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Abstract— This paper is about extending the reach and
endurance of outdoor localisation using stereo vision. At the
heart of the localisation is the fundamental task of discovering
feature correspondences between recorded and live images. One
aspect of this problem involves deciding where to look for
correspondences in an image and the second is deciding what to
look for. This latter point, which is the main focus of our paper,
requires understanding how and why the appearance of visual
features can change over time. In particular, such knowledge
allows us to better deal with abrupt and challenging changes
in lighting. We show how by instantiating a parallel image
processing stream which operates on illumination-invariant
images, we can substantially improve the performance of an
outdoor visual navigation system. We will demonstrate, explain
and analyse the effect of the RGB to illumination-invariant
transformation and suggest that for little cost it becomes a
viable tool for those concerned with having robots operate for
long periods outdoors.

I. INTRODUCTION

Feature-based stereo vision localisation can be simply
understood as the act of matching run-time observed visual
features to stored features and then estimating the pose of the
vehicle given these associations. As ever, the detail is dev-
ilish. While the matching problem is indeed simply stated,
its execution can be fraught with difficulty. Two problems
dominate: where should one search for correspondences (and
how big should a search window be) and what should one
search for (what does the feature look like). We take both
these issue in turn. In Section II-B, as a precursor to what
follows, we offer a simple feed-forward approach to the first
“spatial” component of the matching task. This results in
improved data association results by way of the directed
feature matching search that ensues. The substantial contri-
bution of this paper comes in Section III onwards in where
we deal with the “appearance” component of the matching
task. Here we consider the effect of change in illuminant and
construct an imaging pipeline, which, by virtue of modelling
the effect of black body radiation on outdoor scenes, allows
us to demonstrate superior localisation performance.
A. Appearance Change From Illumination

For vision systems concerned with localising in known en-
vironments, dealing with appearance changes, either sudden
or gradual, is an ongoing challenge. Appearance changes can
result from several sources, such as (i) different lighting con-
ditions, (ii) varying weather conditions, and/or (iii) dynamic
objects (e.g., pedestrians or vehicles). In previous work
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Fig. 1. We present an approach to localisation that runs two localisers
in parallel — one using images in RGB colour space and the other using
images in an illumination-invariant colour space. This allows us to cope
with areas that exhibit a significant amount of lighting variation. The top
left image sequence represents the live video stream in RGB colour space,
the right image sequence represents the live video stream in an illumination-
invariant colour space, and the middle sequence represents the images in
our visual memory, which include both the RGB and illumination-invariant
space. In our technique, if one of the localisers fails, we switch to the other.

[1], we demonstrated how to leverage knowledge of prior
3D structure to suppress distracting objects for improved
pose estimation in busy urban environments, as well as
how to cope with long-term appearance variation caused by
changing weather conditions [2]. In this paper, we attempt
to address problem (i), and examine how to localise despite
stark changes in lighting.

The primary challenge presented by lighting changes are
the shadows they cast, which can obscure features in the en-
vironment and create new ones from the silhouettes, making
it difficult to match features from a sunny day to a cloudy
day (see Figure 1). To address this problem, we leverage
recent work in the computer vision field for transforming
RGB-coloured images into an illumination-invariant colour
space [3]. The ability to determine the colour of objects
irrespective of an external illumination source is known as
colour constancy [4].

We present an approach that runs two localisation threads
in parallel, one using the original RGB images and the other
using the illumination-invariant images. The system switches
between the two estimates depending on the quality of the
respective estimates. We demonstrate on over 10 km of data
that this incredibly simple addition to the standard vision
pipeline can result in significant improvements in areas that
exhibit a great deal of lighting variation.



B. The Literature

Shadows, insufficient lighting, and changing lighting con-
ditions has been studied in a variety of fields with different
goals in mind. In this work we draw on the optics community
who have paid careful attention in modelling the image
formation process, considering properties of the illuminant,
the camera, and the scene. Of particular relevance to this
work, the optics literature shows how full colour images can
be mapped to an illumination-invariant space. Finlayson’s et
al. [5][6] mapping can be computed by analysing an image in
which a material property is viewed under different lighting
conditions (e.g., the ground in sun and shade). Ratnasingam
et al. [7][3] instead use known properties of the camera to
produce the invariant image.

In the computer vision community, the detection and
removal of shadows has been performed using learnt clas-
sifiers. Guo et al. [8] use a graph-cut framework involving
image patches to remove shadows from natural scenes. Zhu
et al. [9] are able to classify shadows in greyscale images
using boosting and conditional random fields. Kwatra et al.
[10] use an information theoretic method—a hybrid of the
classifier and physics based approaches—to remove shadows
in aerial imagery. While the results are effective, the process
is relatively slow for typical image sizes.

Within the robotics community, the issues of lighting in
different problems have been tackled in a variety of ways.
The SeqSLAM [11] algorithm is able to achieve successful
topological localisation despite extreme variations in light-
ing. The approach exploits the fact that sufficiently long
sequences of images are distinctive enough for localisation,
and they are able to localise at night against a daytime map.
Corke et al. [12] apply Finlayson’s invariant image to the
problem of single-image localisation to deal with the issue
of shadows. They show that the transformed images of a
location were more similar than the original colour images
and therefore localisation performance improved. Maddern
et al. [13] show that place recognition can be improved
over a day-night cycle by using both a standard and thermal
camera; however this required specialist hardware. McManus
el al. [14] improve the robustness of their visual teach and
repeat system to lighting issues by using a lidar-based sensor,
which is lighting invariant. While the sensor produces good
results, it has a range of issues including cost, fragility,
power requirements, frame-rate (2 Hz) and availability. The
experience based navigation work by Churchill et al. [2]
attempts to solve the lighting problem by capturing the
different visual modes of an environment with different
experiences. However this was found to break down when
lighting effects cause new visual patterns on every visit to a
location, such as shadows cast by foliage.

In this work we look to leverage the invariant image
transform proposed by Ratnasingam et al. [3] to improve
metric localisation performance and robustness in the face of
strong and changing shadows, which caused the experience
based navigation system to fail [2].

II. PRELIMINARIES

A robust localisation system should be able to answer
the following questions at all times: where should I look
(spatially in the image) and what should I look for (appear-
ance in the image)? We address both of these questions in
coming sections and then present our approach to combining
lighting-invariant images with our baseline system (RGB
only). But, before we do that, we are well served by a syn-
opsis of the underlying mechanisms we use for localisation.

A. Stereo Localisation
At the heart of our localisation system is a keyframe-

based visual odometry (VO) pipeline. At runtime, we use
the FAST [15] detector on both stereo images for feature
extraction. We then find stereo correspondences using patch-
based matching, and compute BRIEF descriptors [16] for
each stereo measurement. We also compute a 3D estimate of
the feature position relative to the camera frame. When a new
stereo frame is acquired, features are extracted and matched
to the previous frame, initially with BRIEF matching, and
then refined using patch-based matching to achieve sub-
pixel correspondences. RANSAC is used for outlier rejection,
followed by the nonlinear solve to produce the frame-to-
frame transformation estimate.

We use a survey vehicle to collect multiple stereo se-
quences of an environment and the output from the VO
process—a series of keyframes with features locations, de-
scriptors, pixel patches, 3D landmarks, and a relative trans-
formation estimates—are saved in memory (these are the
survey keyframes). Then, to localise the current live image
sequence to a memory, we use the a similar VO pipeline as
the one described above. Instead of matching to the previous
camera frame, we match to a survey keyframe.

B. Knowing Where To Look
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Fig. 2. Illustration of our feature prediction approach. Using the latest VO
output from the live image stream, we can predict where features in the live
frame should reproject in the survey keyframe. This allows us to restrict
the search space for candidate feature matches, which has two benefits:
(i) improves efficiency, and (ii) reduces spurious matches that result from
global matching in descriptor space.

In an effort to improve robustness in matching a live view
with a survey view, we take an active searching approach



similar to Davison et al. [17], which predicts how the
measurements in the survey frame should reproject in the
live frame. However, in Davison’s work, they were limited
to predicting the motion using a constant-velocity motion
assumption. In our localisation system, we have access to
the VO output from the live image stream. This allows us
to accurately predict how we have moved relative to our
survey and therefore inform where we expect to find stored
features in the live view. Specifically, using the uncertainty
in the map, measurements, prior pose estimate, and latest VO
estimate, we can compute the covariance of the reprojected
measurements from the survey frame into the live frame.
This in turn can be used to define a search region in the live
view. This is illustrated in Figure 2.

By using this active search approach [17], we are able
to better predict our search regions and thus, reduce the
likelihood of bad data associations. The next step, which
is the key contribution to our approach, is to identify
what to look for within each of these regions. Standard
methods would attempt patch-based matching or descriptor-
based matching on the raw images. However, this approach
is obviously inadequate under extreme lighting changes.
In the next section, we will show how a simple image
transformation can help improve localisation in areas with
significant lighting variation.

III. KNOWING WHAT TO LOOK FOR WHATEVER THE
LIGHTING

Fig. 3. Example images taken around our Begbroke Science Park test
site, with the raw RGB image shown on top, and the corresponding lighting
invariant version shown below. Note how the image transformation is able
to significantly reduce the impact of the shadows.

Given a search region for a potential match, our baseline
system finds the sub-pixel location that minimises the score
between the reference patch from the survey and the live
image. However, as illustrated in Figure 1, this approach
can fail when the appearance change is too significant. To
remedy this problem, we wish to inform our system about
the illuminate-free appearance of the scene, which requires
a transformation from the standard RGB colour space.
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Fig. 4. Block-flow diagram of our combined localisation approach. Note
how we can feed the VO estimates from the untransformed images to
help predict the feature locations in the transformed images. Note that
our baseline system does not work on the raw RGB images, but actually
transforms them to monochrome.

A. Mapping to an Illumination-Invariant Chromacity Space

Recently, Ratnasingam and McGinnity [3] presented a
method for mapping three image sensor responses (e.g., RGB
colour space) to an illumination-invariant chromacity space,
I. The standard approach is to assume that the spectral
sensitivity of the image sensor is infinitely narrow and that
the spectrum of daylight can be approximated by a black
body [3][7]. Under these assumptions, one can show that the
output spectrum of a blackbody can be separated into three
independent components: (i) a wavelength component, (ii)
a reflectance component, and (iii) an illuminant component.
For more details, the reader is referred to [7].

Using the illumination-invariant feature space from Rat-
nasingam and McGinnity [3], we can map the three colour
channels in a raw image, {R1, R2, R3}, to an illumination-
invariant intensity, I, according to

I = log(R2) � ↵log(R1) � �log(R3), (1)

where {↵, �} are channel coefficients, which are subject to
the following constraint:

1

�2
=

↵

�1
+

�

�3
, (2)

with {�1, �2, �3} being the peak sensitivity wavelengths for
each image sensor1. See Figure 3 for some examples of
this image transformation. Note, however, that this image
transformation adds noise, which is particularly prominent
in the foreground on the road. The significance of this will
be discussed in more detail in the next section.

B. Combined Localisation System

Transforming the live image stream using (1) can be
performed on a per-pixel basis, and is therefore inexpensive,

1These can be gathered from the sensor datasheet. In our experiments, we
used ↵ = 0.4800 and � = 0.5065 for a Point Grey Bumblebee2 camera.
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Fig. 5. Representative velocity estimates for a loop around our Begbroke
Science Park. Note how the estimates using the lighting invariant images
are noisier and appear to have a slight bias when compared to groundtruth.

allowing us to run this thread alongside the baseline system.
Our strategy for the combined system is quite simple. We
run both VO streams in parallel and when we are able
to localise using the raw images (i.e., the baseline sys-
tem), we take that estimate, otherwise, we switch to the
lighting-invariant estimate. The reason we default to the
baseline system is highlighted in Figure 5, which shows a
representative velocity profile both with and without using
the illumination-invariant image transform. There are two
main differences that can be observed. The first is that the
illumination-invariant estimates are noisier, which is likely
due to the noise added by the pixel-wise transform. The
second and more interesting difference is that there appears
to be a slight bias in illumination-invariant estimates. We
believe that this is a function of the feature distribution
that results when using the illumination-invariant images. It
appears that a lot of the high-frequency noise in the near
field is amplified, meaning that fewer near-field features
are detected. As a result, the feature distribution appears
to be strongly biased towards the upper region, typically
representing distant features. As there exists a known bias
in stereo [18] (with a strong relationship to range), we
believe this is the most likely explanation. Thus, owing to the
increased noise and slight bias, fusing the estimates seemed
suboptimal. Instead, we switch between the two system, with
the policy of defaulting to the baseline system when possible.
A block-flow diagram of our system is provided in Figure 4.

It is important to note that we can also perform the
following trick for improved performance. Since the VO
estimates using lighting invariant images are not as accurate
as baseline system, we can use the live VO estimate from
the baseline system to perform the feature prediction in the
lighting-invariant feature space (as described in Section II-B).
In otherwords, we can use the most recent frame-to-frame
VO estimate from the baseline system to help inform the
lighting-invariant VO pipeline where to look.

IV. EXPERIMENTS AND RESULTS
In this section, we present a series of localisation results

both with and without the use of lighting-invariant imagery.
We collected 15 visual surveys around the Begbroke Science
Park with the focus on capturing more challenging lighting
conditions. In Figure 6 we show some examples of the
extreme visual variation encountered along parts of the route.

To clarify terminology, the system that does not use invariant
imagery (RGB only) is the baseline system, the system that
uses invariant imagery only is the invariant system, and the
system that combines them is the combined system.

Fig. 6. Sample images gathered under a shadowy area in our Begbroke
datasets. These areas prove to be very challenging for our baseline system
due to the extreme variations in lighting.

For each of the 15 datasets, we used an exhaustive leave-
one-out approach, whereby each dataset was taken as the
live image stream, and localisation was performed against
the remaining 14 datasets in turn.

TABLE I
COVERAGE RESULTS COMPARING OUR COMBINED SYSTEM VERSUS THE

BASELINE SYSTEM. COVERAGE IS DEFINED AS THE NUMBER OF

SUCCESSFULLY LOCALISED FRAMES AS A FRACTION OF THE TOTAL

NUMBER OF CAPTURED FRAMES, AVERAGING OVER 14 TRAINING

DATASET PER TEST DATASET.

Dataset Number Baseline System Combined System
1 79.93% 83.19%
2 92.68% 95.74%
3 91.12% 94.59%
4 95.81% 96.65%
5 94.19% 95.80%
6 93.64% 95.74%
7 95.64% 98.30%
8 96.29% 97.60%
9 94.75% 97.30%
10 93.90% 95.61%
11 83.47% 89.35%
12 95.88% 97.54%
13 91.87% 95.01%
14 86.58% 89.55%
15 97.33% 98.53%

Average 92.17% 94.68%

Table I presents the percentage coverage using each of the
15 datasets as the live run. We define percentage coverage as
the number of successfully localised frames versus the total
number of frames, averaged over the 14 datasets compared
against. We found that our INS system was not reliable
for groundtruthing due to significant GPS drift (on the order
of meters). Instead, we took the approach of Churchill and
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Fig. 7. One vs. One localisation result. The localisation performance
of the three systems (i.e., the baseline, the illumination invariant system,
and combined). Points indicate successful localisation. Between 190 m and
280 m invariant thread is able to localise where the baseline thread cannot.
By taking the union of the two our combined system is more robust.

Fig. 8. One vs. All localisation results. The localisation characteristics
of a single dataset (used as the live image stream) compared against the
remaining 14 datasets. Each row corresponds to one of the 14 datasets, and
the x-axis shows distance travelled. Blue indicates when only the baseline
system localised, yellow indicates when only the invariant system localised,
green is when both the baseline and invariant successfully localised, and
black areas indicate localisation failures of both systems. By incorporating
the invariant system we are able to localise successfully over a larger area.

Newman [2], which uses the localisation chain to predict
the frame-to-frame motion and compares that with the VO
estimate. If the two estimates disagree by a certain threshold
then it is classified as a localisation failure.

In all cases the invariant system provides improvement
to the baseline system, meaning the combined system al-
ways out-performs the baseline. An important result here is
that our baseline system already performs well despite the
difficult conditions. However, in the context of long-term
autonomy for robotics, robustness is key, so any increase in
reliability is important. We will show shortly that with the
combined system we achieve significantly shorter distances
travelling open loop during localisation failures.

Figure 7 shows the localisation performance of one live
run versus one other dataset. In this figure, coloured points
indicate a successful localisation for the specified system,
while an absence of data represents a localisation failure. For
this particular run, we see that the baseline system failed to
localise over a 90 m section. However, because we have the
invariant system running in parallel, which was able localise
in this area, the combined system is able to localise for
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Fig. 9. Given a localisation failure, this plot shows how far the system is
likely to travel before re-acquiring a localisation, i.e. how long it will have to
travel using dead reckoning alone. In other words, this is P (dropout = X),
where X is distance traveled. We see that the combined system is likely
to travel significantly shorter distances compared to the baseline after a
localisation failure.

almost all of the route. Figure 10 show representative cases
where the invariant localisation thread was successful while
the baseline was not, and vice versa.

Figure 8 shows the performance of a single dataset used as
the live image stream versus all 14 remaining datasets (along
the y-axis). It is a graphical representation of one of the
rows in Table I. In this plot, yellow indicates regions where
only the invariant system could successfully localise. Here
we see there is a region between 200-300 m along the route
where the baseline thread repeatedly struggles, due to the
challenging lighting variation (see Figure 6). It should also
be noted that the invariant thread does not always contribute.
The blue regions in Figure 8 indicates areas where only the
baseline thread was successful. By taking the union of the
two threads we have improved the robustness of our system.

We refer the reader to Figure 9, which is the key result
of this paper. Given that this is a localisation system, the
primary concern is exposure to extended periods of time or
travel in which we fail to localise. During these periods we
must fall back to deadreckoning from Visual Odometry—
however good that is we are still effectively running “open
loop”. Figure 9 shows that the system we propose here,
which leverages illumination-invariant colour spaces, a dual-
processing pipeline, and a carefully informed search policy
for feature associations, produces a performance far superior
to the baseline system. For example, the likelihood of the
system travelling blind for up to 100 m is close to 40% with
the baseline system, whereas the with the combined system,
the likelihood is just 5%.

V. CONCLUSION

Dealing with severe lighting changes is a critical re-
quirement for long-term, persistent navigation in outdoor
environments. We believe that the approach presented here
will help move us in the right direction in order to tackle this



(a) Successful localisation under the trees. Data associations shown in green. (b) Failed localisation under the trees. No successful matches.

(c) Failed localisation near a car park. No successful matches. (d) Successful localisation near a car park. Data associations shown in green.

Fig. 10. Examples where the lighting-invariant images helped the system localise under a very shadowy region (top row) and where the lighting-invariant
images failed to localise (bottom row). As can be seen, the image transform adds artefacts, which can sometimes result in fewer matches. However, the
benefit of running this system becomes clear when looking at regions with high visual variability caused by external illuminates.

challenging problem. We have argued for the use of lighting
invariant image transforms as a way to ease the difficulties
arising from imaging in varying lighting conditions. We have
shown that by folding this transform into an additional image
processing pipeline, we can substantially reduce our exposure
to having to deadreckon through long periods of localisation
failure. The additional cost of our extension is a fixed price
while the benefits are often substantial and never negative.
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