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Abstract— Robust and reliable visual localisation at any time
of day is an essential component towards low-cost autonomy for
road vehicles. We present a method to perform online 6-DoF
visual localisation across a wide range of outdoor illumination
conditions throughout the day and night using a 3D scene prior
collected by a survey vehicle. We propose the use of a one-
dimensional illumination invariant colour space which stems
from modelling the spectral properties of the camera and scene
illumination in conjunction. We combine our previous work
on Localisation with Appearance of Prior Structure (LAPS)
with this illumination invariant colour space to demonstrate a
marked improvement in our ability to localise throughout the
day compared to using a conventional RGB colour space. Our
ultimate goal is robust and reliable any-time localisation - an
attractive proposition for low-cost autonomy for road vehicles.
Accordingly, we demonstrate our technique using 32km of data
collected over a full 24-hour period from a road vehicle.

I. INTRODUCTION

We want to build a low cost (around £100) 6-DoF naviga-

tion system for autonomous road vehicles using monocular

cameras, which provides reliable metric localisation outdoors

even under greatly varying lighting conditions including day

and night. This is a challenging problem, and this paper

describes our progress towards that goal.

We frame our task in the following way: first we use a

survey vehicle equipped with a single pushbroom laser and

colour cameras to make a coloured 3D point cloud “prior”

of the environment. Then at run-time, we make this prior

available to the economy vehicle to be localised which is

equipped with only monocular cameras. We believe this is

a viable model for mobile autonomy - costly surveys being

leveraged by any number of users with only cheap sensors.

The way we exploit the survey can be simply put and it

was described in its nascent form in [1]. Consider first, two

images of a scene taken from nearby poses; the distribution

of colours within them will be similar because they are pic-

tures of the same things. Imagine now we place a camera at

a known place relative to the survey. By the same argument,

the projection of the survey points into the camera image

should yield a distribution of colours similar to the survey.

A simple mental picture is helpful here - “survey points of

a bright red door should again project to a red door in the

runtime image if the extrinsic parameters are right”. We can

now simply pose the localisation problem as maximising the

similarity (we will finesse this term later) between runtime

and survey appearance by varying the camera extrinsics -

aka the camera location. Thus we are Localising using the

Appearance of Prior Structure. We call this LAPS.
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Fig. 1. Using illumination invariant images to localise in 6-DoF relative to a
3D pointcloud at different times of day. RGB images (top row) are converted
to an illumination invariant colour space (middle row) using knowledge of
the camera spectral response. This mostly removes variation due to sunlight
and shadow. The 6-DoF position and viewpoint of the cameras can then
be recovered relative to a coloured 3D point cloud (bottom, red/blue view
frustrum) using illumination invariant appearance information alone. Note
that what appears to be a shadow under the building is in fact a section
of resurfaced tarmac, distinguished due to its material properties despite
significant change in illumination.

A major challenge facing visual localisation and navigation

approaches in outdoor environments is change in appearance

across a wide range of illumination conditions, in particular

those encountered during a typical 24-hour day-night cycle.

One of the contributions of this paper, above showing LAPS

working on 32km of outdoor data, is the way in which we

deal with this challenge.

Robust and reliable localisation regardless of weather

conditions and time of day is a critical requirement for



vision-based autonomous road vehicles [2]. The computer

vision community has provided much of the current work

in visual feature and scene recognition techniques that are

robust to changes in scene geometry and illumination. Visual

navigation systems that build upon robust features such as

SIFT [3] have produced impressive results in recent years

[4]. However, as demonstrated in [5], these robust features

do not provide true invariance to the illumination variation

encountered in typical outdoor environments.

Much of the motivation behind scale and illumination

invariant feature development comes from the field of large-

scale image search and retrieval [6], where knowledge of

the source image sensor properties is typically unavailable.

In a robotics context, however, we can exploit full knowledge

of the image sensor characteristics to infer true physical

quantities about the scene. The process of inferring physical

properties of objects from imagery is often referred to as

passive remote sensing, and is a common in the field of

satellite observation [7]. In a similar vein, research in the

field of colour constancy [8] has produced a number of

attempts to determine image features that identify the spectral

properties of objects present in an image, regardless of

the spectrum or intensity of the source illuminant. These

approaches typically benefit from knowledge of the spectral

properties of the camera, and often require a photometric

calibration routine [9]. Colour constancy has been recently

applied to the visual localisation problem in [10], [11] for

the specific case of removing shadows from images, but not

over a full day and night period.

In this paper we seek to exploit the full knowledge of our

camera to improve visual localisation performance across a

24-hour period. We make use of a so-called “illumination

invariant” colour space to minimise the variations in image

sensor response caused by viewpoint and illumination condi-

tions. We present simplifications to our prior work in visual

localisation [1] to incorporate the invariant feature space

and reduce computation time, and present visual localisation

results on over 32km of data over a full 24-hour period.

II. RELATED WORK

Recent successful approaches to robust image patch fea-

tures [3], [12], [13] compute descriptors based on combina-

tions of gradients and histograms of local greyscale patches

around the point of interest. This results in a degree of

invariance to absolute illumination levels. However, these

techniques are not invariant to changes in the spectrum or

direction of the light source, as these do not manifest as

a simple uniform scaling of the mean greyscale intensities

[14]. Approaches to incorporate colour histogram informa-

tion into descriptors have produced limited improvements in

performance [15].

An alternate approach to visual localisation under changing

conditions is to store and maintain multiple representations

of the same location. [16] presents an extension to a Visual

Odometry (VO) pipeline which stores frame sequences as

‘experiences’, and continuously attempts to localise against

prior trajectories while recording new experiences if nec-

essary. Experience Based Navigation (EBN) demonstrated

successful localisation over 37km of data collected over a

period of three months, with significant illumination and

weather condition variation. However, for the use case pre-

sented in [1] of a survey vehicle that infrequently revisits

an environment, it is unlikely that a sufficient number of

experiences will be collected to completely cover the varia-

tion in appearance of an environment; as EBN relies on the

underlying data association provided by BRIEF descriptors

[13] it is subject to the same limitations illustrated in [5]

for appearance change over longer periods of time. Similar

methods that attempt to model change in image descriptors

over time include [17].

The importance of image sequence information when lo-

calising across changes in appearance is demonstrated by

a number of approaches [18], [19]. In Seq-SLAM [19] a

visual dataset collected on an 8km road network at midday

is successfully matched to the same location at midnight

during a rainstorm. Downscaling, patch normalisation and

normalised cross-correlation are employed to reduce the

variance due to scene illumination intensity and spectrum,

but localisation performance is limited to topological place

recognition. Further investigation in [20], [21] reveal a

critical dependence on viewpoint direction when revisiting

locations, making sequence-based approaches unsuitable as

the sole localisation source for autonomous road vehicles.

Perhaps the work that is most similar to the approach

presented in this paper is [22]. The authors combine a

chrominance-space-based HDR imaging system [23] with a

sparse 3D edge map of the environment, and perform 6-DoF

localisation using a particle filter. Successful localisation was

demonstrated during wide illumination changes in intervals

between 7am and 5pm, and even during rain. An approach to

generate the required sparse edge maps from 3D point cloud

data was presented in [24], removing the requirement for a

dedicated surveyor. While effective, this approach has to our

knowledge only been demonstrated in urban environments

with strong edges, and does not make use of appearance

information to differentiate between objects in the scene.

III. ILLUMINATION INVARIANT COLOUR SPACE

In this section we summarise the illuminant invariant colour

space presented in [25], [26] to improve the consistency

of scene appearance over a range of outdoor illumination

conditions. For a recent review on state-of-the-art approaches

to illumination invariant imaging, otherwise known as colour

constancy, we refer the reader to [8].

The following equation describes the relationship between

the response of a linear image sensor R with spectral sensi-

tivity F (λ) to an illumination source with emitted spectral

power distribution E (λ) incident on an object with surface

reflectivity S (λ) [27]:

Rx,E = ax · nxIx
∫

Sx (λ)Ex (λ)F (λ) dλ (1)

where the unit vectors ax and nx represent the direction of

the light source and the direction of the surface normal, and

Ix represents the intensity of the illuminant on point x in the

scene. From eq. 1 we wish to obtain an image feature I that

depends on the material properties Sx (λ) of the surface at



point x, while minimising the effect of illumination source

spectrum Ex (λ) and intensity Ix. We follow the approach in

[27] and assume the spectral sensitivity function F (λ) can

be modelled as a Dirac delta function centred on wavelength

λi, which yields the following response function:

Rx,E = ax · nxIxSx (λi)E
x (λi) (2)

Although an infinitely narrow band spectral response as-

sumption is unrealistic for most practical image sensors,

results in [25] indicate colour constancy performance is

maintained under this assumption with realistic 60-100nm

full width at half-maximum (FWHM) sensor responses.

We take the logarithm of both sides of eq. 2 to separate the

components as follows:

log
(
Rx,E

)
= log {GxIx}+log {Sx (λi)}+log {Ex (λi)}}

(3)

where Gx = ax · nx is the relative geometry between

illuminant and scene. This yields a linear combination of

three components: a scene geometry and intensity com-

ponent; an illuminant spectrum component; and a surface

reflectance component. According to [27], for outdoor scenes

illuminated by natural lighting it is reasonable to approximate

the illuminant spectrum as a black-body source, and as such

we can substitute the Wien approximation to a black-body

source for the illuminant spectrum term in eq. 3:

log (Ri) = log {GI}+ log
{
2hc2λ−5

i Si

}
−

hc

kBTλi

(4)

where h is Planck’s constant, c is the speed of light, kB
is the Boltzmann constant and T is the correlated colour

temperature of the black-body source. Note that for all

references to the term “illumination invariant” in this paper,

we are referring to a colour space that makes this assumption;

that the source illuminant is approximately black-body. As

demonstrated in [28], a dirac-delta sensor response and

black-body source assumption provides good results for

colour discrimination in outdoor scenes illuminated primarily

by natural lighting. The first and third terms of eq. 4 can

be eliminated by incorporating sensor responses at different

wavelengths λi. In contrast with the approach proposed in

[25], we use only a one-dimensional colour space I consist-

ing of three sensor responses R1, R2, R3 corresponding to

peak sensitivities at ordered wavelengths λ1 < λ2 < λ3:

I = log (R2)− α log (R1)− (1− α) log (R3) (5)

The one-dimensional colour space I, conceptually similar

to a robust greyscale space, will be independent of the

correlated colour temperature T if the parameter α satisfies

the following constraint:

hc

kBTλ2

−
αhc

kBTλ1

−
(1− α)hc

kBTλ3

= 0 (6)

which simplifies to

S

q, Is(q)

A
R

GAR

Fig. 2. A robot equipped with a camera observes the scene S, defined
in reference coordinate system R at position A at which it captures image
IA. For each new image acquired, the transform GAR is estimated by
harmonising the appearance between image IA and prior appearance IS .

1

λ2

=
α

λ1

+
(1− α)

λ3

, (7)

therefore we can uniquely determine α for a given three-

channel camera simply with knowledge of the peak spectral

responses of the Bayer filter. This formulation avoids the

requirement for a set of training images in contrast to [11].

Note that a single illumination invariant feature is usually

insufficient to uniquely identify a particular colour - as

stated in [25] a minimum of four spectral responses is

required to determine true colour. However, we propose

that the one-dimensional space is sufficient to differentiate

between most materials in natural scenes. An example of

the resulting illumination invariant colour space is illustrated

in Fig. 1. Despite large changes in sun angle, shadow

pattern and illumination spectrum between images captured

at 9am and 5pm, both illumination invariant images exhibit

minimal variation, and even capture material differences in

the road surface which are not immediately apparent from

the raw images due to strong shadows. The use of only three

spectral responses allows us to exploit commodity colour

cameras with standard Bayer filters, reducing the cost of the

localisation sensor suite.

IV. LOCALISATION USING PRIOR 3D STRUCTURE

In this section we present a simplified version of the 6-DoF

localisation approach presented in [1] which incorporates the

illumination invariant colour space representation.

For a robot at position A in the known 3D scene S with

local co-ordinate frame R, we seek the transform GAR using

only a single illuminant invariant image IA captured at

position A, as illustrated in Fig. 2. We assume the known

3D scene S consists of a point cloud sampled by a survey

vehicle, where each point q ∈ R
3 has an associated prior

illumination invariant feature IS(q) ∈ R
1 sampled at survey

time.

The appearance IA of a point q viewed from position A
is found by reprojecting q onto the image plane x using the

camera projection parameters κ as follows:

xA ≡ P(q, GAR,κ) (8)

To recover the transform GAR we seek to harmonise the

information between the prior appearance IS and the appear-

ance IA as viewed from position A. We define an objective

function f which measures the discrepancy between the



visual appearance of the subset of points SA from position

A and the prior appearance of the points IS as follows:

f

( Appearance of SA from A︷ ︸︸ ︷
IA(P(q, ĜAR,κ)),

Prior appearance of SA︷ ︸︸ ︷
IS(q)

∣∣∣∣∣
Scene viewed by A︷ ︸︸ ︷

q ∈ SA

)
: R2×|SA| 7→ R

1

≡ f

(
IA(xA), IS(q)

∣∣∣∣ q ∈ SA

)
(9)

As in [1] we choose Normalised Information Distance

(NID) as the objective function, as it provides a true metric

that is robust to local illumination change and occlusions.

Given two discrete random variables {X,Y }, the NID is

defined as follows:

NID(X,Y ) ≡
H(X,Y )− I(X;Y )

H(X,Y )
(10)

where H(X,Y ) denotes the joint entropy and I(X;Y )
denotes the mutual information. Substituting NID for our

objective function from eq. 9 yields the following:

f ≡ NID(IA(xA), IS(q) | q ∈ SA) (11)

We can now frame the localisation problem as a minimisa-

tion of eq. 11 as follows:

ĜAR : argmin
GAR

NID(IA(xA), IS(q) | q ∈ SA) (12)

The initial estimate ĜAR|0 can be set to the previous

position of the sensor, or can incorporate incremental motion

information provided by wheel encoders, visual odometry or

another source.

In contrast to the original approach presented in [1], we do

not require a sequential pair of images at locations A and

B, nor a joint optimisation to solve for transforms ĜAR and

ĜBA. The use of a strong illumination invariant appearance

prior IS allows us to forego the need for an image se-

quence and joint optimisation (and thus significantly reduce

computational requirements) without reducing localisation

performance, as will be illustrated in Section VI.

V. EXPERIMENTAL SETUP

In this section we present our experimental approach to

demonstrating day and night localisation with monocular

cameras and a 3D scene prior.

A. Experimental Data

The experimental dataset consists of 48 loops of a 670m

urban environment, corresponding to 2 loops per hour across

a period of 24 hours and a total distance of 32km. The

experimental location, pictured in Fig. 3, is the site of many

previous navigation experiments [1], [29], [16].

230m

Fig. 3. Experimental test site and platform. The experimental data consists
of 48 loops around an urban environment for a total distance of 32km over
a period of 24 hours. The experimental platform is the Oxford University
Robotcar, a modified Nissan LEAF. The Robotcar is equipped with a pair of
Grasshopper2 cameras on either side of the roofrack for localisation (circled
in red), and a vertical SICK LMS-151 mounted to the front bumper to build
the 3D scene prior (circled in blue). Ground truth is provided by a NovAtel
SPAN-CPT inertial navigation system.

Our experimental platform is the Oxford University Robot-

car, an autonomous Nissan LEAF, depicted in Fig. 3. The

LEAF is equipped with a vertical SICK LMS-151 laser scan-

ner at the front and two side-facing Point Grey Grasshopper2

monocular cameras mounted to the roof. Odometry is pro-

vided by shaft encoders on each wheel, and ground truth

position is provided by a NovAtel SPAN-CPT Align real-

time-kinematic inertial navigation system (INS) mounted

above the rear axle.

B. Localisation Algorithm Details

For localisation we use the two Point Grey Grasshopper2

colour CCD cameras mounted to the roof of the vehicle.

The Sony ICX285AQ image sensor in the Grasshopper2

incorporates a Bayer filter with peak sensitivities at 470nm,

540nm and 620nm for B, G and R channels respectively

[30], and therefore we use α = 0.4642 to form illumination

invariant images from the three colour channels. The ex-

trinsic calibration between cameras, lasers and the INS are

recovered using the approach in [31].

The minimisation problem in eq. 12 is solved with the

quasi-Newton BFGS method [32] implemented in Ceres [33]

using the analytical derivatives presented in [1] obtained us-

ing B-spline interpolation. The cost function is implemented

in the OpenCL1 language and solved using an Nvidia GTX

TITAN GPU, requiring approximately 3ms per evaluation,

which enables real-time operation.

For each traverse of the test environment, LAPS is ini-

tialised using the first pose of the INS, but then performs

successive localisations for each camera image regardless

of the INS solution. This initial global localisation could

be equally well performed using a visual feature-based loop

closure algorithm such as [4].

For comparison with the original implementation in [1],

we perform localisation with both greyscale images against

a greyscale 3D prior along with illumination invariant images

against an illumination invariant 3D prior.

C. Scene Prior

To investigate the importance of scene prior collection time

for localisation over the period of a full day, we collect a

scene prior at both midday (12:00) and midnight (24:00). The

1http://www.khronos.org/opencl/

http://www.khronos.org/opencl/


3D scene prior is generated using a “push-broom” approach

with the vertical 2D laser scanner as in [29]. RGB, greyscale

and illumination invariant values for each point were derived

by reprojecting the 3D location of each point at the time of

capture into the sensor frame of the Grasshopper2 cameras

mounted on the roof. The positions of the scene prior are

registered to the global UTM frame provided by the INS to

facilitate global localisation.

VI. RESULTS

In this section we present the results of our 24-hour

localisation experiment and demonstrate the effectiveness of

the illumination invariant colour space across a wide range

of illumination conditions.

A. Global Localisation

Fig. 4 presents global localisation results for LAPS using

illumination invariant images in comparison to the INS

positions. The relationship between the local structure of the

environment and the consistency of the LAPS localisation

solution can be examined with insets A to F. It is clear that

LAPS provides localisation results that are consistent with

the far more expensive NovAtel INS system.

Areas with features and obstacles close to the road (trees,

fences and buildings) such as insets B, D and E provide

the highest local consistency, since the local structure and

appearance is sufficiently rich, yielding a clear minimum

entropy solution to the NID cost function. Areas which are

mostly planar, such as insets A and C, or with structure on

only one side of the road, such as inset F, do not provide

the same rich local structure and therefore the localisation

consistency is correspondingly poorer.

B. Localisation in Daylight

Fig. 5 presents RGB and illumination invariant images

during daylight hours along with error statistics for global lo-

calisation using greyscale and illumination invariant images.

It is clear that while the raw RGB images vary significantly

between 8am and 7pm, the illumination invariant colour

space remains mostly immune to changes in illumination

and shadows. Using the illumination invariant colour space

during daylight hours, LAPS localises with mean absolute

translational positions error under 0.4m in each axis, and

mean absolute orientation errors under 1.8 degrees about

each axis.

While the illumination invariant images provide better

stability over time, they exhibit a smaller dynamic range than

an equivalent greyscale image. This will serve to compact

the histograms used to compute the NID value and therefore

may reduce the sensitivity of the solution to small changes -

this would explain the translational error distribution, where

small changes in position have less of an effect on the cost

function as small changes in orientation. However, over the

course of the day LAPS with illumination invariant images

provides equal or lower translational error in comparison

to LAPS with greyscale images, and significantly lower

orientation error.

Fig. 7. Sample sections from the coloured 3D point cloud scene priors
built using the midday and midnight datasets for the same physical location,
showing the dramatic change in the appearance of the scene between day
and night. The blue-white streaks in the verges off the road in the midnight
prior are due to the LEAF’s headlights, and the orange orb at the top of the
building is a streetlight. Note that although the pointcloud is coloured here
with RGB for ease of presentation, we store both RGB and illumination
invariant appearances for each point.

C. Localisation at Night

As the test site is illuminated at night by narrow-spectrum

sodium and mercury streetlights, the primary assumption that

the source illuminant can be modelled as a black-body radi-

ator is violated. This leads to poor localisation performance

when using the illumination invariant colour space, since the

appearance no longer matches the illumination invariant prior

captured during the day. Fig. 6 illustrates the poor quality

of the illumination invariant images captured at night, in

comparison to one captured during the day.

However, we make the observation that the absolute illu-

mination levels do not vary significantly over the course

of the night, and therefore a greyscale 3D prior captured

after nightfall would provide a stable appearance reference

for localisation after dark with artificial lighting. Fig. 7

illustrates the difference between the appearance of the 3D

prior collected at midday and at midnight at a location in the

dataset.

Using greyscale images and a 3D prior captured at mid-

night, LAPS localises with mean absolute translational po-

sition error under 0.5m in each axis, and mean absolute

orientation error under 2.8 degrees about each axis, as shown

in Fig. 6. These results approach the localisation accuracy

during the day with an illumination invariant prior - this

implies that for reliable localisation at any time of day, only

one illumination-invariant daytime prior and one greyscale

nighttime prior are necessary.

VII. CONCLUSIONS

In this paper we presented successful 24-hour 6-DoF local-

isation using mono cameras, accurate to a fraction of a meter

and a few degrees over 32km of driving, both during daylight

hours (with an illumination invariant 3D prior captured at
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Fig. 4. Overhead view of the test site with with the estimated positions from the reference NovAtel INS, and the illumination invariant LAPS algorithm
detailed in this paper, for the full 24 hour period. First consider insets E & D: LAPS is notably more consistent in these areas due to the confining 3D
structure of the scene, whilst this confinement is detrimental to the INS as it occludes the sky. This relationship is also evident in inset B. The corollary
to this, that in open areas with minimal confining structure, or in areas poorly and/or unevenly covered by the prior, where the path of the vehicle results
in a camera viewpoint that consists of only a single plane, the performance of LAPS degrades. This can be seen in insets A, C & F respectively.

midday) and during the night (with a greyscale prior captured

at midnight). By exploiting knowledge about the physical

properties of the camera and outdoor illumination, we extend

the usefulness of an expensive survey beyond mere minutes

or hours to an entire day or night cycle, reducing the

number of surveys (and therefore cost) required for a given

environment. We have presented a simplified version of an

illumination invariant colour space, which is applicable to

consumer RGB colour cameras with Bayer filters, combined

with a computationally inexpensive variant of LAPS, which

provides real-time visual localisation using consumer graph-

ics hardware. Coupled with the use of inexpensive monocular

cameras, we believe these results pave the way to ubiquitous

low-cost autonomy for road vehicles in the future.

A. Future Work

We are currently integrating LAPS-II into a sliding win-

dow filtering framework with vehicle odometry provided by

encoders on each wheel of the LEAF, to provide a high-rate

smooth pose solution suitable for closed-loop vision-based

autonomous driving at all hours of the day.
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RGB Invariant Orientation ErrorPosition Error

(meters) (degrees)
Grayscale (from RGB)

Illumination Invariant

Fig. 5. LAPS localisation error analysis against a midday 3D scene prior during daylight hours (8am to 7pm) for both greyscale and illumination invariant
images. For a typical location in the test environment, the raw RGB images vary significantly in appearance over the course of the day, but the illumination
invariant colour space remains mostly static. Position and orientation error for both greyscale (red) and illumination invariant (blue) images decrease when
temporally closer to the midday prior, however the illumination invariant images provide significantly lower orientation error over the course of the day. As
expected, localising relative to the midday prior at midday provides the lowest error for both images. All errors are reported relative to the INS solution.
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Fig. 6. LAPS localisation error analysis during the night (8pm to 7am; examples from 10pm to 2am shown) using a 3D scene prior gathered at midday
compared to a prior gathered at midnight. For the same location in the test environment, the raw RGB images do not vary significantly over the course
of the night, but the illumination invariant colour space yields very poor results due to non-black-body sodium lamp and LED headlight illumination, and
do not resemble images captured in daylight (see Midday Prior images for reference). Due to the robustness of the NID metric, LAPS is still capable of
localising at night relative to the midday prior using greyscale images, but with reduced accuracy. Using greyscale images and a midnight prior, localisation
performance approaches that achieved with illuminant invariant images during the day. All errors are reported relative to the INS solution.
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