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Abstract This paper is concerned with reconstructing the metric geometry of a scene
imaged with a single camera and a scanning laser. Our aim is toassign each image
pixel with a range value using both image appearance and sparse laser data. We pose
the problem as an optimisation of a cost function encapsulating a spatially varying
smoothness cost and measurement compatibility. In particular we introduce a second
order smoothness term. We derive cues for discontinuities in range from changes in
image appearance and reflect this in the objective function.We show that our formu-
lation distills down to solving a large linear system which can be solved swiftly using
direct methods. Results are presented and analysed using synthetic cases to demon-
strate salient behaviours and on real data to highlight real-world applicability.

1 Introduction and Motivation

This paper is about dense mapping of workspaces using commonplace cameras and
scanning lasers. Cameras provide near instantaneous capture of the workspace’s ap-
pearance (texture and colour) but, from a single view, little geometrical information.
On the other hand, scanning lasers produce comparatively slow, sparse metric sam-
pling and beyond reflectance, capture little of the scene’s appearance. This motivates
us to consider how we might fuse sparse laser data and images to infer a range for
every pixel in the image, allowing us to reconstruct a 3D scene with all the texture,
colour and appearance information captured in the originalimage. The heart of the
problem is how to sensibly infer ranges for pixels which are not near any laser mea-
surements without introducing intolerable distortions. Our method is general in that it
is not tied to any particular 3D laser scanner mechanism or geometry. Note also that
we aim to recover the dense geometry of a scene over scales which prohibit the use of
other direct methods such as stereo unless a truly large baseline is used.
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2 Related Work

The problem of inferring 3D surface models of a scene using laser or camera sensors
has been studied extensively over many years (see, for example [1, 2, 3, 4]). How-
ever, limitations in hardware and a requirement for speedy data gathering in mobile
robotics typically results either in high resolution optical images only allowing infer-
ence of very basic 3D geometry, or, alternatively, low resolution range images which
often sample the scene too sparsely to allow for faithful reconstruction. Multiple view
reconstruction provides an attractive alternative due to anear instantaneous gathering
of dense 3D data leading to dense scene reconstructions fromimage data alone [5, 6].
Unfortunately, stereo reconstruction fidelity is limited in range by the baseline and the
image resolution. This seriously impedes accurate reconstruction beyond a few meters
from the camera. Another alternative can be found in the exploitation of the comple-
mentary nature of vision and range sensing. While optical images and range images
represent different quantities, they share “similar second order statistics and scaling
properties” [7].

Only a relatively small body of work exists on the inference of surfaces by fusing
laser data and camera images. Usually, these techniques exploit the fact that edges in
the optical image often correspond to discontinuities in depth, and that smooth sur-
faces tend to correspond to areas of similar colour and texture. In [8], depth values for
pixels in an image are inferred using belief propagation in aMarkov Random Field
(MRF) framework. The technique requires that the supplied range measurements con-
tain some high density areas from which to seed the solution,and is unable to assign
depth values outside of those already in the measurements. The techniques described
in [9], [10] and [7] are able to fuse the information from bothsources to significantly
improve the resolution of low quality range images. The method of [9] is particularly
relevant to this work. It employs an MRF formulation with a first-order smoothness
prior. The technique favours fronto-parallel surfaces, but does not suffer too greatly
from this because the range measurements are sufficiently regular and dense, com-
ing from a special range camera sensor. This ‘pins’ the estimates to lie near the true
surface.

In contrast to [9] the method presented here is targeted at any combination of com-
monly available monocular camera and scanning laser. In particular, this requires in-
ference of range measurements based on sparse, inhomogenous range data. In such
cases, the fronto-parrallel tendency of inferred surfacesinduced by only considering
a first-order smoothness prior leads to increasingly inaccurate reconstructions. We ad-
dress that issue by introducing a second-order smoothness prior while still framing the
problem as a well-understood optimization of a linear system of equations.

3 Problem Formulation

In this section we shall show how a general description of theproblem can be for-
mulated in such a way that in the end, only the solution of a single linear system is
required. We begin by introducing our notation.
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We are given au by v pixel imageI and a 3D point cloud ofk laser measurements
L = {l1 · · · lk}. We shall use the notationIi to represent theith pixel in a vectorised
image (all pixels stacked in a single vector of lengthN = u×v). For eachIi we asso-
ciate a rangexi . Our task is to use bothI andL to find a vectorx = [x1,x2 · · ·xN]T -
a range for every pixel in the image. We shall also refer toxi as a “range node”. Each
point in L can be projected intoI under a distortion correcting camera model and
associated to the nearest pixel. Each laser point then yields a range measurementzi
tied to pixelIi . Note the laser measurements are sparse so not every pixel will have a
range measurement — in fact very few will. We use the notationi ∈ L to imply the
index variablei ranges over all pixels which have an associated range measurement.

We shall pose the problem as one of finding the optimal range vector x∗ such that

x∗ = argmin
x

{λ1λ2Θs(x,I)+λ1(1−λ2)Θc(x,I)+(1−λ1)Θd(x,z)} (1)

whereΘs(x,I) is a first order cost penalising depth discontinuities,Θc(x,I) is a sec-
ond order cost penalising curvature andΘd(x,z) is a data cost penalising errors be-
tween inferred ranges and observed range measurements. Thescalarsλ1,λ2 ∈ [0,1]
are weightings between the three terms. We shall now consider these terms in more
detail.

3.0.1 Data Cost

The data cost is defined as a squared error between assigned range,xi and measured
range,zi

Θd(x,z) = ∑
i∈L

σi(xi −zi)
2 (2)

= ||W(x− z)||2 (3)

whereW is a diagonal matrix with entries

Wi,i =

{

σi if i ∈ L

0 otherwise
(4)

andσi is a measure of our confidence in measurementzi .

3.0.2 Discontinuity Cost

As in [9], we use a depth smoothness orfirst-orderprior of the form

Θs(x,I) = ∑
i

∑
j∈N (i)

ei, j(xi −x j)
2 (5)

whereN (i) are the horizontal and vertical neighbours ofi. As edge strength between
nodes we use an exponentiatedL2 norm of the difference in pixel appearance
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ei, j = exp−
||ci − c j ||

2

σ2
d

(6)

whereci is the RGB colour vector of pixeli andσd is a tuning parameter (smallσd
increases sensitivity to changes in the image). Equation 5 may be written in matrix
form as

Θs(x,I) = ||Sx||2 (7)

where each row ofS represents a weighted average of a pair of adjacent range nodes.

3.0.3 Smoothess/Curvature Cost

In contrast to [9] we make the further assumption that in the absence of cues to the con-
trary, such as discontinuities in appearance, the gradientof surfaces varies smoothly.
Under thissecond ordersmoothness assumption, given a neighbourhoodN (i) of
nodexi we may make a range prediction ˆxi as a linear combination of neighbouring
rangesx j for j ∈ N (i). This allows us to write simply

x̂ = Px (8)

whereP is a suitably formed prediction matrix. We define curvature costΘc(x,I) in
the form

Θc(x,I) = ||x̂−x||2 (9)

= ||(P−1)x||2 (10)

Here,1 is the identity matrix. While details of howP is created will be postponed until
Section 4 we may proceed by understanding this cost as theL2 norm of the deviation
of x from the prediction based on modeling surfaces as locally continuous and smooth.

3.1 Reduction to Ax= b

We may further expand Equation 3 to the form

Θd(x,z) = xTWTWx−2zTWTWx+ zTWTWz (11)

and Equations 10 and 5 to

Θc(x,I) = xTRTRx, Θs(x,I) = xTSTSx (12)

whereR = P−1.
Substituting Equations 11, 12 into 1 and solving forx reduces the problem to

Ax = b (13)
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with

b = WTWz (14)

A =
λ1λ2RTR+λ1(1−λ2)STS+(1−λ1)WTW

1−λ1
(15)

Equations 13 to 15 imply that all we need to do to perform the optimization is to
solve a large sparse linear system.

4 Constructing The Prediction Matrix

In this section we detail how the prediction matrixP is created. For simplicity we show
only 1D cases but it should be noted thatP contains elements to penalise curvature in
both horizontal and verticaldirections.

We decomposeP into a weighted sum of three prediction operators - extrapolation
from left and right, and interpolation.

P = WLPL +WMPM +WRPR (16)

where subscriptsL,M,R imply left-extrapolation, mean (interpolation) and right-
extrapolation respectively. TheW’s are suitably constructed weighting matrices de-
rived from image appearance which we shall expand upon shortly in Section 4.1. The
use of extrapolation and interpolation can be understood graphically with reference to
Fig. 1 which shows a simplified 1D case.

Fig. 1 Depth prediction via weighted interpolation and extrapolation in 1D. The predictions of the
rangex0 by left and right extrapolation and interpolation are shown in faded grey. The discontinuity in
the image shown at the bottom of the figure (each range node has a single pixel attached to it) causes
the left extrapolation to be down-weighted — the image edge isa cue for a possible discontinuity in
range between nodex−1 andxo. The final prediction, ˆx0 is shown in the center.
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4.1 Anticipating Depth Discontinuities from Image Cues

The imageI can be used to provide cues about the behaviour of the surfacewe hope
to reconstruct. Our basic assumption is one that has been used before [9] — sharp
changes in range tend to appear as changes in appearance (edges) in an image. We
have a range node for each pixel (see Equation 16) and its value can be predicted by
a weighted sum of extrapolation and interpolation from its neighbours. We describe
only the horizontal case for simplicity, but our method is applied in the vertical case
too. For each nodexi the weighting is determined by the properties of pixeli and its
neighbourhood. Broadly speaking, if a pixel is identical toits left and right neighbours
then pure interpolation will occur. If however there is a discontinuity in pixel appear-
ance then interpolation will be down weighted and either left or right extrapolation
emphasised.

To explain how the weighting matricesWL,M,R are created we shall consider the
simple 1D case shown in Fig. 2. Interpolation is preferable to extrapolation. With this
preference in mind and considering nodex0 in Fig. 2, we can write the importance
weights of left / right extrapolation and interpolation aswl ,m,r

wm = e(−1,0)e(0,1) (17)

wr = e(−2,−1)e(−1,0)(1−wm) (18)

wl = e(2,1)e(1,0)(1−wm) (19)

with ei, j as defined in Equation 6. The above relationships can be understood by not-
ing that if the pixel attached to range nodex0 is identical to its neighbours (e(−1,0)

ande(0,1) are unity) thenwm = 1 andwr = wl = 0 - interpolation has 100% of the
weighting. As the pixelsI−1 andI1 become increasingly different, the left and right
extrapolations receive more weight. In the limit, if two pixels are entirely different,
the edge weight between them tends to zero and the attached range nodes will have
no direct link between them. It does not make the two nodes independent - there may
be other dependencies via long circuitous routes through other nodes. It does however
mean that range discontinuities across this boundary are not penalised because the
range prediction made by multiplication byP is based on an extrapolation from one
side and not an interpolation across the discontinuity. This is a key point in this work.

Fig. 2 A 1D chain of range nodes (a section ofx) and the edges between neighbours. Considering
x0, right extrapolation uses only nodes to the right and left extrapolation uses the two left hand nodes.
Interpolation uses nodesx−1 andx1. The edges between nodes are a function of the difference in
pixel appearance between adjacent range nodes (each range node is associated with a single pixel in
the image).
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5 Results

Fig. 3 shows the results of processing two synthetic scenes.In this case the problem
size is small withx having just 2500 elements (each element ofx corresponds to a
vertex in the mesh). With regard to the “three plane” case note how using just a few
laser points in each distinct region of the image results in three distinct planes being
generated in the reconstructed scene. The strong edges in the images prohibit informa-
tion flow between planes. For the nodes at the very edge of a plane the extrapolation
and interpolation weights have become such that the node is only influenced by (cou-
pled to) other in-plane nodes. The 1st order method alone is unable to reconstruct the
planes correctly as it tries to make all nodes have similar ranges.

In the case of the “dome” example note how while there is no range discontinuity
there is a sharp discontinuity in surface gradient around the perimeter of the dome.
Note also that the first order smoothness term is unable to reconstruct the curvature
of the dome in the absence of laser measuremnents. In contrast, with a second order
smoothness cost the curved shape of the dome is recovered well. This is an important
result. The generated curved surface is the smoothest surface that can explain the
existing measurements and minimise the bust in second ordersmoothness constraints
implicit in P.
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(c) 2nd order smoothness
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(d) Dome Image
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(e) 1st order smoothness
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Fig. 3 Synthetic data examples which highlight important aspects of our approach. Each node in
the mesh represents a single range node projected out from an imagepixel. The images for each of
the two cases are shown on the left. In all figures sparse laser measurements are shown in red. Note
how the discontinuities in the image appear as discontinuitiesin the reconstructed surfaces. First-
order smoothness alone tends to make surfaces have the same depth value whereas second-order
smoothness is able to correctly reproduce both planar and curved surfaces.

We now turn to processing some real data. We used a nodding SICK LMS200 laser
scanner on a mobile robot to capture laser data. Images were captured by a camera
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mounted above the laser with a wide angle lens. The image usedin this case was 518
by 259 pixels resulting in some 134,162 range nodes and is shown in Fig. 4 with laser
measurements projected into it. For scale, the target is approx 1.7m wide. The recon-
structed model is shown alongside. Using second-order smoothness alone provides
reasonable results, but tends to introduce ‘rippling’ artefacts around noisy measure-
ments. A small amount of first-order smoothness is necessaryto damp the oscillations.
Fig. 5 shows points of interest in the reconstruction. We show an outdoor result of the
same problem size in Fig. 6.

Fig. 4 Results from an indoor dataset. Image and laser measurements on the left, and the recon-
structed model on the right.

Fig. 5 Details of a reconstructed scene from Fig. 4. Note the detail ofthe smooth floor and inferred
sharp range discontinuity between two walls.

The algorithm is implemented in Matlab and the linear solve is performed with
Matlab’s backslash operator (though there is no reason not to use another method
such as Conjugate Gradient). The Three Planes case and the Dome case in Fig. 3, with
2,500 nodes both took 0.021 seconds to solve in a single iteration. For the real data
case in Fig. 4 with 134,162 nodes, the algorithm took around 30 seconds on a 2Ghz
dual core laptop.

We now present some numerical analysis of the performance ofour approach. It
is a hard task to obtain a ground truth geometry for the complete real scene. Instead
of comparing pixel ranges to ground truth we compare them to laser measurements
taken of the scene over a long period of time and which are not used in the optimi-
sation. Concretely, we collect a very dense cloud of laser data at the scene and draw
from that a small sparse test set with which we reconstruct the scene shown in Fig. 4.
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Fig. 6 Results from an outdoor dataset. On the left is the image with laser measurements overlaid.
On the right is the reconstructed model.

The remaining laser data constitutes a dense hold out set, and for each unused laser
measurement we can compare measured range to estimated range. Fig. 7(a) shows
regions of the workspace which contain pixels with significant errors.
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Fig. 7 The left image shows a comparison of range estimates to ground truthlaser data for the indoor
case. Areas in yellow show deviation from ground truth, with higher intensity representing larger
errors. Laser measurements are shown in red. The graph shows averageerror of the estimate relative
to the mean density of range measurements, when compared to laser measurements in the hold out
set. The laser has a precision of 15mm.

It is also instructive to consider how the accuracy of our approach depends on
the density of laser measurements. Fig. 7(b) shows how the statistics (mean and me-
dian) of the pixel range errors change as a function of measurement density. Note
that as expected, as measurement density increases the precision tends to that of the
laser itself around 15mm. The results given in Figs. 4 and 6 are operating in the 0.01
measurements/pixel2 region.

6 Conclusion

This paper has introduced a novel technique for fusing sparse laser data and images
to enable a dense 3D scene reconstruction. Above and beyond existing prior work this
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technique uses a second order smoothness term which allows it to extrapolate both
planar and curved surfaces. The problem is formulated as thesolution of a sparse
linear system, which allows the use of fast optimization techniques. The technique
was applied to both illustrative synthetic cases as well as real data recorded in indoor
and outdoor scenes containing challenging geometry.

The qualitative and quantitative results presented here suggest that our system pro-
vides 3D reconstructions of reasonable quality. Nevertheless, there is room for im-
provement. In particular we must consider how we can increase robustness to erro-
neous laser measurements (away from image edges) and how we might fuse multiple
scenes in a principled way. The flip side of this problem is handling bona-fide discon-
tinuities in range when there is no change in image appearance and vice versa.
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