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Abstract— Modern robotic systems are composed of many
distributed processes sharing a common communications in-
frastructure. High bandwidth sensor data is often collected
on one computer and served to many consumers. It is vital
that every device on the network agrees on how time is
measured. If not, sensor data may be at best inconsistent
and at worst useless. Typical clocks in consumer grade PCs
are highly inaccurate and temperature sensitive. We argue
that traditional approaches to clock synchronization, such as
the use of NTP are inappropriate in the robotics context.
We present an extremely efficient algorithm for learning the
mapping between distributed clocks, which typically achieves
better than millisecond accuracy within just a few seconds.
We also give a probabilistic analysis providing an upper-bound
error estimate.

I. INTRODUCTION

This paper is about precise time stamping of events on a

robot or distributed system containing multiple clocks. We

introduce the TICSync algorithm, for efficiently learning the

mapping between distributed hardware clocks to allow pre-

cise, synchronized time stamping. TICSync is an incremental

algorithm, with O(1) update cost. Unusually, it provides

probabilistic bounds on its accuracy. TICSync is not just

about drastically reducing timing error, it is about knowing

how good timing is.

Our motivation for developing TICSync is simple - we

must know the time at which a measurement is valid if we

are to interpret it fully and fairly. Despite this being a truism,

little attention is given to this issue in robotics literature.

While there is a vast corpus of work on how to handle

uncertainty in measurements (range sensor noise, wheel slip,

shot CCD noise etc) less time has been spent on considering

(and reducing) the noise in measurement time stamps.

Multi-processor systems are now ubiquitous; pretty much

every camera, laser or IMU we connect to our robots contains

a free running microprocessor with an independent clock. We

should worry about the way in which time varying transport

delays between sensors (sources) and host processors (sinks)

impinge on the measurements. If our stated goal is opera-

tional longevity then we must care about (and mitigate) how

clocks drift relative to one another. The TICSync algorithm

addresses these needs in a lightweight and principled way.

A. How bad can clocks be?

The clocks in consumer grade computer equipment are

often of very low quality, being particularly susceptible to

changes in temperature. To illustrate this, Figure 1 shows
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Fig. 1: As an example of the poor quality clocks in the equipment commonly
used in robotic systems, we performed a 6 day long experiment, measuring
clock offsets between a SICK LMS151 laser range scanner and a standard
desktop computer in an office environment. The vertical lines represent 24
hour periods. At the end of the experiment, the laser had lost 92 seconds
compared to GMT. To produce this figure, we removed the first order skew
from the data, to leave only second order effects. The remaining fluctuations
correlate well with temperature measurements from the same period, and
show drift effects causing swings of over 30ms in offset. Note that the two
upper bands in the offset data are caused by task scheduling effects delaying
time stamping on the desktop computer.

large clock offset fluctuations in a SICK LMS151 laser range

sensor, due to only modest temperature variations.

A common approach to clock synchronization is to run an

NTP (Network Time Protocol) [1] server on one computer

and have the others adjust their clocks to it. The clocks are

brought slowly into alignment by varying their frequencies

by small amounts. NTP is an excellent way of achieving

long term synchronization, but we argue that it is undesirable

in a robotics context because it can take many hours to

synchronize clocks via NTP, and frequency adjustments can

cause inconsistencies in time stamps.

We call our algorithm Time stamp based Incremental

Clock Synchronization, or TICSync for short. It is capable

of rapidly learning the mapping between clocks (e.g after

a shutdown) and able to adjust to clock upsets such as

frequency changes which may be exhibited by clocks under

normal varying temperature conditions or under the control

of NTP. In other words, we have a system which maintains

synchronization despite the use of NTP. Our motivation here

is a light touch. We don’t want to demand that NTP is not

run, as that seems rude.
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Fig. 2: Time stamping mechanism between two computers. The client and
time server clocks are running at different frequencies, represented by the
tick marks. When either computer sends or receives a packet, it adds a local
time stamp. Possession of all three local time stamps allows a bounded offset
estimate to be obtained. Note that propagation delays may be asymmetric.

II. SYNCHRONIZATION MECHANISM

Consider two computers communicating over a network:

a client and a time server. Time on the server is denoted as

Ts = Cs(t) and the client clock as Tc = Cc(t), with t being

the universal time. The offset between the two clocks may

be positive or negative and is defined as

τ(t) = Cc(t)− Cs(t) (1)

Similarly, clock skew is defined as C ′
c(t) − C ′

s(t) and drift

as C ′′
c (t)− C ′′

s (t).
In a simple synchronization experiment, the client prepares

a data packet, time stamps it with the current local (client)

time and sends it to the time server. If the clocks of

the the two computers are perfectly synchronized then the

time server will observe a difference between the time of

transmission and the time of receipt equal to the network

propagation delay. If the clocks are consistent1 then the time

server will observe a difference equal to the sum of the offset

and the network propagation delay. Crucially, the time server

is unable to recover the offset between the two clocks without

having knowledge of the network delay.

The offset may be estimated using a two-way timing

mechanism. Consider Figure 2 which shows a single packet

communication in each direction with local time stamps

being stored at each send or receive event. We will refer

to a packet from the client to the time server as a request

and a packet from the time server to the client as a response.

The packet transport delays may be considered as random

variables, with distribution depending on network load, trip

distance, and CPU load at the client and time server. It can

not even be assumed that the delays are symmetric. Indeed,

if the time server is busy, it may not process and time stamp

the request packets immediately, meaning that the outbound

request journey often takes longer than the inbound response

journey.

Because the three events in Figure 2 must occur in strict

order, and clocks are strictly monotonic, it is possible to

1Consistent clocks have equal frequency (no relative skew) but a constant
offset
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Fig. 3: Typical offset measurements for a moderately loaded time server. The
bottom line shows offsets measured from the request packet, and the bottom
line shows offsets measured from the response packet. The two lines bound
the true offset. Notice that request packets typically have higher latency than
responses, yet there are still a few low latency request packets.

obtain upper and lower bounds on the true offset. The lower

bound is given by τLB(t1) = Cc(t0)− Cs(t1), since

τ(t1) = Cc(t1)− Cs(t1) (2)

> Cc(t0)− Cs(t1) (3)

A similar argument can be used to show that the upper bound

is given by τUB(t1) = Cc(t2)− Cs(t1).
Figure 3 shows typical upper and lower bound offset

values measured by a client, with a moderately loaded

network. It can be seen that the upper and lower bound lines

form a corridor in which the true offset value must lie. At a

particular instant, the total Round Trip Time (RTT) is given

by the difference between the upper bound and the lower

bound. As network load increases, packet journey times will

increase, and the bounds will diverge, corresponding to larger

RTTs. If δ is the minimum one-way transport delay, then on a

completely unloaded system, the RTT will reach a minimum

value, 2δ, corresponding to the shortest possible time for

an exchange between the client and server. The upper and

lower lines forming the corridor will never intersect each

other, thus

τUB(ti)− τLB(ti) ≥ 2δ (4)

When there is a lot of traffic passing through the server, or

the CPU is under high load, it may take longer than usual for

the server to get round to processing a client request message.

This explains the fact that in Figure 3 the lower bound line

is noisier than the upper bound line. It can also be seen that

occasionally a low latency message will slip through. These

low latency messages can provide useful information, even

if the total round trip time is large.

Over periods of the order of tens of minutes, the effect

of drift between clocks is typically small. It is reasonable

to assume a first order (constant-skew) model for both

clocks, so that given a recent time datum T0, the offset τ(t)
(Equation 1) is approximated by

τ(t) ≈ C ′

c(T0)t+ Cc(T0)− C ′

s(T0)t− Cs(T0) (5)

= αt+ β (6)



where α = C ′
c(T0)−C

′
s(T0) is the skew between clocks and

β = Cc(T0)− Cs(T0) is the relative offset at T0.

Here α and β are parameters that are typically learned by

the client. Once they have been determined, it is a trivial

matter to apply equation 6 to map between client and server

times.

III. PREVIOUS WORK

The problem of synchronizing two clocks comes down

to using the bounds corridor to estimate the skew and

offset between the clocks, though many approaches consider

only messages sent in one direction, For those algorithms

the offset estimate will always be biased by the minimum

network delay, δ. Some authors have attempted to learn

the unknown offset by comparing outputs from different

sensors [2].

Early techniques [3], [4] made clock adjustments based

on information from only the most recent exchange and

would not estimate skew. The recent IEEE1588 Precision

Time Protocol loop to provide accurate time stamps at a

hardware level.

Filtering approaches can obtain more accurate results than

are available from point estimates. Paxson [5] takes an off-

line multi-step filtering approach using bi-directional time

stamped messages and a series of heuristics. Veitch et al. [6]

use highly accurate driver-level time-stamping to minimize

packet timing error, then average offset measurements with

low Round Trip Times (RTTs) within a sliding window.

Aweya et al. [7] use a linear regression approach to finding

the skew.

Noh et al. [8] derive Maximum Likelihood Estimators

(MLEs) for offset and skew under the assumption of both

Gaussian and Exponential delay distributions. The algorithms

are not suitable for online use, because they are computation-

ally intensive and require all historical data to be stored.

Moon et al. [9] consider only one-way timing information

and ensure that the bounds are satisfied by using a linear

programming technique to fit a single line, pushed up against

the data points. Zhang et al. [10] showed that the Moon

objective function could be minimized using a convex hull

approach in linear time. It should be no surprise that the

convex hull plays a part, since any straight line which is

pushed up against the data cannot touch any point not on the

convex hull. The algorithm is very effective and lends itself

to an incremental implementation. To reiterate, the methods

of Moon et al. and Zhang et al. operate on one-way timing

data only. The next section goes on to propose an efficient

algorithm which operates on two-way timing data.

IV. ALGORITHM

Sirdey and Maurice [11] proposed a linear programming

approach to estimating the skew and offset between clocks,

using two-way timing data. Their aim was to find a pair of

maximally separated parallel lines which pass between the

upper and lower bound offset measurements. If the upper

bound measurements are given by D = {d0 . . dN−1} and

the lower bound measurements by Q = {q0 . . qM−1} then
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Fig. 4: There are many pairs of parallel lines which pass through the bounds
corridor whilst touching at least one upper and lower offset measurement
respectively. Figure 4(a) shows two such lines, pushed as far apart as
possible for the given slope. The objective function in Equation 7 finds the

slope angle α̂ such that the two lines (α̂t+ β̂1 and α̂t+ β̂2) are maximally
separated, as shown in Figure 4(b). The line αt + β shows the correct
mapping between the two clocks from which the offset measurements are
derived. As more measurements are gathered, α̂ converges to α.

the lines of maximum separation are found by maximizing

the objective function,

max
α̂,β̂1,β̂2

β̂1 − β̂2

s.t. α̂ti + β̂1 ≤ di, i = 0 . . N − 1

α̂t′j + β̂2 ≥ qj , j = 0 . .M − 1

(7)

Figure 4(b) shows an example, with the lines of maximum

separation labelled as α̂t + β̂1 and α̂t + β̂2. Given that the

data is expected to form a linear corridor, and assuming that

message delays are symmetric, one would use a line α̂t +
(β̂1 + β̂2)/2 as the final mapping estimate.

Sirdey and Maurice proposed a batch approach to solving

the objective function. We contribute an efficient incremental

approach to solving the same objective function, based on the

use of convex hulls.

A. A Convex-Hull based Algorithm

We begin with a simple observation about the batch

approach of Sirdey and Maurice, who use a rapid 50Hz
sample rate in their synchronization experiments. They sug-

gest running the algorithm over 10 minute windows of data,



over which the error due to clock drift is negligible. For

a 10 minute run, the batch linear-programming algorithm

must process 60,000 constraints; many of them far from the

feasible region and therefore never active.

The algorithm’s efficiency would be greatly improved

by using as constraints only those points which appear

as vertices on their respective convex hulls. In our own

experiments, convex hulls applied to linear timing data rarely

exceed 20 segments, independent of the number of samples;

the segments just tend to get longer. The hulls could be

maintained incrementally and then batch linear programming

updates would be cheap.

We can demonstrate how the algorithm can be further

improved such that the whole optimization may be performed

incrementally as new measurements come in. Space con-

straints preclude us from providing the full proof, but the

key intuition is that the lines of maximum separation pass

through the points of closest vertical distance between upper

and lower hulls. If the upper and lower hulls are denoted as

Ωu and Ωl respectively then we use the notation D(Ωu,Ωl)
to represent a function returning the closest vertical distance

between them.

When a new packet delay measurement arrives, it is added

to the appropriate convex hull, Ωu or Ωl. The hull for a time

ordered set of points can be computed with the simple O(N)
package wrapping algorithm given by Zhang et al. [10]. Thus

the cost of adding each new point is O(1) amortized. Then

D(Ωu,Ωl) is used to find the instant, t∗ of minimum vertical

distance between the two hulls. The slope of the hulls at t∗
gives the slope of the two Maximum Separation lines. Finally

the intersects β̂1 and β̂2 are computed such that they contact

their respective hulls at t∗.

Note that D(Ωu,Ωl) is efficient. The point of minimum

vertical distance between two hulls will only change when

a new measurement falls between the existing lines of

Maximum Separation and will never move backwards in

time. The procedure is thus:

1) Add new measurements to Ωu and Ωl (O(1))
2) If either measurement lies between α̂t+β̂1 and α̂t+β̂2

then

a) Call D(Ωu,Ωl) to search forward in time from

the previous point of minimum hull distance.

(Amortized O(1))
b) Recompute the lines of maximum separation to

pass through the new closest hull vertices or

segments. (O(1))

Usually there is no work to do beyond adding a new

hull segment, but occasionally the maximum separation lines

will need to be recomputed. As the algorithm converges, the

regularity with which a datum falls between the Maximum

Separation Lines will decrease.

V. ESTIMATOR CONVERGENCE PROPERTIES

This section shows how to obtain a probabilistic bound

for the TICSync estimator. As before, let D = {d0 . . dN−1}
be the set of upper bound offset measurements and Q =

t
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Fig. 5: The estimator, α⊕ is defined as the steepest of two lines anchored
at the halfway time, tmid. One is a line crossing αt+ δ at tmid and lying
at a tangent to the right half of the top hull, and the other a line crossing
αt − δ at tmid and lying at a tangent to the left half of the bottom hull.
Represented here as a thick dash-dotted lines, one or the other is guaranteed
to be at least as steep as the TICSync slope estimate, α̂ at all times.

{q0 . . qM−1} be the set of lower bound offset measurements.

If the data are generated from a pair of clocks with a linear

relationship defined by τ(t) = αt + β then each point can

be thought of as being produced by a probabilistic process

whereby

di = αti + β + δ + wi (8)

qj = αtj + β − δ − vj (9)

Here δ is the minimum one-way network delay and wi, vj ∼
W are positive random variables representing unknown

packet delays. The form of the distribution W is discussed

later.

We now investigate a hypothetical estimator α⊕, which

is guaranteed to give estimates at least as steep as α̂, the

solution to the objective function in Equation 7. We can

use its convergence properties to provide a bound on the

convergence properties of α̂. For the purposes of the analysis,

let us assume a constant sample rate, with period T . We also

define the halfway time,

tmid =
N − 1

2
T (10)

and the midpoint sample,

m =

⌈

N − 1

2

⌉

(11)

Consider Figure 5, which shows upper and lower bound

packet delay measurements D and Q along with their respec-

tive hulls. a1t + b1 + δ is the steepest line passing through

the point (tmid, αtmid+δ) such that di ≥ a1t+b1+δ for all

i. Likewise, a2t+ b2− δ is the steepest line passing through

the point (tmid, αtmid − δ) such that all qj ≤ a2t+ b2 − δ.

If we take the steepest of these two lines and denote it as



α⊕t+ β⊕ ± δ then it can be shown that

α⊕ = max(a1, a2) (12)

≥ α̂ (13)

This is a key point. No matter what slope the skew

estimate α̂ takes, α⊕ will always be at least as steep. If

we can derive convergence properties for α⊕ then α̂ must

converge at least as rapidly as that.

Suppose that the slope estimate, α̂ has error ε, so that α̂ =
α+ε and the upper bound estimate, α⊕ has slope error ε⊕, so

that α⊕ = α+ε⊕, with ε⊕ ≥ ε. For ε⊕ to be strictly greater

than some value, φ then all measurements di ∈ D must lie

above the line (α + φ)t + β⊕ + δ, and all measurements

qj ∈ Q must lie below the line (α + φ)t + β⊕ − δ. This

is trivially satisfied for one half of each line; for the other

halves we express the slope error probability as:

P (ε⊕ > φ) =

m−1
∏

j=0

P (qj ≤ (α+ φ)Tj + β⊕ − δ) (14)

N−1
∏

i=m

P (di > (α+ φ)T i+ β⊕ + δ), (15)

but because (α+φ)t+ β⊕ intersects αt at tmid, then β⊕ =
−φtmid, so with further manipulation and using Equations

8 and 9 we obtain

P (ε⊕ > φ) =

m−1
∏

j=0

P (vj > (tmid − Tj)φ) (16)

N−1
∏

i=m

P (wi > (T i− tmid)φ) (17)

Recalling that tmid = N−1
2 T and m =

⌈

N−1
2

⌉

this becomes

P (ε⊕ > φ) =

m−1
∏

i=0

P (wi > φTi)2 (18)

Converting to the more standard Cumulative Density Func-

tion (CDF) form gives,

P (ε⊕ ≤ φ) = 1−

m−1
∏

i=0

[1− P (wi ≤ φTi)]
2

(19)

1) Skew Error Bound: Since α⊕ is guaranteed to be at

least as steep as α̂ then it must be the case that

P (ε ≤ φ) ≥ P (ε⊕ ≤ φ), (20)

leading us to the main result of this Section, which is a bound

on the probability distribution of slope error for the objective

function of Equation 7,

P (ε ≤ φ) ≥ 1−

m−1
∏

i=0

[1− P (wi ≤ φTi)]
2

(21)

This means that if we have knowledge of the network

delay distribution, p(wi) then we are able to make good

predictions about the skew error achieved by the TICSync

estimator. Note that the convergence rate of the estimator is

independent of the minimum network propagation delay, δ.

2) Offset Error Bound: Since the estimator α⊕ is guar-

anteed to be at least as steep as the TICSync estimate, α̂,

it also provides an upper bound on the offset error. If α⊕

has slope error, ε⊕ = α⊕ − α then its offset error after N

samples will be ε⊕τ = ε⊕TN/2, providing a bound on the

TICSync offset error, ετ ≤ ε⊕TN/2.

VI. QUANTIFYING ESTIMATOR ERROR

In this Section we look at a way to quantify the con-

vergence properties of the TICSync estimator. If we have a

suitable model for the distribution of packet delays then we

can substitute it into Equation 19 and ask questions about the

number of samples required for the algorithm to converge to

a required level of accuracy.

A. Modelling Network Noise

We use the Weibull distribution because of its ability to

represent the sharp rise and long tail typical of network delay

distributions. Another key advantage is the availability of

algorithms for learning the parameters of the distribution

online and incrementally. We will show that using a Weibull

distribution will usually cause us to generate close, but

conservative estimates of the TICSync estimator’s error.

1) The Weibull Distribution: The Weibull distribution [12]

is a more general form of the Exponential Distribution. It

takes two parameters: shape, k and scale, λ and is defined

as

f(t;λ, k) =

{

k
λ

(

t
λ

)k−1
e−(

t
λ )
k

t ≥ 0

0 t < 0
, (22)

with the Cumulative Distribution Function being given by

F (t;λ, k) = 1− e−(
t
λ )
k

(23)

The mean and variance of f(t;λ, k) are

E(t) = λΓ

(

1 +
1

k

)

(24)

var(t) = λ2Γ

(

1 +
2

k

)

− E(t)2 . (25)

with Γ being the Gamma function.

2) Finding a bound on the true distribution: If the net-

work delays are Weibull distributed with wi ∼ f(λ, k), then

P (wi ≤ φ) = 1− e−(
φ

λ )
k

. (26)

Inserting this into Equation 21 gives

P (ε ≤ φ) ≥ 1−
m−1
∏

i=0

e−2(φTiλ )
k

(27)

which in log form becomes

ln [P (ε > φ)] ≥ −2

m−1
∑

i=0

(

φTi

λ

)k

(28)

= −2

(

φT

λ

)k m−1
∑

i=0

ik (29)
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Fig. 6: Expected slope error of the TICSync estimator for 10Hz sampling and Weibull parameters k = 1.33 and λ = 5.4 × 10−5. The dotted lines are
3σ bounds. Note the rapid convergence. The figure on the right shows the same plot on a log scale. Errors are given in Parts Per Million (PPM)

The summation term in Equation 28 has no closed form

solution. Instead we must resort to finding bounds on the

true result. Consider the function

g(N) =
N−1
∑

i=0

ik (30)

The discrete function ik is bounded above and below

by the continuous functions y = (x + 1)k and y = xk

respectively. Thus we may obtain the following bounds on

the function g(N),
∫ N−1

0

xkdx < g(N) <

∫ N−1

0

(x+ 1)kdx (31)

(N − 1)k+1

k + 1
< g(N) <

Nk+1

k + 1
(32)

As N → ∞, the bounds converge, because

lim
N→∞

(N − 1)k+1

k + 1
=
Nk+1

k + 1
(33)

and in practice the bounds are tight for N >> 1. Applying

this result to Equation 28 yields

ln [P (ε > φ)] ≥ −2

(

φT

λ

)k
mk+1

k + 1
(34)

and finally, approximating m ≈ (N − 1)/2 and rearranging

gives

ln [P (ε > φ)] ≥ −

(

φ

ψλ

)k

(35)

where ψ = 2
T (N−1)

(

k+1
N−1

)
1
k

.

We are now equipped with a probabilistic bound for the

convergence properties of the TICSync estimator, defined in

terms of the network delay distribution parameters, λ and k,

the sample period, T and the number of samples, N .

B. Quantitative estimates

Differentiating Equation 35 allows us to recover the PDF

over slope error for the TICSync estimator,

p(ε) = −
d

dφ
P (ε > φ)

=
k

ψλ

(

ε

ψλ

)k−1

e−(
ε
ψλ )

k

(36)
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Fig. 7: Required number of samples to achieve a given level of slope
accuracy, with k = 1.33 and λ = 5.4 × 10−5 and a sampling frequency
of 10Hz. Various confidence levels are shown. Errors are given in Parts Per
Million (PPM).

which is a pleasing result, being a Weibull distribution, with

p(ε) = f(ε;ψλ, k) – ie. a scaled version of the original

distribution in Equation 22.

With reference to the mean and variance of the Weibull

distribution (Equations 24 and 25) we can state that,

E(ε) ≤ ψλΓ

(

1 +
1

k

)

(37)

var(ε) ≤ (ψλ)2

[

Γ

(

1 +
2

k

)

−

[

Γ

(

1 +
1

k

)]2
]

. (38)

The availability of fast and accurate approximation algo-

rithms for the Gamma distribution [13] make these feasible

for online use. Using them we can calculate the expected

error of the TICSync estimator, given the number of samples,

N .

We fitted a Weibull distribution to a set of sample offset

data gathered on a Gigabit local network and found suitable

parameters to be k = 1.33 and λ = 5.4 × 10−5. Figure 6

shows the expected error with a sample rate of 10Hz, along

with 3σ bounds calculated from Equation 38.

Perhaps more usefully, we may also derive an expression

for estimating the minimum number of samples required to

achieve a particular slope error ε with a given confidence

c. The confidence value lies in the range [0, 1], so that c =
0.99 corresponds to a 99% confidence bound. Rearranging
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Fig. 8: A packet delay measurement experiment was performed over a
fast Gigabit network between two standard PCs, with a message rate of
2Hz. (a) shows a histogram of 1000 delay measurements, along with the
Weibull Distribution fitted by the Modified Moment Estimator (parameters:
λ = 5.4 × 10−5, k = 1.33). It is clear that the data is not really drawn
from a Weibull distribution. However, our error estimates make use of the
Cumulative Distribution rather than the PDF. (b) shows the CDF of the data
as a thick dashed line, with the CDF of the Weibull distribution overlaid.
The similarity here is much greater. (c) shows the same histogram, but this
time the MME was forced to choose a shape parameter value of k > 2. The
front end of the distribution is less steep, leading to a conservative estimate
of the CDF (d).

Equation 35,

N ≥

[

−(k + 1)

(

2λ

εT

)k

ln(1− c)

]
1
k+1

+ 1 (39)

Sample plots of this function are shown in Figure 7. Note

that reducing the required confidence by only a small amount

can drastically reduce the required number of samples.

VII. LEARNING THE WEIBULL DISTRIBUTION ONLINE

In order to make good predictions of error or required

sample counts, it is important that the network delay distri-

bution is well characterized. In practice we need to learn the

distribution online as data is accumulated.

We use the 3-parameter Modified Moment Estimator [14]

to learn the distribution incrementally from the measured

round trip times. The MME algorithm is easily made to run

online, with amortized O(1) updates.

Figure 8 shows some real network delay histograms from

a week-long experiment we carried out on our local Gigabit

network. The packet delay distribution is clearly multi-

modal, so the Weibull model is not strictly correct. But

recall that our expression for the TICSync estimator error

in Equation 21 uses the CDF of the distribution, rather than

the PDF. In fact, the Weibull model follows the CDF of the

raw data rather well.

1) Conservative Estimates: If the initial part of the

Weibull CDF is too steep, or leads the true CDF then it will

result in overconfident TICSync error estimates. Conversely,

if the Weibull CDF lags the true CDF or begins at too shallow

a slope then it will result in conservative error estimates. The

latter situation is clearly preferable, so on that basis we place

a restriction on the minimum value of the shape parameter for

our Weibull distributions, enforcing that k > 2. The decision

is not arbitrary, as k = 2 is the smallest value for which

the initial slope of the Weibull distribution is 0. It helps to

ensure that the sharp front edge of the true histogram is

only softly reproduced by the Weibull distribution. Figure 8

shows the result of applying the restriction. We find that the

approximation works very well throughout our week-long

dataset, giving a Weibull CDF which is close to the true

data, but usually conservative.

VIII. RESULTS

We performed both synthetic and physical experiments to

measure how well TICSync can learn the mapping between

separate clocks. Ground truth was hard to provide to the

accuracy required, so we ran the client and time server

processes on the same machine, but caused the communi-

cations between them to be routed from Oxford, England,

to an Amazon EC2 server in North America and then back

again. This resulted in a mean round trip time of 162ms and

authentic network delays.

Figure 9 shows that the skew error evolved much as

predicted by the probabilistic bounds. The offset error con-

verges very rapidly to microsecond levels, but stabilizes at

around 35µs, as the the granularity of the computer clock

measurements is reached, and quantization errors begin to

dominate.

We also ran a series of 1500 synthetic experiments where

delay data was drawn from a Weibull distribution and random

skews and offsets were applied (see Figure 10). The en-

semble average shows good agreement with the probabilistic

predictions. Recall that the predictions are an upper bound,

which explains the separation between expected and actual

results.

The rapid convergence and low computational cost of the

TICSync estimator make it ideal for tracking low frequency

drift such as that in Figure 1. A pair of overlapping estimators

which are occasionally and alternately reset are a simple

and effective solution. More advanced upset detection is

made possible by using the probabilistic error bounds on

the TICSync estimator, but we leave this for future work.

IX. CONCLUSIONS

In this paper we have described a new algorithm, TICSync,

for unified and precise timing across distributed networked

systems. Its standout properties are rapid convergence and

probabilistic bounds on performance. Crucially it has O(1)

incremental complexity. We have demonstrated its perfor-

mance on real data. The value of TICSync to the robotics

community lies in distributed sensing, its application to

synchronizing sensors to hosts, and allowing unified time
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Fig. 9: Results from a physical experiment run on a standard desktop PC,
where timing pings at 10Hz were sent between Europe and North America.
The mean round trip time was 162ms. TICSync was run over 7510 ping
sequences, each lasting 15s and an ensemble average was taken. Offset error
almost immediately comes down to tens of microseconds, which is close to
the resolution of the PC clock used in this experiment.

stamping in robots with multiple on-board computers. We

will be releasing TICSync as a library for use by the

community at large. Our intent is to provide excellent timing

for practically zero overhead, allowing us to estimate when

things happened and with what temporal confidence.

X. ACKNOWLEDGEMENTS

This work has been generously supported by the Eu-

ropean Commission under grant agreement number FP7-

231888-EUROPA and the Office of Naval Research Grants

N000140810337 and N000140710550.

REFERENCES

[1] D. Mills, “Internet time synchronization: The network time protocol,”
Communications, IEEE Transactions on, vol. 39, no. 10, pp. 1482–
1493, Oct 1991.

[2] F. Tungadi and L. Kleeman, “Time synchronisation and calibration of
odometry and range sensors for high-speed mobile robot mapping,” in
Proc. Australasian Conference on Robotics and Automation, Canberra,
Australia, December 2008.

[3] F. Cristian, “Probabilistic clock synchronization,” Distributed Comput-

ing, vol. 3, no. 3, pp. 146–158, 1989.

[4] R. Gusella and S. Zatti, “The Accuracy of the Clock Synchronization
Achieved by TEMPO in Berkeley UNIX 4.3BSD,” IEEE Trans.

Software Eng., vol. 15, no. 7, pp. 847–853, 1989.

[5] V. Paxson, “On calibrating measurements of packet transit times,” in
SIGMETRICS, 1998, pp. 11–21.

0 5 10 15
10

0

10
1

10
2

10
3

10
4

Time (s)

S
k
e
w

 E
rr

o
r 

(P
P

M
)

Simulation − Mean Skew Error (1500 runs)

 

 

mean

upper bound

mean + 1σ

upper bound + 1σ

0 5 10 15
0

50

100

150

200

Time (s)

O
ff

s
e

t 
e

rr
o

r 
(µ

s
)

Simulation − Mean Offset Error (1500 runs)

 

 

mean

upper bound

mean + 1σ

upper bound + 1σ

Fig. 10: Synthetic data experiments to compare TICSync performance with
expected performance (from Equation 37). Packet delay data was generated
at 10Hz from a Weibull distribution with parameters λ = 1.4× 10−4, k =

2.5 and minimum network delay δ = 75ms, which were found to best fit
our actual round-internet data. We performed 1500 independent experiments
and then took the ensemble average to produce the figures here.

[6] D. Veitch, J. Ridoux, and S. B. Korada, “Robust synchronization
of absolute and difference clocks over networks,” IEEE/ACM Trans.

Netw., vol. 17, no. 2, pp. 417–430, 2009.
[7] J. Aweya, D. Y. Montuno, M. Ouellette, and K. Felske, “Clock

recovery based on packet inter-arrival time averaging,” Computer

Communications, vol. 29, no. 10, pp. 1696–1709, 2006.
[8] K.-L. Noh, Q. Chaudhari, E. Serpedin, and B. Suter, “Novel clock

phase offset and skew estimation using two-way timing message
exchanges for wireless sensor networks,” Communications, IEEE

Transactions on, vol. 55, no. 4, pp. 766–777, April 2007.
[9] S. B. Moon, P. Skelly, and D. F. Towsley, “Estimation and removal of

clock skew from network delay measurements,” in INFOCOM, 1999,
pp. 227–234.

[10] L. Zhang, Z. Liu, and C. Honghui Xia, “Clock synchronization algo-
rithms for network measurements,” in INFOCOM 2002. Twenty-First

Annual Joint Conference of the IEEE Computer and Communications

Societies., vol. 1. IEEE, 2002, pp. 160–169 vol.1.
[11] R. Sirdey and F. Maurice, “A linear programming approach to highly

precise clock synchronization over a packet network,” 4OR, vol. 6,
no. 4, pp. 393–401, 2008.

[12] A. C. Cohen and B. Whitten, Parameter estimation in reliability and

life span models, 1st ed., ser. STATISTICS: textbooks and mono-
graphs. New York: Marcel Dekker, Inc, September 1988.

[13] W. J. Cody, “An overview of software development for special
functions,” in Proceedings of the Dundee Conference on Numerical

Analysis, vol. 506/1976. Springer Berlin / Heidelberg, 1975, pp.
38–48.

[14] C. A. Cohen and B. Whitten, “Modified maximum likelihood and
modified moment estimators for the three-paramter weibull distribu-
tion,” Communications in Statistics - Theory and Methods, vol. 11,
no. 23, pp. 2631–2656, 1982.


