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Abstract— This paper is about pose estimation using monoc-
ular cameras with a 3D laser pointcloud as a workspace prior.
We have in mind autonomous transport systems in which low
cost vehicles equipped with monocular cameras are furnished
with preprocessed 3D lidar workspaces surveys. Our inherently
cross-modal approach offers robustness to changes in scene
lighting and is computationally cheap. At the heart of our
approach lies inference of camera motion by minimisation of
the Normalised Information Distance (NID) between the ap-
pearance of 3D lidar data reprojected into overlapping images.
Results are presented which demonstrate the applicability of
this approach to the localisation of a camera against a lidar
pointcloud using data gathered from a road vehicle.

I. INTRODUCTION

This paper is motivated by the expectation that any
practical system for future autonomous passenger vehicle
navigation will make extensive use of prior information
gathered from multiple sources using multiple modalities;
such as that available from Google Street View1 [1]. We
further assume that this prior information will be available
during live operation, that its coverage will increase to cover
the vast majority of areas in which passenger vehicles will
operate and that it can be pre-processed offline to improve
its utility for the task at hand (navigation in this case).

We argue that these assumptions are both feasible and
reasonable, given the already prevalent coverage of services
such as Google Street View, mobile data networks and
the rapid decline in cost and increase in capabilities of
cloud computing and data storage. Mass-production may
reduce the cost of large, multi-modality sensor arrays such
as those used in the DARPA Urban Challenge [2], [3], to
the point where they would be cost-effective for passenger
vehicles. However, the model used by Google Street View,
whereby a small number of survey vehicles are equipped
with expensive sensor arrays and then used extensively to
map the environment seems significantly more efficient, as it
should result in reduced sensor requirements and thus costs,
for subsequent vehicles.

Under these assumptions, we seek a new localisation sys-
tem suitable for long-term autonomy of passenger vehicles
with the following requirements:
R1. Real-time, robust & accurate estimation of 6-DoF pose

relative to the prior information reference frame.

R2. Use of incrementally updatable, pre-processed prior
information suitable for online use.
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1http://maps.google.com/help/maps/streetview
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Fig. 1. Two-view reprojection example, the camera centers are denoted by
the coordinate frames {A,B}, the images by {IA, IB}; GBA ∈ SE(3)
is the homogenous transform that takes points in frame A and maps them
to points in frame B: qB ≡ GBA · qA. Assuming ĜAR is known, when
the estimated ĜBA is accurate (ĜBA ≈ GBA) the reprojection into IB
of the points in S align with the captured image and thus their appearance
is consistent in both images. When the estimate is wrong (ĜBA 6= GBA),
the resulting reprojected points do not align with IB and their appearance
is inconsistent.

R3. Robustness to large changes in environmental condi-
tions (day/night/rain etc).

R4. Use of low-cost sensors.
In this paper we formulate the localisation problem as

an optimisation over the robot’s pose to harmonise the
locally observed appearance of known 3D structure gathered
previously. Intuitively we want the appearance of known 3D
points in the world as viewed from the robot to be localised,
to be approximately constant as the robot moves past them as
shown in Fig. 1. We assume that the environment has previ-
ously been extensively mapped by a separate survey vehicle
equipped with a 3D lidar [4], high-resolution cameras and
a high-quality INS (Inertial Navigation System). The robot
to be localised is assumed to be operating wholly within the
mapped area and to be equipped with a collection of low-
cost cameras. We make no assumptions about the external
conditions during the robot’s traversal relative to those of
the survey vehicle’s; nor do we make any assumptions about
the specific sensor configuration used by the robot relative
to that used by the survey vehicle(s).

II. RELATED WORK

In the context of SLAM, ‘direct’ approaches such as [5]
have been proposed that minimise a function of the difference
in pixel intensities between a warped reference image patch



and the currently observed image. In [5], multiple planar
patches were tracked and their corresponding homographies
estimated by minimisation of the L2 norm of pixel intensity
differences.

Recent work [6] utilises a direct approach to the problem
of visual odometry using a stereo camera, the disparities from
which are used via quadrifocal geometry to warp the refer-
ence images from the stereo camera prior to comparison with
the current images. This approach allows for the accurate and
tractable warping of complex scene geometries not feasible
by planar homographies. The cost function minimised is
again the L2 norm, but with a robust Huber kernel. Our prob-
lem differs in that we want to perform localisation against
a prior map using only monocular cameras with no locally-
sensed range information, rather than visual-odometry using
only locally sensed range information.

Perhaps the work for which the guiding intuition is most
similar to ours is the localisation component of DTAM
(Direct Tracking and Mapping) [7], in which the image
feed is used in parallel to both estimate the 3D struc-
ture of the local scene and localise the camera within the
scene. The latter is achieved by minimising the L2 norm
of the photometric error between the current image and a
synthesised view of the estimated 3D environment model
from a hypothesised camera position. However, currently no
external prior information is used in DTAM and the type and
scale of the environment considered: indoors and near-field;
is very different to ours, outdoor localisation of a moving
vehicle at highway speeds over large temporal (seasonal) and
physical (city) scales.

Direct image registration by minimisation of the mutual
information of the pixel intensities is a widely utilised
technique in the context of medical imaging [8] and is known
to exhibit significant robustness to both illumination and
modality changes [9] in addition to being well suited to
minimisation via numerical techniques [10]. Such techniques
have been used successfully for 3D object tracking with a
monocular camera using a prior model [11], a dual of the
problem of robot localisation against a prior map we consider
here. Recently they have also been applied successfully to the
problem of visual servoing [12], [13] the latter in the context
of a ground vehicle tracking a previous route defined by a
sequence of previously captured images.

III. LOCALISATION USING APPEARANCE OF PRIOR
STRUCTURE

A. Problem Formulation

Consider the case of a robot with a camera moving through
an arbitrary, known 3D scene S taking images at different
positions, as shown in Fig. 2. Considering the left-hand side,
we wish to estimate the current position of the robot: B,
with respect to the reference coordinate system for the local
scene R through the composition of the previous position A,
in R: GAR and the motion between the previous and current
frames: GBA.

The intuitive hypothesis for our approach is that the true
values of GAR and GBA are those which harmonise the
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Fig. 2. A robot equipped with a camera observes the same scene S,
defined in reference coordinate system R at positions {A,B,C, . . . } at
which it captures images {IA, IB , IC , . . . }. For each new image acquired,
the transforms to be estimated are shown in red and the current pose in blue.

information about the appearance of S provided by IA &
IB , which describe the appearance of overlapping subsets
of S in some local neighbourhood. Informally, we seek the
GAR & GBA which minimise the difference in appearance
of known points in the world viewed from different, local,
view-points.

In the context of a ground vehicle operating in busy,
mixed environments the geometric structure of the scene
is typically complex, thus we consider S to represent a
pointcloud sampled from the scene, as output from a 3D
lidar such as [4], [14].

B. Formulation of the Optimisation

The appearance of a point q in S as viewed from A is the
value of the image (colour) at the coordinates in the image-
plane to which q reprojects and is a function of the intrinsic
camera calibration and the position of the camera. Using the
pinhole camera model from [15] and denoting the camera
parameters by κ we can define the reprojection operator P ,
which maps a point q ∈ R3 defined in the same reference
coordinate system R, as the camera to its image x ∈ R2

in the image-plane of the camera. We denote the value of
the image (colour) at x by I(x) ∈ Rk for an image with k
channels (k = 3 for RGB).

xA ≡ P(q, GAR,κ) (1)

We can now write our problem shown graphically in
Figs. 1 and 3, as that of computing estimates ĜAR & ĜBA,
of GAR and GBA respectively, by minimising an objective
function f : R2×(|SAB |×k) 7→ R1 given in eq. (2) (for two
k-channel images) which measures the discrepancy between
the visual appearance of the subset of points SAB ⊆ S that
reproject into both IA and IB .

f

( Appearance of SA from A︷ ︸︸ ︷
IA(P(q, ĜAR,κ)),

Appearance of SB from B︷ ︸︸ ︷
IB(P(q, ĜBAĜAR,κ))

∣∣∣∣∣
Scene common to A & B︷ ︸︸ ︷
q ∈ SAB ≡ SA ∩ SB

)
: R2×(|SAB |×k) 7→ R1

≡ f
(
IA(xA), IB(xB)

∣∣∣∣ q ∈ SAB ≡ SA ∩ SB
)

(2)
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Fig. 3. Two-view reprojection, the camera centers are denoted by the
coordinate frames {A,B}, the images by {IA, IB}, the subset of the scene
S visible in each image independently by {SA,SB} and the subset of the
scene visible in both images by SAB , which is the only component to
contribute to the objective function given by eq. (2).

Two important distinctions between this formulation and
current feature-based localisation techniques are the issues
of feature selection and correspondance. In feature-based
formulations such as [16], [17], the features and their cor-
respondances have to be explicitly identified in each new
frame with significant care taken to ensure correct data
association. In our formulation the point correspondances
between frames are implicitly known through SAB . The issue
of point selection is that of selecting the visible subset of
points for a given camera position, a typically inexpensive
operation that can be aided significantly by offline pre-
processing of the pointcloud, which can also be used to
improve the suitability of the points in S for localisation.

From the proposed minimisation given in eq. (3), it is clear
that IA(xA) & IB(xB) are dependent upon both ĜAR and
ĜBA. Therefore, so is SAB ≡ SAB |ĜAR,ĜBA

, for brevity
we drop the |ĜAR,ĜBA

nomenclature from SAB , however to
be clear SAB is dependent upon the current candidates for
ĜAR & ĜBA.

{ĜAR, ĜBA} : min
{ĜAR,ĜBA}

f
(
IA(xA), IB(xB) | q ∈ SAB

)

(3)

As in [16], [5], in the optimisation we estimate ∆-
transforms to be applied to initial estimates of the transforms,
thus allowing for the incorporation of a motion model, or
similar seed to the algorithm.

Numerous potential choices exist for the objective function
given in eq. (2). We desire a function that is robust to
noise, with a wide basin of convergence to a clear, ideally
unique, minimum and is thus well suited to solution by
numerical optimisation. In the context of image registration
for related problems, [5], [18], [6] use SSD (sum of squared
differences), in the case of [5], [18] with efficient second-
order minimisation and in [6], with a robust Huber kernel.
Whilst [19] uses the L1-norm and [11], [12], [20] maximise
the Mutual Information.

We choose instead to use the Normalised Information Dis-
tance (NID) [21], [22] as its basis as a Shannon information
[23] measure allows a clear, intuitive understanding and it
has similar robustness properties to the Mutual Information
by virtue of its dependence only upon distributions and not
samples. Crucially, unlike the Mutual Information, it is also
a true metric.

C. Normalised Information Distance

The normalised information distance NID(X,Y ) for two
discrete random variables {X,Y } is a Shannon information
measure that represents the similarity between the distribu-
tions of X and Y . Formally, NID(X,Y ) is given by eq. (7)
where H(X), H(X,Y ) and I(X;Y ) denote the entropy,
joint entropy and mutual information respectively given by
eqs. (4) to (6).

H(X) ≡ −
∑

x∈X
px log(px) (4)

H(X,Y ) ≡ −
∑

x∈X ,y∈Y
pxy log(pxy) (5)

I(X;Y ) ≡ H(X) +H(Y )−H(X,Y ) (6)

The NID is a true metric [22], and is thus non-
negative, symmetric and satisfies the triangle inequal-
ity: NID(X,Y ) + NID(Y, Z) ≥ NID(X,Z) and
NID(X,Y ) = 0 ⇐⇒ X = Y . It is also bounded in
both directions: 0 ≤ NID(X,Y ) ≤ 1, with smaller values
indicating greater similarity.

NID(X,Y ) ≡ H(X | Y ) +H(Y | X)

H(X,Y )
(7)

=
H(X,Y )− I(X;Y )

H(X,Y )
(8)

D. Application of the Normalised Information Distance

Consider the problem formulation from section III-A, by
modeling the appearance of the points in the scene from each
view point I(x) as samples from discrete random variables,
we can substitute NID(X,Y ) as the objective function in
eq. (3) to obtain eq. (9). The minimum of which maximises
the similarity of the information about the appearance of the
scene SAB provided by IA & IB .

{ĜAR, ĜBA} : (9)
min

{ĜAR,ĜBA}
NID(IA(xA), IB(xB) | q ∈ SAB)

1) Incorporation of Prior Appearance Information: A key
benefit arising from NID(X,Y ) being a true metric, is
that if an appearance prior is available for the scene (which
we assume will typically be the case) we can meaningfully
incorporate it. This is achieved by modifying the objective
function to eq. (10), where IS(xS) is the prior appearance
of a point.



Iβ
A,0(xA)

Iβ
A,1(xA)

Iβ
A,2(xA)

Iβ
A,3(xA)

xA

xB

Iβ
B,0(xB)

Iβ
B,1(xB)

Iβ
B,2(xB)

Iβ
B,3(xB)

Iβ
B,NIβ

A,M pAB(a, b)

b

a

Fig. 4. B-Spline interpolation pAB histogram updates (eq. (11)), note:
schematic shown is for 1-degree, not cubic, splines for ease of illustration.
IβA,M denotes the 2×2 pixel region of local-support (in which the B-spline
coefficients βm(xA) are non-zero), for xA in the B-spline interpolated
image IβA (derived from IA). Respectively, IβB,N denotes the same concept
but for IB & xB . For the reprojections of a single 3D point q into both
images: {xA,xB}, the bins updated in the histogram approximation of
the joint distribution pAB are not (necessarily) adjacent. Rather the bins
updated are those which contain the values of the pixels in the region of local
support for {xA,xB} in the interpolated images. The contributions to each
bin are given by the product of the B-spline coefficients: βm(xA)βn(xB)
as shown in eq. (11).

f ≡ NID(IA(xA), IB(xB) | q ∈ SAB) + (10)
NID(IA(xA), IS(xS) | q ∈ SAB) +

NID(IB(xB), IS(xS) | q ∈ SAB)

Whilst the use of IS(xS) might be assumed to be prob-
lematic in the event that the camera and/or conditions under
which it was captured differ from the current ones. We have
found that the NID exhibits similar desirable robustness
to illumination changes and occlusion to that obtained by
mutual information-based image registration techniques [8],
[13]. Specifically, we have found that whilst the use of
IS(xS) has little impact on the structure of the cost function
for ĜBA, it significantly improves the structure for ĜAR,
particularly when the inter-image spacing is small and the
environment exhibits perceptual aliasing.

2) Computation of the Joint Appearance Distribution:
There are various methods that could be used to approximate
the (discrete) joint appearance distribution: pAB(a, b) ≡
Pr(IA(xA) = a ∩ IB(xB) = b). As we wish to utilise
gradient-based optimisation methods, we require a form for
pAB with analytical derivatives which are fast to compute.
Following from [24], [25], we use cubic B-Spline [26]
interpolation to update multiple bins in the joint-histogram
for each x, with fractional weights corresponding to the
product of the B-Spline coefficients; represented graphically
in Fig. 4.

pAB(a, b) =
1

|SAB |
∑

q∈SAB

∑

m∈M

∑

n∈N
βm(xA)βn(xB) (11)

δ

(
a−

⌊IβA,m
τA

⌋)
δ

(
b−

⌊IβB,n
τB

⌋)

Formally, we write the histogram approximation of pAB
as a summation over all points given in eq. (11). Where
βm(xA) denotes the B-spline coefficient for the m−th pixel
in the region of local-support for xA (in which the B-spline
coefficients are non-zero) in the interpolated image IβA. By

definition, the cardinality of the region of local-support (M )
is defined by the order of the B-spline, for the cubic B-
splines used here |M | = 16. Respectively, the other terms
denote the same concepts, but for the image captured at B.

∑

m∈M
βm(u) = 1, {βm(u) = 0 ∀ m 6∈M} (12)

In the context of the standard form for a B-spline surface
consisting of a double summation over the control points in
each parametric direction, βm(xA) represents the product of
the two univariate B-spline basis functions and hence satisfies
the partition of unity property eq. (12), thus eq. (11) requires
no additional normalisation.

The delta-functions in eq. (11) determine which bin is
updated in the joint histogram, IβA,m denotes the value of
the m−th pixel in the region of local-support for xA in the
interpolated image and τA denotes the bin-size. In the results
presented here, we have used evenly spaced bins across the
range of values for each channel (0−255), with the number
of bins ηA = ηB = η = 30, however we have found that
the formulation presented here is typically very robust to
changes in η.

3) Computation of Analytical Derivatives: In a manner
similar to that of [24], [25] for the mutual information, we
can compute analytical derivatives for eq. (9). Differenti-
ating the objective function with respect to a transform G
yields eq. (13), where we have abbreviated the nomenclature
for brevity. The corresponding derivatives for the joint-
information HAB and mutual information IAB are given in
eqs. (14) and (15). We have specialised eq. (15) to be with
respect to GBA as its form is not equivalent (excepting the
∂pAB term) under ∂GAR, as in that case IAB depends on
pA which is not constant.

∂NIDAB

∂G
= (13)

HAB

(
∂HAB

∂G − ∂IAB

∂G

)
− ∂HAB

∂G

(
HAB − IAB

)

H2
AB

∂HAB

∂G
= −

∑

a,b

∂pAB
∂G

(
1 + log(pAB)

)
(14)

∂IAB
∂GBA

=
∑

a,b

∂pAB
∂GBA

(
1 + log(

pAB
pB

)
)

(15)

Considering eq. (11) and noting that β(x) depends only
on x, not on Iβ and that xA is not dependent upon GBA,
∂pAB

∂GBA
is another histogram summation involving eq. (16)

(and βm(xA)).

∂βn(P(qR, GBAGAR))

∂GBA
=
∂βn
∂xB

∂xB
∂qB

∂qB
GBA

(16)

Where ∂βn

∂xB
is obtained from the standard B-spline basis

function derivative equations [26] and ∂xB

∂qB
is dependent



upon the camera model, for which in the work presented
here we have used the formulation presented in [27].

The derivatives of eq. (10) with respect to GBA and
eqs. (9) and (10) with respect to GAR can also be similarity
computed, via modest changes to ∂IAB and ∂q

∂G .
4) Extension to Multiple Cameras: The extension of the

method to a vehicle with multiple cameras follows naturally
by exploiting the metric property of NID. Assuming the
images are temporally aligned, the NID is computed be-
tween consecutive frames for each camera independently,
then summed over all cameras to produce the total cost.

5) Expanding Convergence Basin: As noted in [8], [13]
for the alignment of images using the mutual information,
blurring the images prior to alignment typically results in a
broadening of the convergence basin. Empirically we have
found that this also applies to the NID.

IV. RESULTS

To evaluate the performance of the proposed system, a
3D lidar pointcloud S, consisting of 2.6 million points was
constructed for the loop with a circumference of approxi-
mately 690m shown in Fig. 5 using a SICK LMS-151 lidar
mounted on the roof of a vehicle, approximately 2m off the
ground and declined by 8.5o. The vehicle was also equipped
with a Point Grey Bumblebee2 monochrome stereo camera,
from which only the images from the left camera were used;
and an OxTS 3042 6-DoF INS used for ground-truth. The
images from the left camera of the stereo pair for this loop
(after rectification) form the test image set, consisting of
271 512x384 images sampled at 2Hz at a speed of 10mph
resulting in a mean image separation of 2.5m. The camera
data from a second loop was used to build the appearance
prior for S, taken to be the average intensity for each point
across all images captured within 60m in which the point
was visible.

We adopt the NASA coordinate system as used in [16]
with X-forward, Y-right and Z-down in the robot’s coordinate
frame. An offset UTM coordinate system with X-Northing,
Y-Easting, Z-Down is used as the reference coordinate frame
R, in which S is defined and the robot’s pose is to be
estimated.

Fig. 6 shows iso-surface plots of the cost function com-
ponents of eq. (10) for GBA & GAR separately, for ∆s
about their ground-truth values given in table I for the
two sequential images shown in Figs. 6a and 6c. With the
transform for which the cost is not shown in each figure
held at its ground-truth value in each case. The location of
the first image in S is highlighted in Fig. 5.

Considering the iso-surfaces for ∆GBA in Figs. 6e and 6f,
the cost function is the local inter-frame cost component of
eq. (10): NID(IA, IB) and appears very well behaved and
well suited to optimisation: smooth, with clear minima at
the ground-truth values (∆ = 0), shown by the sample lines
evaluated along each ∆ axis. Additionally, the analytical
gradients evaluated along the sample lines are also well
behaved and accurately represent the gradient of the cost.

Fig. 5. Overhead view of S used for experimental results, consisting
of 2.6 million points (subsampled for display) defined in an offset UTM
coordinate system, with the loop trajectory shown in black and the location
of the images used for Fig. 6 denoted by a red cross.

The elongation of the iso-surfaces in Fig. 6e along the
∆X axis corresponding with the wide, shallow peak in the
sample line along its axis, is a result of the camera and scene
geometry. From Figs. 6b and 6d it is clear that neither the
camera view, nor the position of the reprojected points shifts
significantly between the images, despite GBA consisting of
a translation of 2.2m in the X direction, thus a shallow peak
in this axis is intuitive. The sharper peaks in Fig. 6f are
similarly intuitive given the greater affect on the reprojected
positions of points in the far-field of angular changes given
the position of the camera on the vehicle.

The results for ∆GAR are shown in Figs. 6g and 6h, where
the cost shown is the local-to-prior component of eq. (10):
NID(IA, IS)+NID(IB , IS), with GBA held at its ground
truth value. This function and its analytical derivatives also
appear relatively well behaved, with clear minimum in the
cost at the ground-truth values (∆ = 0). The weak constraint
angled at approximately 10o off the X-axis in the XY plane in
Fig. 6g is the mapping of the weak constraint in X in Fig. 6e
from the local robot coordinate system (X forward) into the
reference coordinate system of GAR (X-North). As at the
points the images were captured, the vehicle was travelling
within 10o of due south in the reference frame, as shown in
Fig. 5.

These results are indicative of the robustness of NID to
changing conditions, as the simple (averaged) appearance
prior is not very accurate or even very consistent, due to
illumination and auto-exposure changes between the widely
spaced images.

In order to investigate the convergence of ĜBA, indepen-
dently for each pair of consecutive images in the test set GAR
was held at its ground-truth value and ĜBA was initialised to
its ground-truth value with samples drawn from independent
uniform additive noise with extents ±0.5m and ±2.5o added
to the translation and orientation components respectively.
From this noisy initial position a quasi-Newton optimiser
using the analytical derivatives detailed in section III-D.3
was used to find the minima, stopping when ∆Cost ≤ 10−6.
Two sequential optimisation cycles were performed for each
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Fig. 6. Typical iso-surface cost structures for ∆GAR & ∆GBA, sampled around ground-truth values (∆ = 0) with the transform not shown held at
its ground-truth value. Approximately 30,000 prior lidar points are common to both sample images (SAB): 6b and 6d and were used in the computation
of the costs. The subplots on the right of each figure show the evolution of the cost (black) and its analytical derivative (blue) along the corresponding
black sample lines aligned with each ∆-axis in the iso-surface plot. The iso-surfaces have been inverse alpha-blended (higher costs are more transparent)
for ease of illustration.

Transform X (m) Y (m) Z (m) Roll (deg.) Pitch (deg.) Yaw (deg.)
GAR 49.3473 94.8116 -0.6958 -2.2266 -3.0308 -168.7081
GBA -2.2108 0.0559 0.1071 -0.0647 0.0990 0.0308

TABLE I
GROUND-TRUTH TRANSFORM COMPONENTS FOR RESULTS SHOWN IN FIG. 6.



image pair, the first using blurred images (gaussian filter, 15
pixels square with σ = 5). The second cycle, which took as
its input the output of the first, used the raw (unmodified)
images. This was done to improve the basin of convergence
as noted in section III-D.5 by approximating an image-
pyramid technique. As the aim was to investigate GBA, the
scene prior was not used.

Figs. 7a to 7c show the distributions over all sequential
test image pairs, of the initial additive noise and residual
errors in ĜBA at the end of each cycle of the optimisa-
tion respectively. The results in Fig. 7c broadly reflect the
width of the peaks at the minima in Figs. 6e and 6f, with
greater confinement in the orientation components than in
the translation components. Contributors to the width of the
error peaks include: residual error in the extrinsic camera
calibration used to estimate ground-truth, the low resolution
of the camera and some particularly challenging areas where
the camera views are non-informative (looking into a hedge).
However, the error distributions, particularly in orientation
provide strong evidence of the validity of the formulation and
to the typicality of the results presented in Figs. 6e and 6f.

As our current implementation is off-line and not capable
of real-time performance, to demonstrate the speed of conver-
gence of the optimisation Figs. 7d and 7e show respectively,
a histogram over all image-pair samples of the ‘cost-to-come’
at each iteration and the percentage of samples for which the
optimiser had not terminated after k-iterations. The key point
to note from Fig. 7d is that the ‘cost-to-come’ converges to
zero rapidly after ≈ 10 iterations, with the remainder of the
time spent performing fine-detail refinement.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new method for lo-
calising a robot equipped with a monocular camera in a
previously gathered 3D lidar pointcloud survey prior by
harmonising both the locally viewed appearance of the
workspace between consecutive frames and the local appear-
ance of the workspace relative to an appearance prior. Our
method uses the Normalised Information Distance (NID),
a true Shannon information metric, as the cost function to
compare distributions over appearance for common subsets
of S and is suitable for real-time, parallel computation. We
have presented results demonstrating the desirable behaviour
of the NID as a cost function for our problem using
data gathered from a road vehicle driving in a light-urban
environment.

The primary foci for our future work are twofold. Firstly,
to accelerate our current implementation to achieve real-time,
online performance. In part by using the work of [28] for
GPU accelerated B-spline interpolation, which is a signifi-
cant performance bottleneck in our current implementation.
Secondly, we hope to exploit multiple cameras on the robot
to be localised with different view-points to improve the
gradient of the cost function for the translation components
of the transforms. As previously discussed, the confinement
of the NID cost function in our formulation is a function
of both the scene and the relative geometry of the camera(s),

thus an additional focus of this work is to investigate pre-
processing of the raw pointcloud to improve its suitability
and evaluate its sufficiency for navigation.

We feel this work demonstrates the feasibility of our
approach and supports our expectation that the localisation
systems of practical future autonomous vehicles will benefit
from making extensive use of prior 3D information. Fur-
thermore, that by doing so they could reduce their sensing
requirements and costs whilst maintaining the accuracy and
robustness required.
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Fig. 7. Results of independent optimisations (η = 30) for GBA (with GAR held at its ground-truth value) over all sequential pairs of images in the
test-set. Showing the distributions of additive noise added to ground-truth to form initialization values of ĜBA: 7a and the residual errors in ĜBA after
termination: 7b and 7c. The vertical dashed lines in 7b and 7c denote the 1-σ bounds. The speed of convergence is shown in 7d to 7g, which show
for the blurred & raw (unmodified) image cycles, a histogram over all image pair samples of the ‘cost-to-come’ at each iteration and the percentage of
optimisations still running after k-iterations respectively. Finally, 7h shows a sample image after blurring (gaussian filter, 15 pixels square with σ = 5) and
7i shows one of the test-images with point reprojections using the ground-truth GBA (red) and a noisy initialisation [before optimisation] (blue) drawn
from 7a. In the case shown, the additive noise on GBA is [−0.225,−0.065, 0.033] meters (X,Y, Z) and [−1.383,−2.248, 2.135] degrees (Roll, Pitch,
Yaw). The point reprojections after the optimisation are not shown as they are indistinguishable from those at ground-truth
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