustrates good classification
performance.

Our experiments resulted in per class precision values rang-
ing between 0.56 and 0.89 and per class recall ranging from
0.54 to 0.96 as shown in Table IIl. The intersection class
precision is very low because examples belonging to this class
are commonly misclassified as special lanes, boxed junctions
or sometimes zig-zag. Per class recall values for the special
lane class are also very low because road markings predicted
as separator, single boundary, zig-zag approach, intersection or
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TABLE III
PER CLASS PRECISION AND RECALL CONFUSION MATRICES WITHOUT
RELATIONAL LEARNING. (a) PER CLASS PRECISION MATRIX
(NO RELATIONAL LEARNING). (b) PER CLASS RECALL
MATRIX (NO RELATIONAL LEARNING)

PREDICTION
ZIG | INT BJ

SGL | DBL | DIV SPL
SGL
DBL
DIV
ZIG
INT
BJ

SPL

GROUND TRUTH

(@
PREDICTION
SGL | DBL | DIV | ZIG | INT BJ SPL
SGL
DBL
DIV
ZIG
INT
BJ

SPL

GROUND TRUTH

(b)

Fig. 6. Special lane and intersection type road markings have very similar
visual appearance (short, repetitive).

Fig. 7. Boxed junctions describe areas of the road that a vehicle should not
be stationary in (but may possibly quickly traverse) such as separator boxed
junctions (left) and intersection boxed junctions (right).

boxed junction actually belong to the special lane class. The
RUSBoost model is discriminative and assigns road marking
classes based on a strong learner given the feature functions. We
show in the next section how introducing a relational learning
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TABLE 1V
PERCENTAGE IMPROVEMENTS IN TERMS OF PRECISION AND
RECALL WHEN RELATIONAL LEARNING Is USED

[ Class | Name [ Precision Change (%) | Recall Change (%) |

1 SGL 5.4 -1.4
2 DBL 5 -2.4
3 DIV 1.2 -1.8
4 Z1G 18.6 4.2
5 INT 234 -2.3
6 BJ 1.6 17.6
7 SPL 23 17.9
TABLE V

PER CLASS PRECISION AND RECALL CONFUSION MATRICES WITH
RELATIONAL LEARNING. (a) PER CLASS PRECISION MATRIX
(WITH RELATIONAL LEARNING). (b) PER CLASS RECALL
MATRIX (WITH RELATIONAL LEARNING)

PREDICTION

SGL | DBL | DIV | ZIG

INT BJ SPL
SGL
DBL
DIV
Z1G
INT
BJ

SPL

GROUND TRUTH

(@)

PREDICTION
SGL | DBL | DIV | ZIG | INT BJ SPL
SGL
DBL
DIV
ZIG
INT
BJ

SPL

GROUND TRUTH

(b)

framework, which models how adjacent markings are likely to
belong to the same class, reduces the misclassification errors.

2) Classification With Relational Learning: We further
tested our system using our CRF relational learning framework.
Here, relationships between adjacent road marking classes are
explicitly captured. The posterior label probabilities produced
by the CRF encode our uncertainty in the predictions, a prop-
erty which is useful for decision making.

The resulting per class precision and recall confusion matri-
ces are shown in Table V—the per class precision values range
between 0.74 and 0.93 while the per class recall ranges from
0.69 to 0.94. The precision is lowest for the intersection and
special lane classes as their visual appearance is similar (see
Fig. 6) and the intersection class is under represented in the
training data (4.41% of the training data). Similarly, the recall is
lowest for the intersection and special lane classes. The remain-
ing classes show very good performance with precision and
recall values of between 0.88 to 0.94. We quantify the per class
percentage improvement gained by adding relational informa-
tion in the road marking classification framework in Table IV,
where performance improvements of up to 23% are achieved
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Fig. 8.

Classification results where each colour represents a different class
(see Table I for colour code). The graphical model structure is superimposed on
the image.

across classes. Table IV shows that relational learning results in
slightly reduced recall performance for single boundary, double
boundary, separator, and intersection classes. This is because
there is not much relational structure in these types of road
markings. The remaining classes however contain relational
structure thus precision and recall performance is significantly
increased when relational learning is used (see Table IV).
Our classifier thus also learns which road marking classes are
relational.

Fig. 8 shows classification results where each colour rep-
resents the class the road marking is assigned to. To better
visualise the errors, we plot these same images in Fig. 9 where
green represents correctly classified road markings, and red
lines show the misclassifications.

Fig. 9. Classification results from our system (green lines are correctly clas-
sified, whilst red lines represent misclassifications). These images correspond
to Fig. 8.

Our experiments show that the amount of per class training
data affects the classification accuracy of our system. In partic-
ular, the intersection class (which has the worst performance)
is also the most under represented in the training set. However,
because CRF features do not necessarily completely specify a
state/observation, the model can be estimated from less training
data [27]. Although no analytical method exists for determining
the amount of data required to sufficiently train the algorithm,
we found the dataset we used to be sufficient to identify all the
hidden nodes.

3) Sensitivity to Noise: To test the sensitivity of our system
to input errors (poor detection of road markings) we simulated
noise resulting from vehicle occlusions, shadows or faded road
markings. For a given road scene, the system performance
(misclassification error rate) was calculated for varying degrees
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Fig. 10. The sensitivity of the road marking classifier to imperfect discrimi-
nation of road markings. For multi-lane road scenes (top and middle row), the
error rate remains below 0.5 for noise levels of up to 83%, thus showing a
robust system. Semantically rich road scenes (bottom row) are however more
dramatically affected by input noise.

of input noise as shown in Fig. 10. Multi-lane road scenes
were found to be more robust to noise compared to more
semantically rich road scenes.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a framework for situational
awareness based on reading and interpreting road markings.
Specifically, we classified road markings into seven distinct
classes: single boundary, double boundary, separator, zig-zag,
intersection, boxed junction and special lane. Our system
achieved a precision of between 74% and 93% and correspond-
ing recall of 69% to 94% across all classes. Overall, our system
allows a vehicle to read and interpret the road by understanding
the rules of the road encoded in the type of painted road
markings visible.

In future work, we will investigate using the output of our
road marking classification system for road scene semantic
interpretation for situational awareness. To test this, we per-
formed some preliminary experiments to detect traffic light
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Fig. 11.
88% accuracy. Thus our vehicle can anticipate upcoming traffic light controlled
pedestrian crossings.

Some zig-zag approaches correctly classified by our algorithm, with

Fig. 12. Examples of boxed junctions correctly classified by our algorithm
(86% prediction accuracy). Thus no stopping or traversal areas are automati-
cally detected.

controlled pedestrian crossings (zig-zag approaches) and no
drive regions (boxed junctions—see Fig. 7).

Here, we defined a zig-zag approach (or boxed junction) to
exist if a proportion of over 0.7 of classified individual road
marking segments belong to class zig-zag (or boxed junction).
This threshold was determined empirically to capture our ob-
servation that zig-zag approaches (or boxed junction) occur
when the vast majority of road markings in a road scene belong
to that class. Our experimental results showed that, even with
this straight forward approach, our classifier achieved 88% and
86% prediction accuracies for the zig-zag approach and boxed
junction scenes, respectively. Examples of correctly classified
scenes are shown in Figs. 11 and 12, respectively. A vehicle can
therefore prepare for the possibility of encountering humans
on the road, or areas where it may not be stationary—thus
gaining a dynamic sense of situational awareness, like a human.
Investigating this further forms the subject of our future work.
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