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Abstract— This paper addresses the problem of automatically

estimating the relative pose between a push-broom LIDAR and

a camera without the need for artificial calibration targets or

other human intervention. Further we do not require the

sensors to have an overlapping field of view, it is enough

that they observe the same scene but at different times from

a moving platform. Matching between sensor modalities is

achieved without feature extraction. We present results from

field trials which suggest that this new approach achieves an

extrinsic calibration accuracy of millimeters in translation and

deci-degrees in rotation.

I. INTRODUCTION

Two of the most prevalent sensors in robotics, especially
in the transport domain, are cameras and LIDAR (Light
Detection And Ranging). Increasingly these sensors are
being used to supplement each other, an examples of which
is Google Street View, here LIDARs are used in conjunction
with an omnidirectional camera to display planes in the
captured images [1]. A Multi-modal approach to localisation
was also presented in [11], here a monocular camera is
localised using scene geometry provided by a 3D LIDAR
sensor. In order to achieve this projection of LIDAR scans
into the images taken by a camera, the extrinsic calibration
between the various sensors must be known to a high degree
of accuracy [5].

This extrinsic calibration of sensors can be performed in
many different ways. The simplest approach is to physically
measure the position of sensors relative to each other. This
approach, however, proves to be more complicated than first
thought as sensors are generally housed in casings which
don’t allow for accurate measurement of the sensing element
itself.

Another approach is to place calibration targets into the
workspace which are simultaneously in the field of view of
both sensors. Calibration is performed by aligning features
on the calibration targets observed by both sensors. A
method of extrinsic calibration of a camera with a 2D range
finder using a checkerboard pattern was presented in [12].
Checkerboards are again used in [6] and [2] to cross-calibrate
3D LIDAR with a camera requiring varying amounts of user
guided preprocessing.

Robust long-term autonomy, however, requires a contin-
uous assessment of calibration accuracy, which makes the
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Fig. 1. An example of a swathe which can be thought of as a 3D point
cloud built up as a push-broom 2D LIDAR sweeps through an environment
with vehicle motion. The red lines illustrate the latest scan from the 2D
LIDAR, which is mounted on the front of our Bowler WildCat research
platform. This swathe was constructed using calibration estimates obtained
from the proposed method relative to a stereo camera providing a trajectory
derived from visual odometry.

use of calibration targets impractical. The sensors considered
here are often included in safety critical systems so the ability
to test the validity of calibrations or recalibrate after bumps,
knocks and vibrations is critical to reliable operation. A
method of target-less extrinsic calibration, which required
the user to specify several point correspondences between
3D range data and a camera image was presented in [8].
Levinson [4] reduced the need for user intervention by
examining edges in images, from an omnidirectional camera,
which are assumed to correspond to range discontinuities in
3D LIDAR scans. Our approach is most closely related to
a method described by [7], where reflectance values from
a static 3D LIDAR are registered against captured images
using an objective function based on Mutual Information.

In contrast to prior art, our approach does not require
both sensors to have overlapping fields of view. Instead, we
exploit the motion of the vehicle to retrospectively compare
LIDAR data with camera data. This is achieved through the
generation of a swathe of LIDAR data built up as the LIDAR
mounted in a push-broom configuration traverses through the
workspace, figure 1. Therefore, our method can be used as
long as the motion of the vehicle causes eventual overlap
of the observed workspaces. This feature of the calibration
is particularly useful in transport as often sensors can be
mounted all over the vehicle with non-overlapping fields of
view. It should also be noted that 2D LIDAR are currently
cheaper than 3D LIDAR by a couple orders of magnitude



and much easier to mount discretely making them a much
more attractive prospect for use in commercial autonomous
vehicles.

We pose the calibration as a view matching problem and
require no explicit calibration targets or human intervention,
as has been required in most prior art [12], [7], [2]. Instead
we explicitly exploit the fact that scenes in laser light look
similar to scenes as recorded by an off-the-shelf camera.
We synthesise images from LIDAR reflectance values based
on the putative calibration between sensors and measure
how well they align, figure 3. Rather than use a feature
based approach to measure alignment we exploit the gross
appearance of the scene using a robust metric in the form
of a gradient based Sum of Squares objective function. The
calibration giving maximal alignment is then accepted to be
the best estimate of the camera LIDAR calibration. As far
as we are aware this is the first piece of work to present
automatic calibration of a camera and 2D LIDAR in natural
scenes without explicit targets placed into the workspace or
other user intervention. This is also the only piece of work
not requiring sensors to be mounted such that they have
overlapping fields of view.

II. PROBLEM FORMULATION

In order to create a swathe with a 2D push-broom
LIDAR it must undergo motion through its environment.
Specifically, we construct a swathe using a base trajectory
estimate, Xb(t), obtained using an INS or, in our case, visual
odometry and the putative calibration bT

l

between the base
trajectory and the LIDAR l. The swathe is then projected
into the camera using the current calibration between the
camera c and base trajectory bT

c

, figure 2. An interpolated
LIDAR reflectance image is then generated, figure 3. We use
an edge-based, weighted SSD (Sum of Squares Distance)
objective function to measure the alignment of an image
captured by the camera and the LIDAR reflectance image.
A simple iterative optimisation is used to search over
the SE(3) pose which defines the extrinsic calibration and
maximises the alignment of the camera image and the
generated LIDAR reflectance image. The best estimate of
the extrinsic calibration achieves the best alignment of the
two images.

A. Generating A Swathe

To generate a metrically correct swathe from the push-
broom LIDAR requires accurate knowledge of the sensor’s
motion. In the general case shown in Figure 2, a base trajec-
tory Xb(t) is a full SE3 pose, (x, y, z, roll, pitch, yaw), as
a function of time. Xb(t) can be derived from a multitude
of sensors including inertial navigation systems (INS) and
visual odometry (VO), as long as the trajectory is metrically
accurate over the scale of the swathe. The poses of the
LIDAR and camera are given relative to this base trajectory.
In order to ensure millisecond timing accuracy we use the
TicSync library [3] to synchronise the clocks of the sensors
to the main computers.

Let the ith LIDAR scan be recorded at time t
i

and
consist of a set of points, xi, and a set of corresponding
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Fig. 2. Shows the base trajectory Xb(t), the camera Xc(tk) and LIDAR
Xl(ti) trajectories relative to it. It should be noted that this is the general
case, in the results presented here Xb(t) is generated using visual odometry
so the camera trajectory and base trajectory are one and the same reducing
the dimentionality of the search space from twelve degrees of freedom to
six.

reflectance values, Ri, such that laser point j in this scan,
x
ij

= [x
j

, y
j

]T , is associated with reflectance value R
i,j

. We
currently make the approximation that all points j within the
ith scan are captured at the same time, in reality each scan
takes 20ms. As the data used for calibration was collected at
purposefully slow speeds this approximation has a negligible
effect. We first compute the pose of the LIDAR X l(t

i

) based
on the current putative extrinsic calibration bT

l

and the base
trajectory.

X l(t
i

) = Xb(t
i

)� bT
l

(1)

Where � denotes a composition operator. Each scan can
then be projected into a local 3D scene Pi creating a swathe
of laser data.

Pi = X l(t
i

)� xi (2)

We can now generate a swathe as a function of the
extrinsic calibration between the sensor base trajectory and
the LIDAR. An example is shown in figure 1.

B. Generating LIDAR Reflectance Imagery

The next stage is generating LIDAR reflectance images as
viewed from the pose of the camera c capturing an image
Ic

k

at time t
k

. First, the swathe Pi is transformed into the
camera’s frame of reference using the current estimate of
the extrinsic calibration between the base trajectory and the
camera, bT

c

. The pose of the camera Xc(t
k

) at time t
k

is
then written as

Xc(t
k

) = Xb(t
k

)� bT
c

(3)

The swathe is then transformed into the camera’s frame
and projected into the camera using the camera’s intrinsics,
K, which are assumed to be known. Thus,

pi,k = proj( X(t
k

)�Pi,K) (4)

gives us the pixel locations of the swathe points pi,k in the
camera image Ic

k

. At this point we could use the individual
LIDAR reflectance values Ri,k and compare their reflectivity



a) b) c)

Fig. 3. a) An interpolated laser reflectance image at the estimated extrinsic calibration Il
k(

cTl) created from LIDAR reflectance values projected into the
camera. b) The actual camera image Ic

k . c) An interpolated laser image with incorrect calibration Il
k(

cT0l). This scene was observed during a parking
maneuver.

to the pixel intensities Ic

k

(pi,k). However, the density of the
points is extremely variable due to foreshortening effects as
points at larger ranges from the camera map to a smaller
areas within the image. We therefore use cubic interpolation
to sample the intensities Ri,k at pixel locations pi,k over
the same grid as the pixels in Ic

k

. This generates a laser
reflectance image Il

k

(bT
c

, bT
l

) as a function of the extrinsic
calibration, an example of which can be seen in Figure 3. In
the results presented in this papers the base trajectory Xb(t)
is derived from stereo visual odometry [10]. This simplifies
the extrinsic calibration as the base frame is equivalent to
the camera frame reducing bT

c

to the identity and, in turn,
the search space from twelve degrees of freedom to six. The
laser reflectance image then becomes a function only of bT

l

,
which is equivalent to cT

l

, the extrinsic calibration between
the LIDAR and camera.

C. The Objective Function

At this point we have the ability to take a single camera
image Ic

k

and generate, given data from a 2D LIDAR
and knowledge of the platform trajectory, a corresponding
laser reflectance image Il

k

(cT
l

) based on a putative extrin-
sic calibration between the two sensors. We now seek a
metric which accurately reflects the quality of the alignment
between the two images. This task is made difficult by non-
linearities in the reflectance data [9] rendering basic correla-
tion measures such as mutual information and standard SSD
ineffective. It was found empirically that taking a smoothed
gradient image was far more stable. Further, patch-based
normalisation is applied whereby local variations in gradient
are normalised to be consistent across the whole image or
at least between corresponding patches in Ic

k

and Il

k

(cT
l

).
Applying patch based normalisation enhances local image
gradients and avoids very strong edges completely dominat-
ing the objective function, see Figure 4. The pixel values
from both images are then weighted by wIc

k
the inverse of

the distance transform of the reflectance measurement pi,k

over the image grid, giving extra weight to areas with a
higher sampling density. The objective function can thus be
expressed as

O(cT
l

) =
X

Ic
k

wIc
k

��Q(Ic

k

)�Q(Il

k

(cT
l

))
��
2

(5)

a) b)

c) d)

Fig. 4. The smoothed edge image from the laser a) and the corresponding
camera image b) from Figure 3. c) and d) are the same gradient images
after the patch based normalisation procedure respectively. Note how the
details are emphasised by the patch-based normalisation leveraging details
that would have been drowned out by the few dominant edges if the sum
of squares distance of a) and b) were computed directly.

where
P
Ic
k

denotes the sum over all pixels in the image pair

Ic

k

and Il

k

(cT
l

) and Q(•) denotes a function which performs
Gaussian smoothing before taking the magnitude gradient
image and performing patch based normalisation. In the
results presented here we use a Gaussian kernel of 25x25
pixels with a variance of 6.5 and a patch size of 20x20 pixels
for the patch based normalisation procedure.

D. Optimisation

The objective function provides a pronounced narrow
convergence basin around the correct solution, see figure 9.
We therefore use a simple iterative optimisation to find a
solution. As this calibration is not required to be a realtime
application (it can be run as a background process on a
vehicle), high speed is not a priority. Therefore, starting
from an initial estimate cT

lo

, the search for a minimum
is conducted along each degree of freedom individually,
updating the estimate of cT

l

as it proceeds. For the results
presented in this paper we used a range of 30cm and 10



degrees with a resolution of ~1mm and 0.02 degrees. While
this brute force optimisation method was found to work well
in our experiments our approach is agnostic to the exact
optimisation method used. The estimate for a calibration for
a particular image at time k is explicitly written as

cT̄
l

= argmin
c
Tl

X

Ic
k

wIc
k

��Q(Ic

k

)�Q(Il

k

(cT
l

))
��
2

(6)

E. Improving Accuracy With Estimate Fusion

We can now obtain, at any time, an estimate for the
calibration between the LIDAR and camera. What remains
to be asked is

a) are all scenes equally useful in supporting the cross
model calibration?

b) how might we fuse multiple calibration estimates?
The answer to these questions are one in the same. Looking
at figure 9 we gain the intuition that minima at the bottom of
a sharp trench are more informative than those at the bottom
of a rough, broad bowl. By flipping the cost function and
fitting a Gaussian G(cT̄

l

,�2) to the the peaks (which were
minima) we can obtain a likelihood function L(cT

l

). This is
the Laplace approximation and results in a ”measurement”
model parameterised by �2..

We are now in a position to fuse a sequence of noisy
measurements of the latent state cT

l

. Such a sequence
cT

l

= (cT̄
l1,

cT̄
l2,

cT̄
l3...,

cT̄
lN

, ) with associated variancesP
= (�2

1 ,�
2
2 ,�

2
3 , ...,�

2
N

, ) is fused via a recursive Bayes
filter, allowing us to sequentially update our calibration as
new parts of the workspace are entered, without the need
for an expensive joint optimisation over N frames. This
process of treating each optimisation as a noisy measurement
significantly reduces the standard deviation of the calibration
result when compared to the deviation of the raw estimates
from individual frames, see figure 6 and table I.

III. EXPERIMENTAL RESULTS

We used our Wildcat platform with a Point Grey bum-
blebee2 stereo camera and SICK LMS-100 2D LIDAR, see
figure 5, to evaluate the performance of the proposed algo-
rithm. The results shown here were obtained using several
scenes from around our field center at Begbroke. Swathes
of approximately 300 LIDAR scans, equaling over 140,000
measurements, were used for each individual calibration
estimate. 73 different images from the left camera of the
stereo pair were used to validate the calibration estimate.

Trajectory estimates were provided by our in house stereo
visual odometery (VO) system [10]. Obtaining ground truth
for trajectory estimation is alway problematic, however the
VO system has demonstrated high local metric accuracy,
drifting as little as 3 meters over a 700 meter closed loop
trajectory.

A. Evaluating The Performance Of Estimate Fusion

In order to estimate the performance and repeatability of
the proposed algorithm we first evaluated the calibration for

Front Bumper Mounted
Stereo Camera

Front Bumper Mounted
Push-Broom LIDAR

Fig. 5. The WildCat platform used in our experiments is a fully
equipped autonomous vehicle, it has onboard computing and multiple
sensors including a SICK 2D LIDAR and a PointGrey BumbleBee stereo
camera. The platform enables fast and reliable collection of survey quality
data used in this work. It should also be noted that the 2D LIDAR and stereo
camera do not have overlapping fields of view when stationary, meaning a
retrospective calibration technique as presented here is required for data-
based extrinsic calibration.

Standard Deviation For Estimates From 73 Individual Frames

Standard Deviation For 20 Fused Sequences

Fig. 6. Box plots of the standard deviation of the extrinsic calibration
estimate in each of the six degrees of freedom. The top plot shows the
standard deviation of optimisation results from single frames while the
bottom shows the deviation after fusing multiple frames using Laplace’s
approximation and a recursive Bayes filter. Twenty fused results were
generated by selecting sequences of ten random calibration estimates from
the possible 73 single frames in a M pick N trial. It can be clearly seen that
after fusion the standard deviation is significantly reduced, see table I for
details, and outliers are effectively ignored. Boxes extend from the 25th to
75th percentiles, whiskers extent to the extrema of the data not considered
to be outliers, which are denoted by red crosses. Note the different vertical
scales.
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Fig. 7. A plot showing how the standard deviation of the calibration
estimate reduces as more frames are encountered and the calibration estimate
is updated. This data represents twenty sequences of 25 frames randomly
selected from a possible 73 frames.

Standard Translation (mm) Rotation (degrees)

Deviation x y z roll pitch yaw
Individual Results 28 21 15 1.4 1.4 1.5

Fused Results 4.5 5.2 4.6 0.38 0.39 0.44

TABLE I
TABLE SHOWS THE STANDARD DEVIATION OF THE CROSS-CALIBRATION

ESTIMATE OVER 73 FRAMES FROM SEVERAL SCENES, TEN OF WHICH

ARE SHOWN IN FIGURE 8. THE EFFECT OF FUSING ESTIMATES USING

THE BAYES FILTER CAN BE CLEARLY SEEN WITH ALMOST AN ORDER OF

MAGNITUDE REDUCTION IN THE STANDARD DEVIATION OF THE

CALIBRATION ESTIMATES.

73 individual frames. The results for this experiment can
be seen in figure 6 and table I. The standard deviation of
the estimates — which is important as we are unable to
accurately measure ground truth — for individual frames is
of the order of a couple of centimeters and degrees, which
is akin to the expected level of accuracy a hand measured
calibration would yield. In order to test any improvement
achieved by fusion of individual frames we performed twenty
N choose M trials with N being the 73 frames and M = 10.
For each fused estimate ten random frames were chosen and
then fused in sequence using the Bayes filter. An example set
of ten frames can be seen in figure 8. The effect of the fusion
stage can be seen in figure 6 and table I with the standard
deviations decreasing by almost an order of magnitude.

Figure 7 shows how the standard deviation of calibration
estimates decrease as more individual estimates are fused
together, the effect appears to saturate after approximately
ten frames.

Figure 9 shows how frames with ill conditioned and
noisy calibration estimates, see figure 9(b), are automatically
assigned a higher �2, as per the process in Section II-E.
Estimates with more distinct troughs around the minima,
figure 9(a), conversely are assigned a lower �2 and as
expected contribute more information to the final calibration
estimate after fusion. This is illustrated by the bar charts
in figure 9, which plots the inverse variances, 1/�2, which
effectively weight the individual estimates in the Bayes filter.

Here the frame in figure 9(a) is given over 50% more weight
that the frame in figure 9(b).

Given that the stereo camera and 2D LIDAR do not have
instantaneously overlapping fields of view this calibration
would not be possible with any of the other techniques
reported in the literature.

B. Objective Function Around Solution

Figure 9 shows the objective function plotted about the
estimated extrinsic calibration for two frames. It can be seen
that there is a distinct convex peak in a) but less so in b).
However, away from the true solution the objective function
is non convex, which justifies the choice of the simple search
based optimisation over a traditional gradient-based method.
It is possible that the final calibration could be improved by
a final gradient decent type optimisation once the search has
found a coarse solution, this has not been investigated in this
work. It can also be seen that some degrees of freedom are
more sensitive than others, this is thought to be due to the
geometry of the typical scene and sensor placement. Note
this is handled naturally by our filtering.

IV. CONCLUSIONS AND FUTURE WORK

We have presented an automatic calibration procedure for
a camera and a 2D LIDAR under general motion. A method
which can be used in natural scenes without the need for
targets, enabling on the fly calibration. The method also
does not require sensors to be mounted such that they have
overlapping views. Unlike other approaches we exploit the
motion of the vehicle using a trajectory estimate to build a
swathe of LIDAR data to generate laser reflectance imagery
for comparison to images captured by the camera. We have
adopted a robust correlation measure that is invariant to
non-linearities in the reflectance returns and camera images.
Furthermore we have demonstrated the calibration leveraging
exposure to multiple scenes and fusing multiple one-shot
calibrations yielding accuracies of millimeters in translation
and deci-degrees in rotation. This is done in a way which is
sympathetic to the utility of the scene structure and appear-
ance in constraining the extrinsic calibration parameters.

While these results are compelling there remains much
to be done in our future work. We intend to investigate
the effect of lighting conditions on the procedure, extend
the optimisation to cover multiple lasers and perhaps most
interestingly, use it to register multiple 2D lasers to each
other without recourse to a camera.
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Fig. 8. A set of 10 randomly selected frames used in a fused calibration estimate. It can be seen that the frames are at acquired from various positions
within different scenes

Camera Image Objective Function Translation Objective Function Rotation Inverse Variances of 
Ojective Function

a)

b)

Fig. 9. The objective function plotted about the estimated calibration for two example scenes. a) shows an example of how the objective function is
convex around the solution and has a clear global minima. Away from the minima the objective function can be non convex, justifying the use of the grid
search approach improving the basin of convergence and reducing the required accuracy of the initialization. However, b) shows how certain scenes can
produce noisy and ill conditioned objective functions around the solution. The bar charts of inverse variance of the estimate derived from the shape of the
objective function at the minima demonstrate how less pronounced minima yield less information and are given less weight in the Bayes filter.

REFERENCES

[1] Dragomir Anguelov et al. Google street view: Capturing the world at
street level. Computer, 43:32–38, 2010.

[2] Andreas Geiger, Frank Moosmann, Omer Car, and Bernhard Schuster.
Automatic camera and range sensor calibration using a single shot.
IEEE Int. Conf. on Robotics and Automation, 2012.

[3] Alastair Harrison and Paul Newman. Ticsync: Knowing when things
happened. Proc. IEEE International Conference on Robotics and
Automation, 2011.

[4] Levinson Jesse and Sebastian Thrun. Automatic calibration of cameras
and lasers in arbitrary scenes. International Symposium on Experimen-
tal Robotics, 2012.

[5] Quoc V. Le and Andrew Y. Ng. Joint calibration of multiple sensors.
Intelligent Robots and Systems, 2009.

[6] Gaurav Pandey, James McBride, Silvio Savarese, and Ryan Eustice.
Extrinsic calibration of a 3d laser scanner and an omnidirectional
camera. Intelligent Autonomous Vehicles, 2010.

[7] Gaurav Pandey, James R. McBride, Silvio Savarese, and Ryan M.
Eustice. Automatic targetless extrinsic calibration of a 3d lidar and

camera by maximizing mutual information. In Proceedings of the
AAAI National Conference on Artificial Intelligence, 2012.

[8] D. Scaramuzza, A. Harati, and R. Siegwart. Extrinsic self calibration
of a camera and a 3d laser range finder from natural scenes. Intelligent
Robots and Systems, IROS. IEEE/RSJ International Conference on,
2007.

[9] Ahmed Shaker, Wai Yeung Yan, and Nagwa El-Ashmawy. The effects
of laser reflection angle on radiometric correction of the airborne lidar
inensity data. International Society for Photogrammetry and Remote
Sensing, 2011.

[10] G Sibley, C Mei, I Reid, and P Newman. Vast-scale Outdoor Naviga-
tion Using Adaptive Relative Bundle Adjustment. The International
Journal of Robotics Research, 2010.

[11] Alex Stewart and Paul Newman. Laps - localisation using appearance
of prior structure: 6-dof monocular camera localisation using prior
pointclouds. Proc. IEEE International Conference on Robotics and
Automation (ICRA), May 2012.

[12] Qilong Zhang and R. Pless. Extrinsic calibration of a camera and
laser range finder. Intelligent Robots and Systems (IROS). Proceedings.
IEEE/RSJ International Conference on, 2004.


