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Abstract— In this paper we propose the use of an illumination
invariant transform to improve many aspects of visual locali-
sation, mapping and scene classification for autonomous road
vehicles. The illumination invariant colour space stems from
modelling the spectral properties of the camera and scene illu-
mination in conjunction, and requires only a single parameter
derived from the image sensor specifications. We present results
using a 24-hour dataset collected using an autonomous road
vehicle, demonstrating increased consistency of the illumination
invariant images in comparison to raw RGB images during
daylight hours. We then present three example applications of
how illumination invariant imaging can improve performance
in the context of vision-based autonomous vehicles: 6-DoF
metric localisation using monocular cameras over a 24-hour
period, life-long visual localisation and mapping using stereo,
and urban scene classification in changing environments. Our
ultimate goal is robust and reliable vision-based perception and
navigation - an attractive proposition for low-cost autonomy for
road vehicles.

I. INTRODUCTION

Robust and reliable operation regardless of weather condi-

tions and time of day is a critical requirement for vision-

based autonomous road vehicles [1]. A major challenge

facing visual localisation, navigation and scene classifica-

tion approaches in outdoor environments is the change in

appearance across a wide range of illumination conditions,

in particular those encountered during a typical 24-hour

day-night cycle. Visual navigation systems that build upon

robust features such as SIFT [2] have produced impressive

results in recent years [3]; however, as demonstrated in

[4], these robust features do not provide true invariance

to the illumination variation encountered in typical outdoor

environments.

Much of the motivation behind scale and illumination

invariant feature development comes from the field of large-

scale image search and retrieval [5], where knowledge of

the source image sensor properties is typically unavailable.

In a robotics context, however, we can exploit full knowledge

of the image sensor characteristics to infer true physical

quantities about the scene. The process of inferring physical

properties of objects from imagery is often referred to as

passive remote sensing, and is a common in the field of

satellite observation [6]. In a similar vein, research in the

field of colour constancy [7] has produced a number of

attempts to determine image features that identify the spectral
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Fig. 1. Using an illumination invariant colour space to improve image
similarity at different times of day. RGB images (top row) are converted to
an illumination invariant colour space (bottom row) using knowledge of the
camera spectral response. This significantly reduces variation due to sunlight
and shadow, yielding a greyscale image where grey values depend primarily
on the material properties of the objects in the scene. Note that what appears
to be a shadow under the building is in fact a section of resurfaced tarmac,
distinguished due to its material properties despite significant change in
illumination spectrum and shadow.

properties of objects present in an image, regardless of the

spectrum or intensity of the source illuminant.

In this paper we seek to exploit full knowledge of the

spectral properties of the cameras on an autonomous vehicle

platform, and present an “illumination invariant” colour

space that reduces the effects of sunlight and shadow present

in raw RGB images, as illustrated in Fig. 1. The next section

presents related approaches, and Section III summarises

relevant portions of the colour constancy literature to derive

the illumination invariant transform. The illumination invari-

ant images are evaluated over a 24-hour period in Section

IV, and results are presented for example applications of

metric monocular localisation in Section V, life-long stereo

localisation in Section VI, and urban scene classification in

Section VII. Section VIII concludes the paper.

II. RELATED WORK

Robust image-point features such as SIFT [2], SURF [8]

and BRIEF [9] compute descriptors based on combinations

of gradients and histograms of local greyscale patches around

the point of interest. This results in a degree of invariance to

absolute illumination levels. However, these techniques are



not invariant to changes in the spectrum or direction of the

light source, as these do not manifest as a simple uniform

scaling of the mean greyscale intensities [10]. The “Leu-

ven/Light” benchmark dataset for point feature illumination

invariance [11] consists only of images taken from the same

location with varying exposure, which does not represent true

variation in outdoor illumination due to sunlight and shadow.

Approaches to incorporate colour histogram information

into descriptors have produced limited improvements in

performance [12]. Approaches to learning true illumination

invariant point features have been presented [13], but these

rely on training images that capture the full range of illumi-

nation variation in the environment. Successful point-feature-

based visual place recognition over a 24 hour period was

accomplished using a thermal imaging camera in [14] and an

imaging LIDAR sensor in [15], but both of these approaches

require expensive specialist hardware.

Recently, strong progress in visual localisation under chal-

lenging conditions has been demonstrated by whole-image

sequence-based approaches [16]. In Seq-SLAM [17] a visual

dataset collected on an 8 km road network at midday is

successfully matched to the same location at midnight during

a rainstorm. However, localisation performance is limited to

topological place recognition, and is critically dependent on

viewpoint direction when revisiting locations [18], making

sequence-based approaches unsuitable as the sole localisation

source for autonomous road vehicles.

Perhaps the work that is the most similar to the approaches

presented in this paper is [19] and [20]. Both make use of

the single-channel illumination invariant imaging approach

presented in [21] for the purposes of removing shadows

from images taken from a road vehicle. However, both

approaches require the collection of training data from the

test environment in order to calibrate the spectral properties

of the camera.

III. ILLUMINATION INVARIANT COLOUR SPACE

In this section we present an illuminant invariant colour

space adapted from [22], [23] to improve the consistency

of scene appearance over a range of outdoor illumination

conditions. Fig. 2 and the following equation describe the

relationship between the response of a linear image sensor

R with spectral sensitivity F (λ) to an illumination source

with emitted spectral power distribution E (λ) incident on

an object with surface reflectivity S (λ) [24]:

Rx,E = ax · nxIx
∫

Sx (λ)Ex (λ)F (λ) dλ (1)

where the unit vectors ax and nx represent the direction of

the light source and the direction of the surface normal, and

Ix represents the intensity of the illuminant on point x in the

scene. From eq. 1 we wish to obtain an image feature I that

depends on the material properties Sx (λ) of the surface at

point x, while minimising the effect of illumination source

spectrum Ex (λ) and intensity Ix. We follow the approach in

[24] and assume the spectral sensitivity function F (λ) can

be modelled as a Dirac delta function centred on wavelength

λi, which yields the following response function:

F (λ)

E (λ)

S (λ)

I

a · n
Rx

T

Fig. 2. Illustration of image sensor response in an outdoor scene. During
daylight hours, scene lighting typically consists of sunlight or skydome
illumination of intensity I and spectral power distribution E (λ), which in
this paper is modelled as a black-body illuminant of unknown correlated
colour temperature T . Objects in the scene reflect light with unknown
surface reflectivity S (λ) and geometry term a · n, which depend on the
material properties of the object and the relative angle of the light source
and image sensor. The reflected light is incident upon the image sensor,
which produces response Rx with spectral sensitivity F (λ) at location x

on the imaging plane. The challenge of colour constancy is to produce a
colour space I that depends only on object material properties S (λ) using
a combination of sensor responses Rx

i
with known spectral sensitivities

Fi (λ), without explicit knowledge of light source intensity, spectrum or
geometry.

Rx,E = ax · nxIxSx (λi)E
x (λi) (2)

Although an infinitely narrow-band spectral response as-

sumption is unrealistic for most practical image sensors,

results in [22] indicate colour constancy performance is

maintained under this assumption with realistic 60-100 nm

full-width at half-maximum (FWHM) sensor responses, and

a spectral sharpening process such as [25] can improve

seperation between multiple overlapping sensor responses.

We take the logarithm of both sides of eq. 2 to separate the

components as follows:

log
(
Rx,E

)
= log {GxIx}+log {Sx (λi)}+log {Ex (λi)}}

(3)

where Gx = ax · nx is the relative geometry between illu-

minant and scene. This yields a linear combination of three

components: a scene geometry and intensity component; an

illuminant spectrum component; and a surface reflectance

component.

Several long-term outdoor spectrophotometry experiments

[26], [27] have demonstrated that natural lighting closely

follows the Planckian locus in the visible spectrum, with cor-

related colour temperatures (CCT) ranging between 4,000K

and 25,000K, which covers the full range of atmospheric

conditions from deep sunset to bright sun to cloud cover to

blue skydome. Therefore we follow [22] and approximate the

illuminant spectrum as a Planckian source, and as such we

can substitute the Wien approximation to a Planckian source

into eq. 3:

log (Ri) = log {GI}+ log
{
2hc2λ−5

i Si

}
−

hc

kBTλi

(4)



where h is Planck’s constant, c is the speed of light, kB is

the Boltzmann constant and T is the CCT of the black-body

source. The first and third terms of eq. 4 can be eliminated by

incorporating sensor responses at different wavelengths λi.

In contrast with the approach proposed in [22], we use only

a one-dimensional colour space I consisting of three sensor

responses R1, R2, R3 corresponding to peak sensitivities at

ordered wavelengths λ1 < λ2 < λ3:

I = log (R2)− α log (R1)− (1− α) log (R3) (5)

Note that a single illumination invariant channel is usually

insufficient to uniquely identify a particular colour - as stated

in [22] a minimum of four spectral responses is required to

determine true colour. However, we propose that the one-

dimensional space is sufficient to differentiate between most

materials in natural scenes. By substituting eq. 4 into eq. 5,

we can show the one-dimensional colour space I will be

independent of the correlated colour temperature T if the

parameter α satisfies the following constraint:

hc

kBTλ2

−
αhc

kBTλ1

−
(1− α)hc

kBTλ3

= 0 (6)

which simplifies to

1

λ2

=
α

λ1

+
(1− α)

λ3

. (7)

Therefore we can uniquely determine α for a given three-

channel camera simply with knowledge of the peak spectral

responses of each sensor channel. The use of only three

spectral responses allows us to exploit commodity colour

cameras with standard Bayer filters, reducing the cost of

the sensor suite. By estimating these peaks using the data

sheet for the Bayer filter of the camera sensor, we avoid the

requirement for a set of training images, in contrast to [19].

Table I lists the peak spectral responses estimated from

the datasheets of the three Point Grey cameras used in this

paper along with the corresponding α parameter. Algorithm

1 shows the single line of MATLAB code required to convert

a 3-channel floating-point RGB image into the corresponding

illumination invariant image using the α parameter. An offset

of 0.5 is applied to bring responses into the [0, 1] range

required for MATLAB images.

An example of the resulting illumination invariant colour

space is illustrated in Fig. 1. Despite large changes in sun

angle, shadow pattern and illumination spectrum between

images captured at 9am and 5pm, both illumination invariant

images exhibit minimal variation, and even capture material

differences in the road surface which are not immediately

apparent from the raw images due to strong shadows.

IV. 24-HOUR ILLUMINATION INVARIANT IMAGING

To evaluate the performance of the illumination invariant

colour space, we collected a 24-hour visual dataset consisting

of 24 670m loops of an urban testing environment (one

loop for each hour of the day). The experimental test site

and platform are pictured in Fig. 3. Each loop was divided

TABLE I

CHOICE OF α PARAMETER FOR POINT GREY CAMERAS WITH SONY

IMAGE SENSORS

Camera Image Sensor λ1 λ2 λ3 α

Grasshopper2 ICX285AQ 470nm 540nm 620nm 0.4642

Bumblebee2 ICX204AK 460nm 540nm 610nm 0.3975

Flea2 ICX267AK 470nm 535nm 610nm 0.4706

Algorithm 1 MATLAB code for 3-channel floating-point

RGB image to Illumination Invariant image conversion.

1 function [ ii_image ] = ...

RGB2IlluminationInvariant( image, alpha )

2 ii_image = 0.5 + log(image(:,:,2)) - ...

alpha*log(image(:,:,3)) - ...

(1-alpha)*log(image(:,:,1));

into 71 distinct locations, which were spatially aligned

across datasets using a NovAtel SPAN-CPT GPS-aided INS

mounted to the vehicle, forming 24 images of each location

from near-identical viewpoints for each hour over the 24-

hour period. Fig. 4 shows all 24 images from one location

over the 24-hour period, using both the raw RGB colour

space as well as the illumination invariant colour space.

To quantitatively evaluate the consistency of the illumina-

tion invariant images over the 24-hour period, we adopt the

approach used in [19] and examine the zero-mean normalised

cross correlation (ZNCC) between images collected from

the same place at different times. Images from the left and

right Grasshopper2 cameras were downsampled to reduce

viewpoint dependence and concatenated together, forming

a 278 x 104 pixel resolution image for each location at

each time of day. The mean ZNCC between all images at

the same location at different times of day was computed

for both RGB images (on a per-channel basis) and for

illumination invariant images, and the results are shown

in Fig. 5. Illumination invariant images are notably more

consistent during daylight hours, as evident in the block-like

correlation structure between 07:00 and 20:00. However, raw

230m

Fig. 3. Experimental test site and platform. The experimental data consists
of 24 loops around an urban environment for a total distance of 16km over
a period of 24 hours, with images captured at 71 distinct locations along the
route. The experimental platform is the Oxford University Robotcar, a mod-
ified Nissan LEAF. The Robotcar is equipped with a pair of Grasshopper2
cameras on either side of the roofrack for localisation (circled in red), and
a vertical SICK LMS-151 mounted to the front bumper (circled in blue) to
build the 3D scene prior for metric localisation. Ground truth for localisation
is provided by a NovAtel SPAN-CPT inertial navigation system.



(a) RGB images at one location for every hour of a 24-hour period.

(b) Illumination invariant images at one location for every hour of a 24-hour period.

Fig. 4. Time lapse montage of images captured using a Grasshopper2 camera at one of the 71 locations for every hour of a 24-hour period. Raw RGB
images (a) exhibit significant variation during daylight hours (from 7:00 to 20:00) due to changes in sunlight intensity, direction and spectrum. Illumination
invariant images (b) are notably more consistant over this time period, and the material properties of different types of objects (road surfaces, vegetation,
stone, bricks, wooden surfaces, metal vehicles) lead to distinct grey level values in the images. The major source of artefacts in the illumination invariant
images during daylight hours is under- or over-exposed pixels in the raw RGB images, particularly at boundaries between bright sunlight and deep shadow;
these artefacts are easily removed by only considering pixels for which all three sensor responses lie within the linear detection region of the camera. At
night (22:00 to 5:00) the scene lighting is dominated by sodium-vapour streetlights and white LED headlamps, neither of which are black-body sources,
and therefore the illumination invariant images yield poor results. However, since the artificial illumination at night does not vary over time, the raw RGB
images remain consistent over this period.

RGB images are more consistent at night when the necessary

assumptions of black-body illumination are violated. There-

fore, the best results for visual localisation over 24 hours

would be obtained using a combined system of illumination

invariant images during daylight hours and raw RGB images

at night.

In addition to evaluating illumination invariant image con-

sistency over 24 hours, an exhaustive search was performed

to determine the optimal value of α for the Grasshopper2

camera, by varying the parameter to maximise the mean

ZNCC during daylight hours. This resulted in an optimal

α value of approximately 0.49, which is within 10% of the

value predicted by simply reading the peak spectral response

values for each channel from the image sensor datasheet. In

contrast to [19] which required manually-annoted training



images of materials in shadows and a spectral sharpening

optimisation, our approach yields close-to-optimal illumina-

tion invariant images using only a single parameter derived

directly from the image sensor specifications.

V. 24-HOUR METRIC MONOCULAR LOCALISATION

An application that benefits directly from the increased

consistency of illumination invariant images during daylight

hours is the 6-DoF metric monocular localisation presented

in [28]. This approach builds upon the localisation using

appearance of 3D prior structure (LAPS) presented in [29],

and incorporates the illumination invariant colour space

representation during daylight hours.

The metric localisation process is as follows: a survey

vehicle collects a 3D scene prior S with local coordinate

frame R consisting of a point cloud, where each point q ∈ R
3

has an associated prior RGB and illumination invariant value

IS(q) ∈ R
1 sampled at survey time. At runtime, the vehicle

at position A captures an RGB or illumination invariant

image IA using a monocular camera. To recover the position

of the vehicle GAR within the 3D point cloud, we seek to

harmonise the information between the prior appearance IS
and the appearance IA as viewed from position A as follows:

ĜAR : argmin
GAR

NID(IA(xA), IS(q) | q ∈ SA) (8)

where NID is the Normalised Information Distance between

the prior appearance and the live appearance. By solving the

above optimisation, we can recover the 6-DoF position of

the vehicle relative to the 3D scene prior.

Fig. 6 presents the results from a 24-hour localisation

experiment using LAPS. Two 3D scene priors were col-

lected: an illumination invariant prior collected at midday

for use during daylight hours, and an RGB prior collected at

midnight for use at night. During the day, LAPS provided 6-

DoF metric localisation using illumination invariant images

accurate to 0.4 m in translation and 1.8 degrees in rotation,

and at night, using RGB images, results accurate to 0.5 m in

translation and 2.8 degrees in rotation.

This is an important result in the context of long-term robot

operation, since it provides 24-hour day and night metric

localisation with comparable accuracy to a INS system, using

only low-cost monocular cameras with standard Bayer filters

and a 3D point cloud prior collected offline by a survey

vehicle. Additionally, it reduces the cost of surveying the

environment prior to localisation, since only one survey

during daylight hours and one survey at night is required to

cover the variation in scene appearance due to the day-night

cycle.

VI. LIFE-LONG STEREO LOCALISATION

Another application that benefits from the use of an illu-

mination invariant colour space is the life-long stereo local-

isation framework presented in [30]. This approach builds

upon the experience-based navigation framework presented

in [31], which represents the map as a series of stereo visual

odometry sequences, dubbed experiences, along with metric

localisations between different experiences of the same loca-

LAPS (Illumination Invariant) NovAtel INS (Reference)

Fig. 6. Metric global localisation results over a 24 hour period using
LAPS. Using two Grasshopper2 monocular cameras and two 3D coloured
pointcloud scene prior surveys (one illumination invariant prior collected at
midday for use during daylight hours, pictured bottom left, and one RGB
prior collected at midnight for use at night, pictured bottom right), LAPS
provided global metric localisation with accuracy comparable to a NovAtel
GPS-aided inertial navigation system over a full 24 hour period.

tion. As a robot traverses an environment, it simultaneously

stores new experiences from the live stereo imagery, along

with attempting to localise relative to prior experiences to

link multiple representations of the same environment. This

approach was found to work well for gradual scene change

over time, but not if the appearance of the scene changes

significantly between each visit.

The method in which illumination invariant images are

incorporated into the experience-based navigation framework

is illustrated in Fig. 7. A second localiser makes use of

illumination invariant images in parallel with the main local-

isation system. Although the metric relative poses calculated

between illumination invariant images tends to be more noisy

than that calculated between greyscale (luminance) images,

the localiser is less likely to fail if the scene appearance

change is due to sunlight intensity, direction or spectrum

variation. Fig. 8 shows two example localisations, illustrating

the advantages of each colour space for matching locations

over time. The combined system significantly reduced the

mean distance between successful localisations, decreasing

the probability of travelling 100 m without a successful lo-

calisation from 40% using the baseline greyscale-only system

to only 5% using the combined greyscale and illumination

invariant system. This is an important result in the context

of life-long robot operation, as it significantly increases the

mean-time-before-failure of the navigation system.



(a) (b) (c)

Fig. 5. Mean ZNCC between 71 locations at different times of day (higher values indicate better correlation). (a) and (b) show the mean ZNCC between
locations across a 24-hour period. The mean correlation between RGB images during daylight hours (07:00 to 20:00) is low; the illumination invariant
images exhibit more consistent block-like correlation over this period. However, the RGB images are more consistent at night, and to a lesser extent
at dawn (06:00) and dusk (21:00). (c) shows the mean ZNCC between locations against the difference in time between traverses. Illumination invariant
images are notably more consistant over time during daylight hours in comparison to RGB images. RGB images are more consistant over time at night,
but the performance is comparable to illumination images during the day. Therefore, the best policy for visual localisation over a 24 hour period is to use
illumination invariant images during daylight hours and raw RGB images at night.

Localiser

RGB Images

RGB to 
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RGB to 
Illumination Invariant

VO

Map

RGB to 
Monochrome

RGB to 
Illumination Invariant

Localiser

Fig. 7. Block-flow diagram of the combined stereo localisation approach.
Live RGB images are converted to both monochrome (luminance) and
illumination invariant colour spaces. Stereo visual odometry is used to
generate metric pose estimates between sequential monochrome images,
yielding a map in the form of a pose graph. In parallel, the system
attempts to find metric estimates between the current live image and previous
images stored in prior maps, using both monochrome and illumination
invariant colour spaces. Although the monochrome images produce higher
quality pose and velocity estimates between sequentially captured frames,
the illumination invariant images are more consistant over time, increasing
the likelihood of localising to a previously visited location under different
lighting conditions. Localising in parallel combines the advantages of both
colour space representations, increasing the robustness of the system over
the lifetime of the vehicle.

VII. URBAN SCENE CLASSIFICATION

The primary goal of the illumination invariant transform is

to produce an image where pixel values correspond to the

material properties of objects viewed in the scene, regardless

of scene illumination intensity, direction or spectrum. This

makes it a natural front-end processing step for scene clas-

sification algorithms, which attempt to segment the image

into clusters corresponding to objects [32], [33] and assign

appropriate labels to the clusters [34], [35], in order to gain a

high-level semantic understanding of the scene. Illumination

invariant images provide both consistent appearance for

objects made of the same material in different images, as

well as clear differences in appearance between objects made

of different materials in the same image.

In [36], the data-transfer approach of [33] was applied to

both RGB and illumination invariant images from urban

scenes gathered in Oxford as well as scenes from the

public benchmark KITTI dataset [1]. Fig. 9 shows example

classifications from both datasets, illustrating the significant

increase in the quality of object classification when using

illumination invariant images in the presence of shadows.

Illumination invariant image classification provided higher

recall and F1 scores for all object classes, with the exception

of vehicles and sidewalks (due to reflective surfaces on

vehicles and proximity to similar road surfaces respectively).

This is an important result in the context of autonomous

road vehicles, which must successfully navigate the road in

the presence of a large range of static and dynamic object

classes under a wide range of illumination conditions, and

make use of higher-level semantic information for planning,

decision-making and obstacle avoidance.

VIII. CONCLUSIONS

In this paper we have presented compelling results for

the use of illumination invariant imaging to improve the

performance and robustness of vision-based autonomous

road vehicles in typical outdoor environments. The illumi-

nation invariant transform presented in this paper is no more

complex than a typical RGB to greyscale conversion, and

requires only a single parameter derived from the image

sensor datasheet. However, the effects of this transform on

images gathered over a 24 hour period are profound, remov-

ing almost all variation due to sunlight intensity, direction,

spectrum and shadow present in the raw RGB images. We

believe the improvements demonstrated in the three sample

applications of metric monocular localisation, life-long stereo

navigation and urban scene classification pave the way to

ubiquitous low-cost autonomy for vision-based road vehicles

in the future.



(a) Localisation under the trees.

(b) Localisation near a car park.

Fig. 8. Examples where the illumination invariant images helped the system
localise under heavy shadows (a) and where the illumination invariant
images failed to localise (b); individual feature matches are shown in green.
Artefacts and noise introduced by the illumination invariant transform can
interfere with point feature extraction and matching, which can sometimes
result in fewer matches. However, the benefit of illumination invariant
images becomes clear when looking at regions with high visual variability
caused by outdoor illumination changes as in (a).
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