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Abstract
This paper describes the design, build, automatic self-calibration and eval-

uation of a 3D Laser sensor using conventional parts. Our goal is to design
a system, which is an order of magnitude cheaper than commercial sys-
tems, with commensurate performance. In this paper we adopt point cloud
“crispness” as the measure of system performance that we wish to optimise.
Concretely, we apply the information theoretic measure known as Rényi
Quadratic Entropy to capture the degree of organisation of a point cloud.
By expressing this quantity as a function of key unknown system param-
eters, we are able to deduce a full calibration of the sensor via an online
optimisation. Beyond details on the sensor design itself, we fully describe
the end-to-end extrinsic parameter calibration process, the estimation of the
clock skews between the four constituent microprocessors and analyse the
effect our spatial and temporal calibrations have on point cloud quality.

1 Introduction and Related work

3D laser range finding sensors are becoming both popular and important for
mobile robotics, on account of their ability to produce accurate, dense sur-
veys of a robot’s surroundings. They may be used to produce detailed maps
[1], to detect, classify and track items in the scene [2], and to recover the tra-
jectory of the robot [3, 4]. 3D laser range finders are usually of the ‘actuated’
variety: a relatively low-cost unit with a 2D field of view, mounted on an
actuator which varies the scanning plane to cover a 3D volume. The popular
but expensive Velodyne [5] laser range finder uses 64 lasers on a continuously
rotating head to provide high bandwidth data over an elevational range of
26.8◦. Our system employs three SICK LMS-151 scanning laser units – each
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Fig. 1: An external view of our 3D scanner, which employs three SICK LMS-
151 laser rangers. These are 2D devices, with 0.5◦ angular resolution over a
270◦ sweep range, covered at a rate of 50Hz. Each unit makes 27,050 range
measurements per second, so the total throughput of our system is 81,150
measurements per second. The LMS-151 units are mounted on a plate which
rotates at speeds of up to 2.0Hz. A 12 line slip-ring supplies power and
Ethernet to the rotating lasers, with a microprocessor taking encoder readings
and acting as a motor controller for the plate.

with a nominal range of 50m – mounted on a spinning plate. Figure 1 shows
the arrangement, which allows for 360◦ azimuthal coverage and almost full
elevational coverage - the only unobservable volume being a cylinder through
the axis of rotation, with a radius equal to the distance between the scan-
ning planes of the lasers and the centre of the unit. Whilst the measurement
throughput of our system does not match that of the Velodyne, the field of
view is much greater and measurement fidelity is superior. However, the rota-
tion rates of 1-2Hz and lack of hardware synchronization between the lasers
pose a significant challenge.

In the pursuit of quality 3D scans temporal and geometric calibration are
essential. As an illustrative example, a time stamping error of just 15 ms (a
typical clock accuracy error on a PC) on a laser rotating at a leisurely 1Hz,
will result in just under 1m of systematic error at a 10m range. Of particular
concern to us is the synchronisation of the laser range outputs with the sensor
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orientation measurements. This task requires the estimation of clock skews
and offsets between all sensors and processors involved. Beyond temporal
calibration we must also concern ourselves with the precise determination of
the geometry of the system. Errors here also lead to a significant but avoidable
performance degradation. In Section 2 we parameterise our system, outline
the transformations used to convert raw sensor data to a world co-ordinate
frame and outline the methods used for clock skew correction. In Section 3 we
introduce a novel measure of point cloud quality which allows us to formulate
an optimisation problem to automatically recover the correct geometric and
temporal calibration parameters for our laser unit in Section 4. We provide
both qualitative and quantitative results from our system in Section 5. Our
experimental insights are given in Section 6.

2 System Parameters

2.1 Kinematic Chain

Consider a laser Li that takes measurements Zi = {z1...zm} of a set of loca-
tions in the environment, Xi = {x1...xm} as it is swept around by the plate.
A measurement zj = [rj , θj , φj ]

T consists of the range rj , the laser’s mirror
angle θj and the plate position φj . Our sensor model hi is zj = hi(xj ;Θi),
where Θi = [λi,τi,αi]

T is the set of extrinsic calibration parameters for laser
Li, explained in Figure 2. To estimate the position of the measured points
given the measurements, we apply the inverse sensor model, resulting in a
kinematic chain:

x̂j =h
−1
i (zj ;Θi) (1)

=Rz(φj + λi)Tx(τi)Rz(αi)Ry

(π
2

) rj cos(θj)rj sin(θj)
0

 (2)

Here R{x,y,z} and T{x,y,z} are respectively rotations about, and translations
along a given axis. By amalgamating a series of measurements over a period
of time we are able to produce a 3D point cloud, X̂i = {x̂1...x̂m} for laser Li.
Pooling measurements Z = {Z1,Z2,Z3} from all three lasers produces our
final point cloud, X̂ = {X̂1, X̂2, X̂3}.
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Fig. 2: The location of laser Li on the plate is defined by three parameters:
τi is the distance of the beam origin from the centre of the plate, αi is the
angle between the laser’s scanning plane and the tangent vector to the plate
and λi is the angle subtended between beam origins which lie along plate
radials and λ1 the beam origin for the first laser. For convenience we always
set λ1 = 0. These extrinsic parameters are automatically recovered using an
optimisation procedure based on maximising point cloud quality.

2.2 Learning the mapping between clocks

The fidelity of the measured point cloud X̂ is highly dependent on the quality
of the extrinsic calibration parameters and the accuracy of the plate rotation
measurements. The latter being a function of the accuracy of the timestamps
on both the plate encoder measurements and the individual laser measure-
ments. Ideally we would have some function mapping laser measurement
time stamps, tj to plate position measurements, so that φj := φj(tj), but
this would unrealistically require all devices to agree on the time. In fact,
each LMS-151 time stamps its data using an internal clock; similarly, the
microprocessor time stamps its readings of the plate encoder with its own
internal clock. The situation is illustrated by Figure 3.

The clocks in consumer grade equipment are notoriously temperature sen-
sitive and there are no guarantees of accuracy. We performed an experiment
where an LMS-151 was run continuously for 5 days and its time stamps
recorded. At the end of the experiment, the clock had lost over 90 seconds
compared to an accurate clock measuring UTC time. This is wholly inade-
quate for our needs.
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We could (as is typically performed) transfer all of the data to a central
Hub PC and apply common time stamps upon receipt. For our application
this would impose unacceptable noise, due to variable transport and buffering
delays. Instead we choose to learn the mapping between the clocks on the
different devices. We apply the algorithm of Moon et al. [6] to determine the
relative frequency of each of the clocks relative to the clock of the Hub PC.
Our implementation uses the efficient convex hull algorithm outlined in [7],
which allows rapid online estimation of relative clock parameters. It operates
by performing a linear programming optimisation on one-way offset measure-
ments gathered from two clocks, which are separated by a variable delay data
network. The algorithm can also recover the offset between the clocks, up to
but not including the minimum transport delay, which is unobservable from
one-way timing data alone.

After mapping device time stamps into Hub PC time stamps, we treat
the unknown minimum transport delays as calibration parameters, ηi repre-
sents the offset between laser time stamps and plate position time stamps
for the ith laser. Thus if we can determine the offsets, we can obtain correct
plate position readings for every laser measurement from a laser Li, via the
function:

φj := φj(tj + ηi) (3)

Sections 4 and 5 show how the unknown offsets can be determined by con-
sidering their effect on measured point cloud quality.

3 A Measure of Point Cloud Quality

Our motivation for finding a measure of point cloud quality was that with
such a quantity, an optimization can be applied over the calibration parame-
ters outlined in Section 2 resulting in a point cloud of high quality. Intuitively,
we seek to find the calibration parameters which maximise the crispness of
the point cloud.

We assume that our point cloud measurements X̂ = {x̂1...x̂N} are drawn
from an underlying distribution, p(x) representing the probability of drawing
a measurement from a given location, x. To obtain an approximation of p(x)
we apply the ParzenWindow [8] density estimation method. Using a Gaussian
kernel centred on each data point, we are able to represent p(x) as a Gaussian
Mixture Model (GMM),

p(x) =
1

N

N∑
i=1

G(x− x̂i, σ
2I) (4)

where G(µ,Σ) is a Gaussian with mean µ and covariance Σ. An isotropic
kernel is used, where Σ = σ2I, with σ being our systems only fixed tuning
parameter.
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Fig. 3: A laser Li emits a stream of range rj and beam angle θj measurements
with time stamp tj , according to a clock Ci within the laser. Each laser
clock is characterised by a skew, relative to the clock on the hub PC and an
offset ηi relative to the clock of the microcontroller. The extrinsic calibration
parameters τi and αi are backed out from an analysis of plate orientation
data in conjunction with the laser range data. The solve order is as follows:
The clock skews are found via the algorithm of Moon et al. [6], ηi from our
static lag calibration (using nominal values of τi and αi). Finally ηi is used
to produce a refined estimate of τi and αi for each laser. These values are
then used to evaluate λi.

The ‘crispness’ of the point cloud can now be linked to the entropy of p(x).
The more crisp the point cloud, the more ‘peaky’ the distribution will be.
An entropy measure proposed by Rényi [9] turns out to offer an efficient way
to quantify the compactness of a GMM distribution [10] (as well as being a
useful tool in the field of point cloud registration [11]). The Rényi entropy
HR of a stochastic variable X with pdf p(x) is defined as

HR[X] =
1

1− α
log

ˆ
p(x)αdx α > 0, α 6= 1 (5)

The single free parameter α determines how event probabilities are weighted:
high values of α approaching infinity consider only the highest probability
events whereas lower values of α weight high and low probability events more
equally regardless of their likelihood. For the case where α → 1, Equation 5
becomes the familiar Shannon Entropy measure [12]. For α = 2 we obtain
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HRQE [X] = − log

ˆ
p(x)2dx, (6)

which is known as the Rényi Quadratic Entropy (RQE).
We substitute the Gaussian Mixture Model of Equation 4 into Equation 6

to give,

HRQE [X̂] =− log

ˆ (
1

N

N∑
i=1

G(x− x̂i, σ
2I)

)2

dx (7)

=− log

 1

N2

N∑
i=1

N∑
j=1

ˆ
G(x− x̂i, σ

2I)G(x− x̂j , σ
2I)

 dx. (8)

Noting that the convolution of two Gaussians can be simplified as,
ˆ
G(x− xi, Σ1)G(x− xj , Σ2)dx = G(xi − xj , Σ1 +Σ2), (9)

we obtain a closed-form expression for the Rényi Quadratic Entropy of the
GMM,

HRQE [X̂] = − log

 1

N2

N∑
i=1

N∑
j=1

G(x̂i − x̂j , 2σ
2I)

 . (10)

Equation 10 can be thought of as a measure of the compactness of the points
in X with an information-theoretic provenance for which the only free param-
eter is σ. For the purposes of optimisation it is noted that log is a monotonic
operator and the scale factor is unnecessary, so those terms are dropped to
produce our cost function,

E(X̂) =

N∑
i=1

N∑
j=1

G(x̂i − x̂j , 2σ
2I), (11)

which depends only on pairwise distances between measured points in X̂.

4 System Identification

Substituting the inverse sensor model of Equation 1 into Equation 11 whilst
compensating for the time lag offset corrections of Equation 3 allows the
cost function to be written in terms of the extrinsic calibration parameters,
Θ = [ΘT

1 ,Θ
T
2 ,Θ

T
3 ]
T and time stamp offset parameters H = [η1, η2, η3]

T ,
giving the cost function that we seek to optimise as:
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E(Θ,H|Z) =
N∑
i=1

N∑
j=1

G(h−1(zi;Θ,H)− h−1(zj ;Θ,H), 2σ2I), (12)

Firstly we obtain the timing offsets H. The error caused by incorrect lag
values is proportional to the angular velocity of the plate. For this optimisa-
tion it is sufficient to use measurements from a single beam angle θ−45◦ in
the plane of the rotating plate. Fixing τi and αi to nominal values, we use a
quasi-Newton method to optimise over the cost function of Equation 12,

Ĥ = min
H

(E(Θ,H|Z)) (13)

giving optimised values of static lag Ĥ. The optimisation of Equation 13
must be performed with data collected at different plate speeds. The larger
the variation in the plate speeds, the better conditioned the calibration prob-
lem becomes.

Now the lasers are temporally calibrated we use our values of Ĥ to find τ̂i
and α̂i.

Consider now a 2D point cloud consisting of measurements from laser Li
from two opposing mirror angles θ−45◦ and θ135◦ , both in the plane of the
rotating plate. We optimise to obtain estimates of extrinsic parameters τ and
α, where τ = [τ1, τ2, τ3]

T and α = [α1, α2, α3]
T ,

τ̂ , α̂ = min
τ ,α

(E(Θ,H|Z)) (14)

The use of two mirror angles is necessary as the use of an extra mirror
angle provides additional geometry necessary for calculating τ̂ and α̂.

Next we seek the relative alignment λ where λ = [λ1, λ2, λ3]
T between the

beam origins of each of the lasers. We use our optimised values τ̂ , α̂, Ĥ, with
the same mirror angles θ−45◦ and θ135◦ ,

λ̂ = min
λ

(E(Θ,H|Z)) (15)

A final optimisation over all free geometric parameters is performed to
refine the crispness of the point cloud. Using previously obtained values of
Θ,H to seed the optimisation,

Θ̂ = min
Θ

(E(Θ,H|Z))

A system with n lasers will have 3n− 1 geometric parameters to optimise
over.
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5 Results

5.1 Calibration results

Figure 4 shows two 2D point clouds gathered from a single θj whilst plate
velocity was varied between 0-2Hz. One plot is generated assuming zero tim-
ing offset, ηi = 0 and the other for optimal lag value ηi = η̂i obtained from
the optimisation of Equation 13.
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Fig. 4: Data from a single horizontal laser beam taken with the plate running
between speeds of 0Hz and 2.0Hz. The left hand image shows the points with
an assumed lag of η̂ = 0ms and the right hand image with η̂ = 38ms. The
right hand image has a lower RQE measure.

Figure 5 shows a sampling of the cost surface generated in Equation 14.
The cost surface can be seen to have a single (global) minimum with no local
minima.

5.2 Cost function verification

We cannot numerically quantify the accuracy of the results obtained for the
optimisations of Section 4 using real laser data as the ground truth values of
our calibration parameters are unknown. To show that our calibration proce-
dures estimate the true underlying parameters and to provide a quantifiable
accuracy measure for our results, we have performed a series of Monte-Carlo
simulations using synthetic laser data.

Our simulator generates measurements zi polluted by additive noise
Nz ∼ N(0, σ2

z) with (σz = 0.012 m) to match the statistical noise of the real
laser measurements. The calibrations described in Equations 14 and 15 have
been evaluated for this data with calibration parameters set to τtrue = 0.20,



10 Mark Sheehan, Alastair Harrison, Paul Newman

τ (m)

α
(r
ad

s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5: Contour plot of cost surface E(Θ,H|Z) generated using real laser data
evaluated over a range of τ and α values. A cross is used to depict the global
minimum.

αtrue = 0 and λtrue = 0 respectively. 1500 runs were performed with the sim-
ulated range data regenerated each time. Table 1 shows the results of these
tests. We note that λ optimised to within a range of 0.22◦ for all 1500 runs
despite being seeded with a worst case value of λ = 180◦.

Variable Mean error Standard Deviation
τ 2.1mm 0.6mm
α 0.06◦ 0.12◦

λ 0.0009◦ 0.0322◦

Table 1: Deviance of results from ground truth values.

5.3 Selection of free parameter (σ)

To show how variation of free parameter σ affects our estimates of calibration
parameters we have generated simulated measurements zi as in Section 5.2
to perform the optimisation of Equation 14 whilst varying σ between 0.1 and
2. Figure 6 shows that estimations of τ and α become increasingly inaccurate
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with larger values of σ. Indicating that to optimise accuracy σ should be set as
low as possible, however looking at Figure 7 showing cost functions generated
for Equation 13 using real data, we see that as σ decreases the cost function
becomes more ’peaky’ until the extreme case of σ = 0.001 where local minima
are introduced to the cost function rendering it unsuitable for optimisation. It
is recommended that σ is initially selected to be significantly larger than the
noise in the measurements, giving an optimisation over a cost function with a
large basin of convergence, yielding an estimate of the calibration parameter,
which should then be used to seed the optimisation with a value of σ close
to the measurement noise of the system.
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Fig. 6: Variation of calibration parameters α and τ with free parameter σ
where τtrue = 0.2m and αtrue = 0◦

5.4 Calibrated point cloud

Having performed the optimisations listed in Section 4, we provide examples
of point clouds generated from our system. Figure 8 shows data taken from
an indoor office environment whilst rotating at velocities around 1Hz, Figure
9 shows a typical outdoor scene in an urban environment. Qualitatively the
images appear crisp, as the RQE measure has been optimised over all extrinsic
calibration parameters for each point cloud.
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Fig. 7: The variation of the cost function of Equation 13 with free parameter
σ for real laser data. Using sigma values of, top left 0.5, top right 0.04, bottom
left 0.012, bottom right 0.001.

Fig. 8: A crisp point cloud of our lab generated using optimised values Θ̂, Ĥ.
Point colouring is based on laser reflectance values. This point cloud was
achieved at a laser speed of 1HZ.
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Fig. 9: A point cloud generated of a typical outdoor environment. Visualised
a few metres from the laser scanner.

6 Experimental insights

In this paper we have given the specifications of our laser scanner, we have
outlined a cost function based on Rényi Quadratic Entropy to measure the
crispness of a point cloud and we have shown through the use of a Monte-
Carlo simulation that optimisation of this cost function over unknown system
parameters yields quantifiably improved performance.

We note that spatial calibration is necessary only when the laser arrange-
ment is changed relative to the plate and that our temporal calibration pro-
cedure only has to be performed once each time the unit is started. Whilst
the cost function we use is O(N2), only a modest amount of data is required
for the calibrations, thus optimisations remain tractable, resulting in a robust
reconfigurable laser system.
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Symbol Meaning
Li The ith laser
rj The jth range measurement from a laser
θj The jth angle measurement from a laser
φj The jth orientation measurement from the encoder
τi The distance from the rotational axis of the disc to the beam source of the ith laser
αi The angle between the scanning plane of the ith laser and the tangent to the plate
λi The angle between the ith beam origin and the first beam origin along plate radials
Θi The geometric calibration parameters for the ith laser λi, τi, αi

ηi The timing offset between the ith laser and the encoder measurements
HRQE The Rényi Quadratic Entropy
E(X̂) Our cost function based on Rényi Quadratic Entropy
σ The only tuning parameter

Table 2: List of parameters provided for reference.

References

1. A. Nuchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6D SLAM with approx-
imate data association,” Advanced Robotics, 2005. ICAR ’05. Proceedings., 12th In-
ternational Conference on, pp. 242 – 249, 2005.

2. D. Steinhauser, O. Ruepp, and D. Burschka, “Motion segmentation and scene classifi-
cation from 3D LIDAR data,” Intelligent Vehicles Symposium, 2008 IEEE, pp. 398 –
403, 2008.

3. A. Harrison and P. Newman, “High quality 3D laser ranging under general vehicle
motion,” Robotics and Automation, 2008. ICRA 2008. IEEE International Conference
on, pp. 7–12, 2008.

4. M. Bosse and R. Zlot, “Continuous 3D scan-matching with a spinning 2D laser,”
Robotics and Automation, 2009. ICRA ’09. IEEE International Conference on,
pp. 4312–4319, 2009.

5. Velodyne, “HDL-64E manual revision D,” Apr 2008.
6. S. Moon, P. Skelly, and D. Towsley, “Estimation and removal of clock skew from

network delay measurements,” INFOCOM ’99. Eighteenth Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 1,
pp. 227–234 vol.1, 1999.

7. L. Zhang, Z. Liu, and C. H. Xia, “Clock synchronization algorithms for network mea-
surements,” INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, vol. 1, pp. 160– 169
vol.1, 2002.

8. E. Parzen, “On estimation of a probability density function and mode,” The annals of
mathematical statistics, vol. 33, pp. 1065–1076, Jan 1962.

9. A. Rényi, “On measures of entropy and information,” Proceedings of the 4th Berkeley
Symposium on Mathematics, Statistics and Probability, vol. 1, pp. 547–561, 1961.

10. J. Principe and D. Xu, “Information-theoretic learning using renyi’s quadratic entropy,”
Proceedings of the 1st International Workshop on . . . , Jan 1999.

11. Y. Tsin and T. Kanade, “A correlation-based approach to robust point set registration,”
Computer Vision-ECCV 2004, pp. 558–569, 2004.

12. C. Shannon, “A Mathematical Theory of Communication,” Bell System Technical
Journal, vol. 27, pp. 379–423, July,October 1948.


