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Abstract—This paper is about road vehicle localisation based
on vision using synthesised local orthographic imagery. We
exploit state of the art stereo visual odometry (VO) on our
survey vehicle to generate high precision synthetic orthographic
images of the road surface as would be seen from overhead.
The fidelity and detail of these images far exceeds that of
aerial photographs. When undertaking subsequent passes of the
same route, the vehicle is localised against the survey vehicle’s
trajectory by maximising the mutual information between the
synthetic orthographic images and live image streams. Thus we
explicitly leverage the gross appearance of the workspace rather
than a discrete set of point features. We test our technique on
data gathered from a road vehicle and show that centimeter-
level precision is possible without the complexity and instability
of contemporary feature based techniques.

I. INTRODUCTION

Vehicle localisation has been a vigorously researched topic
over the last few decades. For road vehicles especially, a
popular recent approach is to use some combination of DGPS,
inertial and 3D laser sensing coupled with a prior survey
[2], [1]. Here, with an eye on road vehicle localisation, we
investigate how we might achieve commensurate precision
using just vision. During a survey stage we leverage a VO
system to synthesise a continuous image strip of the road as
seen from above, a synthetic local orthographic image. This
strip need not be metrically correct over large scales (100m)
but locally it provides an excellent template against which to
match views obtained during subsequent traversals. In contrast
to many registration techniques we do not attempt a feature
based registration. Instead we seek the vehicle pose relative to
the survey trajectory by maximising the mutual information
between synthetic local orthographic images and the current
view. The synthetic images allow localisation when traveling
in either direction over the road surface. In some sense what
we purpose here is a form of teach and repeat localisation,
albeit one that negates the need for point features [5]. With this
in hand global localisation is possible if the survey vehicle’s
trajectory has been post processed optimised into a single
global frame [17]. This process of metric rectification is well
studied [9], [6] and beyond the scope of this paper.

A. Background

The goal of this paper is high precision localisation without
a reliance on external infrastructure or workspace modifi-
cation. Localisation and pose estimation derived from local
sensors suffers from compounding errors. For example stereo
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Figure 1. The Bowler Wildcat is MRGs latest mobile platform. It is a 4x4
all terrain vehicle supporting state of the art computing and sensors, including
Stereo Vision used in this research.

Visual Odometry (VO) produces locally metric maps and
trajectories [7]. However, when extending to larger scales
without correction the metric precision is lost and maps and
trajectories become only topologically correct. Small angular
errors, which over the course of a few hundred meters will
lead pose estimates to be tens of meters in error. This makes
’knowing where you are’ impossible without some sort of
correction or reference to prior data.

B. Exploitation of Orthographic Imagery

Previous work using a VO system [12] attempted to correct
for these small errors using aerial images as prior information,
thereby maintaining the metric accuracy and global consis-
tency of trajectory estimates. A coarse-to-fine approach was
adopted where progressively finer refinements to the pose
estimates were made by matching images from the local
stereo camera to aerial images. This approach produced pose
estimates commensurate with the performance of off-the-shelf
GPS over kilometer scales. Pink et al[13], [14] used a similar
approach but instead extracted road markings from aerial and
camera images to perform the localisation. Another approach
by Kummerle et al[8] extracted edges of buildings form aerial
images for corrections using a 2D laser based system.

The suitability of aerial images for reliable and accurate
correction of VO poses for road vehicles however, has its
limitations. The road surface is often occluded by trees and



bridges and image resolution is of the order of tens of
centimeters per pixel.

C. Our Approach

In this work we replace the aerial images with synthetic
local orthographic images of the road surface. These images
are generated by a survey vehicle and vehicle localisation
for subsequent traversals of a route is done relative to the
survey vehicles trajectory. This approach allows generation of
orthographic images under bridges, trees and in man made
structures such as multi story car parks. This method also has
the advantage that only things which can be seen from a road
vehicles perspective are included in the images, excluding roof
tops and grassy fields etc. Levinson et al[10] adopted a similar
approach using laser reflectance maps, however their approach
relied heavily on GPS and IMU and was based in a global
frame.

Here we represent the orthographic image relative to a
survey vehicle trajectory which is not necessarily metrically
correct over large scales. Our synthetic orthographic image
generation is therefore not tied to a global frame, so does
not require metric global consistency[16]. We also have no
reliance on GPS, any external infrastructure or workspace
modification. Synthetic orthographic images are generated at
a resolution two orders of magnitude higher than the best
available aerial images (5mm per pixel). Subsequent traversals
of surveyed routes by a follow vehicles can then be localised
against the survey trajectory using these high resolution, high
fidelity orthographic images.

II. MOTIVATION

One may ask why bother generating orthographic imagery?
We have a VO system that extracts point features (in our case
SIFT features [11]) and saves them into a map (see Figure 3)
why not localise using those?

Feature based methods have been shown to be very sen-
sitive to relatively small changes in view point, leading to a
significant drop off in matched features available for local-
isation, as made explicit in [5]. Figure 2 demonstrates how
localisation using a feature based approach is not sufficient.
Only 40% of the features are matched against the previous
trajectory and after only 70m with a small deviation from the
previous traversal there are not enough matched features for
localisation, leading to irrecoverable failure. In the interests
of further illustrating this point, 2 manual relocalisations were
preformed each of which eventually led to localisation failure.

Many point features are ephemeral, including vegetation,
parked vehicles, and road speckle, which are all unlikely to
be seen on subsequent traversals of the same route. The gross
appearance of the road surface however, does not change for
view point shifts experienced by a road vehicle, even when
traveling in the opposite direction. This is because the road
surface is a largely planar, man-mad structure, we successfully
exploit both of these properties in this work.
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Figure 2. Shows the percentage of features matched against a previous
trajectory of 700 meters. F indicates a failure i.e. not enough features matched
to achieve localisation and R denotes a manual relocalisation. It can be seen
that only s 40% of features are matched and the system fails 3 times over a
700m trajectory requiring manual intervention.

III. SURVEY TRAJECTORY

Let us define the notation and terms on which we will rely.
A vehicle trajectory T , as generated by the VO, is a set of
relative SE3 transformations ix

i+1 between consecutive vehi-
cle poses X

i

. The relative transform between X
i

and X
i+1

is written as ix
i+1. In this way T = {0x1,

1x2, · · · ,N�1x
N

}
is a trajectory of N vehicle poses (see Figure 3). Note that
in the interest of clarity we shall sometimes refer to X

i

as a
vehicle node rather than as a pose, the reason being that one
can imagine T as a chain graph of nodes linked by relative
transformations. Each node in the graph has one or more 3D
landmark features attached to it. The jth landmark attached to
vehicle node i is denoted as il

j

. We use the function L(X
i

) to
represent the act of producing a local metric scene Mi around
X

i

which contains a set of local vehicle nodes and all attached
landmarks in the frame of X

i

(so X
i

becomes the origin).

Mi =

⇢
X

i�1, Xi

, X
i+1, Xi+2

i�1l1,
i�1l

j

, .., il0,
i+1l1+j

, ..., i+2l1, ...

�
(1)

X
i+2 = X

i

� ix
i+1 � i+1x

i+2 (2)

X
i�1 = X

i

 i�1x
i

(3)
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Figure 3. Notation for a simple VO trajectory and scene Mi. Relative poses
between frames are represented by arrows and lowercase i�1

x

i

, Vehicle poses
relative to X
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are represented by triangles and uppercase X

i�1. The location
of the jth observed landmark from pose X
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are represented by stars i
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.



Where � and  represent the composition and inverse
composition operators respectively, such that ix

i+1  ix
i+1

is the identity transformation. In Section IV we shall describe
how Mi can be used to generate a synthetic local orthographic
image around X

i

.

IV. GENERATING LOCAL ORTHOGRAPHIC IMAGES

At run time we will use knowledge gleaned from a previ-
ously recorded excursion (survey) to ensure we stay localised
relative to the prior survey. A fundamental competency on
which we depend is the availability/generation of a synthetic
orthographic image around a particular node X

i

in the survey
trajectory T . We use the function I

⇡

(X
i

) to denote the
generation of this image which utilises the local metric scene
M

i

defined above. I
⇡

(X
i

) can be computed at run time,
but can also be precomputed. The process begins with the
extraction of a ground plane using the landmarks il

j

in M
i

and RANSAC [4] to solve.

b⇡i .n̂
⇡
i = l.n̂⇡

i (4)

Where b⇡i is the base, n̂⇡
i the normal and l an arbitrary

point on the plane. Note that in our experimental set up, the
front bumper stereo camera (Figure. 1) is orientated such that
at least half of the view contains road surface, assuming we
are traversing relatively smooth urban roads. This orientation
ensures many landmark measurements correspond to points
on the road surface aiding ground plane estimation. Based
on the stereo camera’s orientation a Region Of Interest (ROI)
VI = [VI

1 , ...,VI
J

] in the left camera image is set as a region
likely to only contain road surface. Here VI

j

= [u, v, 1]T is a
pixel location in homogeneous co-ordinates of the jth vertex
of the ROI. The intersection of the rays associated with each
VI
j

and the local ground plane (b⇡i , n̂⇡
i ) are calculated. V⇡

i =
[V⇡

i,1, ...,V⇡

i,J

] is then the ROI projected onto the local ground
plane around pose X

i

.

V⇡

i,j

= �
j

K�1VI
j

(5)

�
j

=
b⇡i .n̂

⇡
i⇥

K�1VI
j

⇤
.n̂⇡

i

(6)

where K is the matrix of camera intrinsics, K�1VI
j

is the ray
associated with VI

j

and �
j

is the distance along K�1VI
j

to
the intersection with the ground plane. A homography H

i

is
then generated from VI and V⇡

i such that

VI = H
i

V⇡
i (7)

H
i

is then used to project the texture in the survey images
ROI taken at X

i

into an orthographic image which we call
I
⇡

(X
i

). We do this for all poses in scene the M
i

. The
camera frame rate of 20Hz coupled with the survey vehicle’s
velocity of approx. 20kph leads to adequate overlap between
consecutive V⇡

i (road regions of interest projected onto the
orthographic image I

⇡

(X
i

)). This presents an opportunity to
combine ROIs for consecutive poses in M

i

by taking an
average of intensity values. This generates an image of length
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Figure 4. Shows the view I
i

at pose X

i

from the survey trajectory being
projected onto the local ground plane to produce an orthographic image
I
⇡

(X
i

). Road regions of interest VI and V⇡
i shown in blue.

Figure 5. 10 meter segments of the synthetic local orthographic images
generated from the 700m test route. The top two are from straight segments
and the third is part of a 90o corner.

defined by the poses in M
i

of the road surface as seen from
overhead in the vicinity of X

i

(Figure 4). Results presented in
this paper use a resolution of 5mm per pixel in I

⇡

(X
i

) (Note
that this resolution was chosen as a balance between accuracy
and storage requirements, approx. 10MB/km). Examples of
images I

⇡

(X
i

) associated with our test route are shown in
Figure. 5. The image alignment accuracy is of the order
10�3m and the images contain a high level of detail.



V. LOCALISATION

Consider now an image I
k

acquired on a subsequent traver-
sal of a surveyed route at time k in the vicinity of X

i

. The
pose of the vehicle can now be represented relative to X

i

with
it
k

which is the transformation between X
i

and the location
of the vehicle at time k (See Figure. 6). If required the global
pose of the vehicle X

k

is then simply.

X
k

= X
i

� it
k

(8)

At run time our Stereo VO system provides a continual
stream of estimates of the relative pose between camera frames
v
k

. In the absence of any other knowledge we could use this to
infer our trajectory open loop. If however we can leverage the
synthetic orthographic images to correct relative poses from
the VO we would be in a position to track our motion (stay
localised) relative to the survey trajectory. Furthermore, if as
a new stereo pair is presented to us, we could use v

k

to seed
a guess for the transformation it

ko

between the new camera
frame and the survey trajectory, for the example in Figure. 6
it
ko

would be expressed as.
it
ko

=  i�1x
i

 i�2x
i�1 � i�2t

k�1 � v
k

(9)

Of course as we move we need to track our location relative
to sequential poses in the trajectory - X

i

will change as we
move. However this is a trivial data association problem; we
can simply predict the transition to a new reference pose using
v
k

as indicated by our VO system. The goal of this paper is
then to develop a way to hone this initial estimate it

ko

and we
shall do so by comparing the live view I

k

and that predicted
by a hypothosised view of the synthetic orthographic image
I
⇡

(X
i

) at it
k

.
We shall pose the task of finding it

k

as an optimisation
problem. The objective function used is based on Mutual
Information (MI), which was originally defined in [15]. If
we knew it

k

perfectly then the projection proj(I
⇡

(X
i

),i t
k

)
(hypothesised view) of the road lying in I

⇡

(X
i

) into the live
view I

k

would overlap completely. Conversely, if the pose is in
error, the two views will not align and in particular will exhibit
a markedly reduced amount of MI. The optimisation therefore
finds a relative pose it̂

k

which maximises image alignment by
maximising MI [18] (see Fig. 7). Note for normal operation
we use images from the left stereo camera.

A. Mutual Information for Image Alignment

We use Mutual Information rather than a simple correlation
based approach as it has shown to be robust against varying
lighting conditions and occlusions [3]. The MI between two
images I and I⇤, intuitively can be thought of the information
shared between the two images. It is defined as follows.

MI(I, I⇤) = H(I) +H(I⇤)�H(I, I⇤) (10)

The MI is obtained by evaluating the Shannon entropy of
the images individually H(I) and H(I⇤), and then evaluating
the joint entropy H(I, I⇤). The entropy of a single image is
a measure of how much information is contained within the
image.
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Figure 6. Localisation Framework - The survey trajectory is shown in blue
with vehicle nodes/poses X

i

. A subsequent traversal of the route localised
against the survey trajectory is shown in red i

t

k

, the current relative VO pose
v

k

and subsequent corresponding seed for localisation i

t

ko

are indicated by
dashed lines.

H(I) = �
NX

n=0

pI(n)log(pI(n)) (11)

Where pI(n) is the probability of a pixel in image I
having intensity n. An image can therefore be thought of
as a random variable with each pixel location x having a
distribution defined by , pI(n) = p(I(x) = n) for n 2 [0, N ],
where N is the maximum intensity (in our case 255, as we are
using 8-bit grayscale images). The joint entropy is defined by

H(I, I⇤) = �
NX

n=0

NX

m=0

pII⇤(n,m)log(pII⇤(n,m)) (12)

Where pII⇤(n,m) = p(I(x) = n, I⇤(x) = m) the joint
probability of intensity co-occurrances in both images. The
MI can then be written as

MI(I, I⇤) =
NX

n=0

NX

m=0

pII⇤(n,m)log(
pII⇤(n,m)

pI(n)pI⇤(m)
) (13)

As an implementation detail it was found empirically that
evaluating the MI over all possible pixel intensity values
had little advantage over histogramming intensitites into bins.
Quantising the intensity values into 16 bins has a welcome
smoothing effect on the cost surface and eases optimisation.
Another advantage of using MI over other plausible measures
such as SSD (Sum of Square Distances) is that it is meaning-
fully bounded. The minimum MI is zero and the maximum

Hypothosised View At it
k0 Current View Hypothesised View At

MI = 0.067 MI = 0.192 

I
k

it̂
k

Figure 7. Example of view alignment between the live view and hypothosised
views and their corresponding values for mutual information. Left shows the
hypothosised view at i

t

ko

provided by v

k

, Middle shows the live image I
k

and Right shows the hypothosised view at the corrected pose i

t̂

k

.



is the minimum value of information contained within each
of the images min(H(I),H(I⇤)). The maximum possible
information for an image is also bounded as an image with a
uniform distribution of pixel values.

The problem of estimating our current pose relative to a
pose X

i

in the survey trajectory T then reduces to solving

ˆ
it
k

= argmax
i
tk

�
MI(I

k

, proj(I
⇡

(X
i

),i t
k

))
 

(14)

VI. IMPLEMENTATION & RESULTS

As the Stereo VO has high metric accuracy over small
distances ⇠ 10m, the deviation from the initial position
estimates it

ko

are relatively small, of the order of centimeters.
Two approaches have been implemented for estimating it

k

the
first is a fast approximate SE2 and the second a full SE3 pose
correction.

A. SE2 Pose Corrections

Our application domain is road vehicles so in our first
approach to reduce complexity and increase speed we confine
it
k

to in road plane motion, reducing our search space to
SE2. We still however maintain the SE3 pose information
which allows us to correct for rolling and pitching during
cornering and accelerations respectively. Rather than solve eq
14 iteratively by for example using non-linear Gauss Newton
methods, we take advantage of the small search radius and use
a histogram filter to evaluate an approximation to eq. 14.

The in plane motion approximation has the consequence of
reducing the sensitivity of the matching step to high frequency
image content, such as fine texture on the tarmac. Very small
errors in pitch, roll or height cause misalignments which
stop the matching process from leveraging this fine detail.
As we generally operate in urban environments where the
vast majority of roads have distinct road markings this was
deemed to be an acceptable trade off for speed. However, for
short periods where there are no road markings the histogram
filter can fall into local minima. This can lead to errors in
our estimations of it̂

k

which has the effect of pulling the
trajectory off course. In order to avoid this, we first we
compute the difference between the corrected pose it̂

k

in the
survey trajectory and the initialisation from the Stereo VO
it
ko

.

e = it̂
k

 it
ko

(15)

If e is greater than a threshold we invoke the right camera,
perform localisation on I

k,right

and check for consensus, if the
pose estimates from both I

k,right

and I
k

are commensurate
we adopt the pose correction into the trajectory. If the pose
estimates don’t agree we ignore the match and simply adopt
it
ko

into the trajectory, we repeat this until matching can be
reestablished. In essence when the image matching step fails
the system falls back to raw VO and runs in Open Loop mode.
Here there is an interesting area of future work, how might
we learn e and what constitutes as agreement beyond obvious
statistical tests.

a)

b)
Deviation From Survey Trajectory

Survey Trajectory

Open Loop

Figure 8. (a) Route around the begbroke site, approximately 700m loop
approximated SE2 corrections, (b) localised pose distances from survey
trajectory.

To evaluate the performance of our algorithm we conducted
experiments on data collected from our autonomous vehicle
platform the ‘WildCat’ (see Figure 1). This modified Bowler
WildCat is equipped with a multitude of sensors and 32
processor cores available for computation. For this work we
use the front mounted Point Gray Bumblebee2, running at
640x480 at 20 fps and only 9 cores. The Stereo VO runs
at frame rate on a single core. The localisation runs on 8
cores at a lower frequency, approximately 1Hz, as correction
is not required for every VO pose. Currently the algorithm
is implemented in Matlab, however the use of a histogram
filter lends itself perfectly to a GPU implementation, currently
in development, which promises significant speed up and
reduction in resource usage.

Figure 8.(a) shows the 700m survey trajectory (blue) over-
laid with a subsequent traversal localised against the survey
in (green). It should be noted that although the subsequent
traversal is commensurate with the survey trajectory they
should not align perfectly. This is because the survey vehicle
may have driven at different positions on the road. The pose
distance from the survey trajectory should therefore vary, but
be bounded as shown in Figure 8.(b). Figure 8.(a), also shows
when the consistency check is active and the system runs in
open loop, it can be seen that this occurs when there are no
road markings present. The local metric accuracy of the Stereo
VO system allows localisation to run in open loop mode until
the matching process is successfully reestablished. For the
route shown here, matching was available 70% of the time
and the vehicle completed a full 700m loop of the site without
any intervention or manual relocalisation as was required with
feature based matching, Figure 2.



Aligned
MI = 0.0973

MI = 0.0733 MI = 0.0409
�y = 5cm �✓ = 3o

�x = 10cm
MI = 0.0814

Figure 9. Top left shows the difference in image intensities between a driver
view I

k

correctly localised relative to the survey trajectory and the hypotho-
sised view proj(I

⇡

(X
i

),i t
k

) at i

t

k

(Note white pixels correspond to larger
differences in intensity). Top right to bottom right show the effect of artificially
perturbing the pose by �x = 10cm,�y = 5cm,�✓ = 50 respectively. It
can be seen there is a significant miss alignment and corresponding drop in
Mutual Information.

B. Demonstrating Centimeter Precision
As we don’t have centimeter accurate ground truth we

demonstrate the precision of the localisation by comparing lo-
calised images I

k

and the corresponding artificially perturbed
hypothosised views proj(I

⇡

(X
i

),i t
k

� ✏), where ✏ is a per-
turbation of the order of centimeters. Figure 9, shows that by
artificially perturbing the vehicle pose from its true value we
can see significant image misalignment and a corresponding
drop in MI. Figure 10 shows several frames taken from a
subsequent traversal of the survey route localised using our
method. From the difference images it can be seen that the two
views are aligned to centimeter precision. We also demonstrate
convexity in Figure 11, here the objective function (MI) is
plotted around a true pose for all 6 degrees of freedom.

C. Full SE3 Pose Corrections
Solving for all six degrees of freedom with no in plane

motion constraint allows the matching step to leverage much
finer detail and high frequency image content such as texture
in the tarmac. Figure 11 demonstrates how a significant peak
and convexity is maintained in the Objective Function (MI)
at the correct pose under various conditions. Here we can see
that the Mutual Information as a correlation measure is robust
against partial road occlusions, varying lighting and weather
conditions.

With the current MATLAB implementation, solving for SE3
pose corrections is not real time. However, we are currently de-
veloping an OpenCL implementation which has demonstrated
two orders of magnitude speed up. Solving for the full SE3
pose corrections will allow the localisation method to be used
in less urban environments, will reduce the amount of time in
Open Loop mode as well as the need for consensus checking
as the matching process is more readily available on a wider
variety of road surfaces.
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Figure 10. Driver views I
k

and associated hypothosised views
proj(I

⇡

(X
i

),i t̂
k

) demonstrating cm level alignment at various points along
the 700m trajectory with reference to Figure 9.

VII. CONCLUSION

This work presents a methodology for generating and ex-
ploiting synthetic local orthographic images to achieve cen-
timeter precision road vehicle localisation without any infras-
tructure or work space modification. The method improves
accuracy by an order of magnitude on a previous method
using off the shelf aerial images [12]. We use Stereo VO to
generate synthetic orthographic images from a survey vehicle
which are far superior in terms of resolution and fidelity
to available aerial images. Our approach also allows us to
generate orthographic images in areas unavailable to aerial
photography such as under bridges, trees and covered areas.
These images provide an high fidelity and stable template for
view matching as unlike feature based systems we use the
gross appearance of the road surface ahead of the vehicle. Our
approach avoids all the tracking and data association required
by feature based approaches. We demonstrate centimeter level
accurate localisation and pose tracking is demonstrated on a
700m trajectory around our campus as well as robustness to
partial occlusion and varying weather and lighting conditions.
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